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Abstract—Training and fine-tuning large language models
(LLMs) with hundreds of billions to trillions of parameters
requires tens of thousands of GPUs, and a highly scalable
software stack. In this work, we present a novel four-dimensional
hybrid parallel algorithm implemented in a highly scalable,
portable, open-source framework called AxoNN. We describe
several performance optimizations in AxoNN to improve matrix
multiply kernel performance, overlap non-blocking collectives
with computation, and performance modeling to choose perfor-
mance optimal configurations. These have resulted in unprece-
dented scaling and peak flop/s (bf16) for training of GPT-style
transformer models on Perlmutter (620.1 Petaflop/s), Frontier
(1.381 Exaflop/s) and Alps (1.423 Exaflop/s).

While the abilities of LLMs improve with the number of
trainable parameters, so do privacy and copyright risks caused
by memorization of training data, which can cause disclosure of
sensitive or private information at inference time. We highlight
this side effect of scale through experiments that explore “catas-
trophic memorization,” where models are sufficiently large to
memorize training data in a single pass, and present an approach
to prevent it. As part of this study, we demonstrate fine-tuning
of a 405-billion parameter LLM using AxoNN on Frontier.

Index Terms—parallel training, GPGPUs, collective communi-
cation, asynchrony, large language models

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

A novel four-dimensional hybrid parallel approach to scale
neural network training to tens of thousands of AMD and
NVIDIA GPUs. Time-to-solution for 80-billion parameter
GPT-style transformer models was reduced by 56.0×, due
to kernel tuning, aggressive overlap, and optimization of col-
lective communication. Unprecedented performance of 1.423
Exaflop/s on 6,144 NVIDIA H100 GPUs, 1.381 Exaflop/s on
32,768 AMD MI250X GCDs, and 620.1 Petaflop/s on 4,096
NVIDIA A100 GPUs in half-precision (bf16).

II. PERFORMANCE ATTRIBUTES

Category of achievement peak performance, scalability, time-
to-solution

Type of method used n/a
Results reported on the basis of whole application including input
Precision reported mixed-precision
System scale results measured on full-scale system
Measurement mechanism timers and FLOP count

III. OVERVIEW OF THE PROBLEM

The field of generative artificial intelligence (AI) has taken
the world by storm. In particular, large language models
(LLMs) and their chatbot interfaces have become ubiquitous,
employed by students, researchers, and professionals in vari-
ous fields on a daily basis. Modern generative AI models are
built by training extremely large neural networks, which have
been shown to generalize extremely effectively with increases
in model size. This unprecedented scaling of neural network
training has been enabled by the emergence of highly efficient
GPUs, and the availability of open source training frameworks
such as PyTorch, and TensorFlow.

Training large neural networks that do not fit on a single
GPU with 40-96 GB of RAM requires partitioning the model
across multiple GPUs and parallelizing the matrix-matrix
multiplication operations, which are a significant fraction of
the overall computation. Scalability and parallel efficiency
of DNN training is impacted by several factors – sustained
flop/s and scalability of parallel matrix multiplication, per-
formance of collective communication operations over sub-
communicators, and the degree of overlap of computation with
non-blocking collectives. While classical parallel algorithms
for matrix multiplication such as SUMMA and Cannon’s 2D
Matrix Multiply exist, they lead to significant communication
bottlenecks when training models with hundreds of billions of
parameters on hundreds of GPUs. All of these factors make
efficient parallelization of DNN training a formidable task.

In this work, we target the challenging research problem
of training models with hundreds of billions of parameters on
the fastest supercomputers with thousands of GPUs. Tradition-
ally, training at such scales has been restricted to companies
with large budgets and access to significant GPU resources.
However, programs such as INCITE for access to DOE
supercomputers, Frontier and Perlmutter, and recent access to
Alps at CSCS have enabled our team to solve the research
challenges in the area of parallel training, and innovate in the
area of AI/ML, by training and fine-tuning LLMs.

There are several different challenges in ensuring scalability
and a high fraction of peak flop/s for parallel training. First,
we need to ensure that math libraries such as cuBLAS and
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rocBLAS are highly performant for matrix multiplication on
NVIDIA and AMD GPUs respectively. Second, we have to
ensure that both intra-node and inter-node communication of
data (activations, parameters, and gradients) is performant, and
overlapped with computation as much as possible. Third, when
running on large GPU partitions with hundreds to thousands
of GPUs, the decomposition of work and its mapping to GPUs
should be near-optimal, taking communication into account.

In order to overcome the challenges mentioned above,
we have developed a four-dimensional (4D) hybrid parallel
approach that combines a three-dimensional (3D) matrix mul-
tiplication algorithm with data parallelism to achieve high
efficiency at large GPU counts. In addition, we have im-
proved the performance of our implementation using several
optimizations. First, we tune our matrix multiplication for
each individual platform. Second, we aggressively overlap
computation with non-blocking collectives used in different
phases of training. Third, since the 4D algorithm requires
arranging the GPUs in an allocated job partition into a 4D
virtual grid, this results in several potential configurations,
not all of which are performance optimal. Hence, we have
developed a communication model for 4D hybrid algorithms
that can predict high-performing configurations given a prob-
lem size and number of GPUs. We have implemented all of
the aforementioned innovations in AxoNN [9], [10], our open
source framework for large scale parallel deep learning.

We have benchmarked and optimized AxoNN on both
NVIDIA and AMD GPU-based platforms, and we present re-
sults on Perlmutter at NERSC/LBL, Frontier at OLCF/ORNL,
and Alps at CSCS. We use a range of neural network sizes
with 5 billion to 320 billion parameters. AxoNN achieves
an unprecedented performance of 620.1 Petaflop/s on 4,096
NVIDIA A100 GPUs, 1.381 Exaflop/s on 32,768 MI250X
GCDs, and 1.423 Exaflop/s on 6,144 NVIDIA H100 GPUs
in half-precision (bf16).

Access to a highly scalable training framework and large
supercomputers have also enabled the AI researchers on our
team to study the inner workings of LLMs at model sizes
that are impossible to study otherwise. One such problem is
studying whether LLMs memorize training data and regenerate
it verbatim during inference. This has privacy risks when
personally identifiable information (PII) is memorized, and
legal/copyright risks when models reproduce verbatim copies
of text without the necessary copyright and licensing informa-
tion. We present a study that explores the relationship between
model size and the memorization properties of LLMs, and
demonstrate the impact of a solution to reduce memorization.

IV. STATE OF THE ART IN PARALLEL TRAINING

In this section, we present the state of the art in scaling
parallel training of deep neural networks to large-scale HPC
systems and data centers.

A. Methods for Parallel DNN Training

Deep neural network training is typically parallelized using
one of three approaches – data parallelism, tensor parallelism,

or pipeline parallelism, or a hybrid approach that combines
some of the above. In data parallelism, all GPUs are assigned
a full copy of the neural network, and parallelism is achieved
by sharding the input batch equally among the GPUs. The
main drawback of data parallelism is that it requires the
entire network to fit on a single GPU. To mitigate this,
sharded data parallelism has been developed, which divides
the network parameters across GPUs [11]–[13] and performs
extra communication to gather them when needed.

Model parallelism is used to train DNNs that far exceed the
memory capacity of a single GPU, and it can be further divided
into two approaches – tensor parallelism [14] and pipeline
parallelism [6], [15]. The former parallelizes the computation
of each layer of the neural network across several GPUs,
and is the focus of our work. In pipeline parallelism, entire
layers are assigned to each GPU. A popular framework for
parallel training is Shoeybi et al.’s Megatron-LM [14], which
uses a tensor parallel algorithm to parallelize a pair of fully-
connected layers.

Several frameworks combine multiple approaches to de-
velop hybrid methods. Narayanan et al. [6] extend Megatron-
LM to support hybrid parallelism by combining tensor,
pipeline, and data parallelism. Rajbhandari et al. introduce a
sharded data parallelism approach called ZeRO [11], which
is combined with pipeline and tensor parallelism in Mi-
crosoft’s training framework, DeepSpeed [16], [17]. Megatron-
DeepSpeed uses Megatron-LM’s tensor parallelism.

Several other frameworks that further optimize DNN train-
ing have been proposed in recent times. GPT-NeoX builds
upon Megatron-LM and DeepSpeed for ease of usage [18].
Wahib et al. introduce KARMA, an out-of-core data par-
allelism framework, managing CPU-GPU data transfers to
alleviate GPU memory constraints [2]. Zheng et al. propose
Alpa for automating neural network parallelization, optimizing
communication across GPUs [19]. Colossal-AI [20] offers a
unified interface for distributed deep learning training.

B. Large-scale Studies of Training LLMs

We now present recent studies on training large language
models on some of the largest GPU-based clusters. Meta
trained Llama 2 [21] on 2000 NVIDIA A100 GPUs. Jain et
al. [1] benchmark the training of a variant of T5-Large [22]
on 1024 NVIDIA V100 GPUs using their proposed sub-graph
parallelism technique within the LBANN framework [23].
Wahib et al. [2] use KARMA to benchmark a 17B pa-
rameter model on 2048 NVIDIA V100 GPUs and report a
1.35x training speedup compared to ZeRO [11]. Narayanan et
al. present a weak scaling study of Megatron-LM’s pipeline
parallelism, achieving 52% of the peak NVIDIA A100 flop/s
when benchmarking the training of a 1000B parameter model
on 3072 GPUs [6]. Shaden et al. [5] use Megatron-LM
and DeepSpeed [16] to train a 530B parameter language
model on the Selene supercomputer [24] using 4480 NVIDIA
A100 GPUs. They achieved 113 Tflop/s per GPU with 3360
GPUs, equivalent to 36% of the peak performance. Ziheng et
al. [7] introduce MegaScale, a production system for training



TABLE I
COMPARISON OF LARGE-SCALE LLM TRAINING STUDIES, COVERING DIVERSE FRAMEWORKS AND HARDWARE. FOR EACH STUDY, WE LIST THE
LARGEST HARDWARE COUNTS USED, CORRESPONDING MODEL & BATCH SIZE, PERCENTAGE OF PEAK FLOP/S, AND ACTUAL SUSTAINED FLOP/S.

Study Framework Model Size Batch Size Hardware Scale % Peak Petaflop/s

SUPER [1] LBANN 3B* 0.5M* NVIDIA V100 1,024 GPUs - -
KARMA [2] KARMA 17B 2.0M* NVIDIA V100 2,048 GPUs - -
FORGE [3] GPT-NeoX 1.44B 16.8M AMD MI250X 2,048 GCDs ∼29%† ∼112.6†

Dash et al. [4] Megatron-DeepSpeed 1000B 19.7M AMD MI250X 3,072 GCDs 31.9%‡ 188.0‡
MT-NLG [5] Megatron-DeepSpeed 530B 4.0M NVIDIA A100 3,360 GPUs 36% 379.7
Narayanan et al. [6] Megatron-LM 1000B 6.3M NVIDIA A100 3,072 GPUs 52% 502.0
MegaScale [7] MegaScale 175B 12.5M NVIDIA A100 12,288 GPUs 55% 2166.3
Google [8] Cloud TPU Multislice Training 32B 417M TPUv5e 55,094 TPUs 44.67% 4480.0

This Work AxoNN [9]
40B 16.8M NVIDIA A100 4,096 GPUs 49% 620.1

320B 16.8M AMD MI250X 32,768 GCDs 22% 1381.0
60B 16.8M NVIDIA H100 6,144 GPUs 23% 1423.1

* Estimated from description in paper as exact number not mentioned
† Estimated from plots in the paper as exact numbers not mentioned
‡ Calculated from flop/s at lower GPU/GCD count and weak scaling efficiency

LLMs at scale, achieving a 55.2% of the peak flop/s when
benchmarking a 175B parameter model on 12,288 NVIDIA
A100 GPUs.

With the emergence of AMD GPUs, several studies have
focused on training large language models on AMD systems.
Yin et al. [3] train FORGE, an open suite of large language
models for scientific computing on Frontier [25]. In their work,
the authors show scaling performance for training FORGE
on up to 2048 AMD MI250X GPUs, achieving 28% of the
peak flop/s. Dash et al. [4] analyze efficient distributed training
strategies on Frontier for training large language models. They
achieve 31.96% of peak when benchmarking the training of a
1T parameter model on 1024 MI250X GPUs.

Google conducted a study on large-scale training jobs for
LLMs using over 50,000 TPUv5e chips [8]. The authors
achieve 44.67% of the peak TPUv5e performance when bench-
marking a 32B parameter model on 50,944 TPUv5e chips.
Table I provides a summary of these studies, indicating the
largest scale (in terms of the number of GPUs/GCDs/TPUs)
used and the corresponding flop/s achieved. The last set of row
in the table presents the results of this work using our open-
source training framework, AxoNN. With the exception of
MegaScale, AxoNN has been scaled to the largest number of
NVIDIA GPUs. To the best of our knowledge, AxoNN is the
first framework to run on up to 32,768 AMD MI250X GCDs
to achieve a sustained flop/s performance of 1.381 Exaflop/s.

V. INNOVATIONS REALIZED

Training deep neural networks on a single GPU involves
processing subsets of the data called batches through the
layers of a DNN in the forward pass to compute a loss,
computing the gradient of the loss in a backward pass via
backpropagation, and updating the parameters (also called
“weights”) in the optimizer step. These three steps are repeated
iteratively until all batches have been consumed, and this entire
training process is referred to as an epoch. We now describe
our novel approach to scaling the computation in the steps

described above in the context of large multi-billion parameter
neural networks on thousands of GPUs.

A. A Four-Dimensional Hybrid Parallel Approach

We have designed a hybrid parallel approach that combines
data parallelism with three-dimensional (3D) parallelization of
the matrix multiplication routines.

Data Parallelism: In order to use a hybrid approach that
combines data with tensor parallelism, we organize the total
number of GPUs, G, into a virtual 2D grid, Gdata ×Gtensor.
This results in Gdata groups of Gtensor GPUs each. We
use data parallelism across the Gdata groups, and tensor
parallelism within each group. Each Gdata group collectively
has a full copy of the neural network and is tasked to process
a unique shard of the input batch. At the end of an input
batch, all groups have to synchronize their weights by issuing
all-reduces on their gradients after every batch (this is also
referred to as an iteration).

3D Parallel Matrix Multiplication (3D PMM): Next, we use
each GPU group, composed of Gtensor GPUs to parallelize the
work within their copy of the neural network. This requires
distributing the matrices, and parallelizing the computation
within every layer of the neural network across several GPUs.
Note that most of the computation in transformers is comprised
of large matrix multiplications within fully connected (FC)
layers. Hence, in this section, we will focus on parallelizing
FC layers with a 3D PMM algorithm.

We now describe how a single layer is parallelized, and
the same method is applied to all the layers in the neural
network. Each FC layer computes one half-precision (fp16 or
bf16) matrix multiplication (input activation, I multiplied by
the layer’s weight matrix, W ) in the forward pass and two half-
precision matrix multiplications (MMs) in the backward pass
( ∂L∂O×W⊤ and I⊤× ∂L

∂O , where L is the training loss, and O is
the output activation.) Thus, parallelizing an FC layer requires
parallelizing these three MM operations across multiple GPUs.



We adapt Agarwal et al.’s 3D parallel matrix multiplication
algorithm [26], for parallelizing our MMs. The 3D refers to
organizing the workers (GPUs) in a three-dimensional virtual
grid. So, we organize the Gtensor GPUs further into a virtual
3D grid of dimensions Gx × Gy × Gz (Figure 1). We do
2D decompositions of both I and W into sub-blocks and map
them to orthogonal planes of the 3D grid. In the figure below, I
is distributed in the XZ plane, and copied in the Y dimension.
W is distributed in the XY plane and copied along the Z
dimension. Once each GPU has a unique sub-block of I and
W, it can compute a portion of the O matrix, which can be
aggregated across GPUs in the X direction using all-reduces.
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Fig. 1. Parallelization of a matrix multiply in an FC layer with Agarwal’s
3D parallel matrix multiplication algorithm [26] on eight GPUs organized in
a 2 × 2 × 2 topology. We use Gx, Gy , and Gz to refer to the number of
GPUs along the three dimensions of the virtual grid topology.

We modify Agarwal’s algorithm to reduce memory con-
sumption, and instead of making copies of W along the
Z-axis, we further shard W along the Z-axis and denote
these sub-shards as Ŵ . Algorithm 1 presents the forward and
backward pass operations on GPU gi,j,k, and we can observe
that the sharding of W results in all-gather operations before
the local matrix multiplication on each GPU can proceed.

In the forward pass, after the local (to each GPU) matrix-
multiply on line 3, we do an all-reduce to aggregate the output
activations (line 4). In the backward pass, there are two matrix
multiplies on lines 11 and 13, and corresponding all-reduce
and reduce-scatter operations in lines 12 and 14 to get the
data to the right GPUs.

Parallelizing an entire network: The approach of paralleliz-
ing a single layer in a deep neural network can be applied
to all the layers individually. Let us consider a 2-layer neural
network. If we use Algorithm 1 to parallelize each layer, the
output O of the first layer would be the input to the other.
However, notice in Figure 1 that O is distributed across the
3D virtual grid differently than the input I . So to ensure that
the second layer can work with O, we would need to transpose
its weight matrix – essentially dividing its rows across the X-
axis and columns across the Y -axis. This transpose needs to be
done once at the beginning of training. Hence, to parallelize a
multi-layer neural network, we simply ‘transpose’ the weights
of every other layer by swapping the roles of the X- and Y -
tensor parallel groups.

Note that the 4D algorithm (data + 3D PMM) discussed
in this section is a generalization of various state-of-the-art

Algorithm 1 Tensor parallel algorithm for gi,j,k in a Gx ×
Gy ×Gz grid. Communication operations highlighted in blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ×Wj,i

4: Ok,i ← ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( ∂L

∂Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: ∂̂L
∂Ik,j

← ∂L
∂Ok,i

×W⊤
j,i

12: ∂L
∂Ik,j

← ALL-REDUCEx( ∂̂L
∂Ik,j

)

13: ∂̂L

∂Ŵj,i
← I⊤k,j × ∂L

∂Ok,i

14: ∂L

∂Ŵj,i
← REDUCE-SCATTERz( ∂̂L

∂Ŵj,i
)

15: return ∂L
∂Ik,j

, ∂L

∂Ŵj,i

16: end function

parallel deep learning algorithms. For example, if one were to
employ only the Z axis of our PMM algorithm to parallelize
training, it would reduce to Fully Sharded Data Parallelism
(FSDP) [12] and ZeRO [11]. Similarly, if we employ the Z
axis of 3D PMM and data parallelism simultaneously, then our
algorithm reduces to Hybrid Sharded Data Parallelism [12]
and ZeRO++ [27]. If we use the X axis of our 3D PMM
algorithm along with the ‘transpose’ scheme discussed in the
previous paragraph, our 4D algorithm reduces to Shoeybi et
al.’s Megatron-LM [14]. Finally, when all four dimensions
of our 4D algorithm are being used, this is similar to a
hybrid scheme that combines data parallelism, FSDP, and two-
dimensional tensor parallelism.

B. A Performance Model for Identifying Near-optimal Config-
urations

When assigned a job partition of G GPUs, we have to decide
how to organize these GPUs into a 4D virtual grid, and how
many GPUs to use for data parallelism versus the different
dimensions of 3D parallel martix multiplication. To automate
the process of identifying the best performing configurations,
we have developed a performance model that predicts the
communication time of a configuration based on the neural
network architecture, training hyperparameters, and network
bandwidths. Using these predictions, we can create an ordered
list of the best performing configurations as predicted by the
model. We describe the inner-workings of this model below.

We primarily focus on modeling the performance of the
collective operations in the code, namely all-reduces, reduce-
scatters, and all-gathers. We first list the assumptions we make
in our model:



• Assumption-1: The ring algorithm [28] is used for im-
plementing the all-reduce, reduce-scatter, and all-gather
collectives.

• Assumption-2: For collectives spanning more than one
compute node, the ring is formed such that the number
of messages crossing node boundaries is minimized.

• Assumption-3: The message sizes are large enough, and
hence, message startup overheads can be ignored. In other
words, if a process is sending a message of n bytes, then
we assumed that the transmission time is simply n

β , where
β is the available bandwidth between the two processes.

• Assumption-4: We only model the communication times
and ignore the effects of any computation taking place
on the GPUs.

• Assumption-5: We assume the same peer-to-peer bidirec-
tional bandwidth, βinter, between every pair of nodes.

We use the analytical formulations in Thakur et al. [28]
and Rabenseifner [29] for modeling the performance of ring
algorithm based collectives. Let tAG,z denote the time spent
in the all-gather across the Z-tensor parallel groups (line 2
of Algorithm 1). Similarly, we use tRS,z , tAR,y and tAR,x to
refer to the time spent in the collectives in lines 14, 4, and 12
respectively. Similarly, we use tAR,data for the time spent in
the data parallel all-reduce. Then, we can model these times
as follows,

tAG,z =
1

β
× (Gz − 1)× k × n

Gx ×Gy ×Gz
(1)

tRS,z =
1

β
×
(
Gz − 1

Gz

)
× k × n

Gx ×Gy
(2)

tAR,y =
2

β
×
(
Gy − 1

Gy

)
× m× n

Gz ×Gx
(3)

tAR,x =
2

β
×
(
Gx − 1

Gx

)
× m× k

Gz ×Gy
(4)

tAR,data =
2

β
×
(
Gdata − 1

Gdata

)
× k × n

Gx ×Gy ×Gz
(5)

The total communication time for a single layer, tcomm is
simply the sum of Equations 1 through 5:

tcomm = tAG,z + tRS,z + tAR,y + tAR,x + tAR,data (6)

For layers with ‘transposed’ weight matrices as discussed at
the end of Section V-A, we need to swap the values of Gx

and Gy . And finally, to model the communication time for the
entire network, we apply Equation 6 to all of its layers, and
take a sum of the times.

In the equations derived above, we made a simplifying
assumption that all collectives in our hybrid parallel method
can achieve the highest peer-to-peer bandwidth, denoted by
β. However, since several collectives are often in operation

at once, the actual bandwidth achieved for a collective op-
eration among a group of GPUs depends on the placement
of processes in our 4D virtual grid to the underlying hard-
ware topology (nodes and network) [30]–[33]. For example,
process groups that are contained entirely within a node can
experience higher bandwidths than those containing GPUs on
different nodes. Next, we model the specific bandwidths used
in Equations 1 through 5.

To model the process group bandwidths, we begin by
assuming a hierarchical organization of process groups: X-
tensor parallelism (innermost), followed by Y -tensor paral-
lelism, Z-tensor parallelism, and data parallelism (outermost).
As a concrete example, if we have eight GPUs, and set
Gx = Gy = Gz = Gdata = 2, then the X-tensor parallel
groups comprise of GPU pairs (0,1), (2,3), (4,5), and (6,7).
Similarly, the Y -tensor parallel groups would comprise of
GPU pairs (0,2), (1,3), (4,6), and (5,7), and so on.

Now let G⃗ = (Gx, Gy, Gz, Gdata) be the tuple of our
configurable performance parameters, arranged in order of
the assumed hierarchy. Let β⃗ = (βx, βy, βz, βdata) be the
effective peer-to-peer bandwidths for collectives issued within
these process groups. We use β⃗i and G⃗i to represent the ith

elements of these tuples (0 ≤ i ≤ 3). Also, let Gnode refer to
the number of GPUs per node. Now let us model each βi i.e.
the bandwidth available to the GPUs in the process groups at
the ith level of the hierarchy.

Case 1: GPUs in the process group lie within a node – in our
notation, this is the scenario when

∏i
j=0 Gj ≤ Gnode.

The bandwidth β⃗i is determined by two primary factors: (i)
the size of the ith process group, Gi, and (ii) the cumulative
product of the sizes of all preceding process groups,

∏i−1
j=0 Gj .

Given that the number of GPUs per node is typically small, the
number of possible scenarios is also small. Therefore, we can
profile the bandwidths for all potential configurations in ad-
vance and store this information in a database. Specifically, we
generate all possible two-dimensional hierarchies of process
groups (G0, G1) such that G0×G1 ≤ Gnode, and then perform
simultaneous collectives within the outer process groups of
size G1 with a large message size of 1 GB. We record the
achieved bandwidths for this tuple in our database. Then, for
a given model, when we need the predicted bandwidths for
the ith process group, we retrieve the bandwidth recorded for
the tuple (G0 =

∏i−1
j=0 Gj , G1 = Gi).

Case 2: GPUs in the process group are on different nodes –
in our notation, this is the scenario when

∏i
j=0 Gj > Gnode.

For process groups spanning node boundaries, the approach
of recording all possible configurations in a database is not
feasible due to the vast number of potential scenarios, given
the large number of possible sizes of these groups in a multi-
GPU cluster. Therefore, we develop a simple analytical model
for this scenario, which predicts the achieved bandwidths as a
function of the inter-node bandwidths (βinter), process group
sizes (G⃗), and the number of GPUs per node (Gnode).

First, let’s first explore two simple examples to build some
intuition. In Figure 3, we demonstrate a scenario with a single
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Fig. 2. Plots validating the performance model by comparing the observed time per batch and the rank ordered by the model for two neural networks:
GPT-20B (left) and GPT-40B (right).

process group spanning eight GPUs on two nodes, with four
GPUs on each node. In this case, the ring messages crossing
node boundaries (i.e. the link between GPUs 1 and 4, and
between GPUs 6 and 3) will be the communication bottleneck.
Since we assumed βinter to be the bidirectional bandwidth
between node pairs, we can set βi = βinter.

GPU 0 GPU 1

GPU 3GPU 2

Node 0

GPU 4 GPU 5

GPU 7GPU 6

Node 1

Fig. 3. Creation of a ring among eight GPUs on two nodes for a collective
communication operation (all-reduce/reduce-scatter/all-gather).

GPU 0 GPU 1

GPU 3GPU 2

Node 0

GPU 4 GPU 5

GPU 7GPU 6

Node 1

Fig. 4. Two rings among four GPUs each across two nodes for performing
collective operations simultaneously.

Another possible scenario is when there are multiple si-

multaneous collectives taking place between two nodes. For
example, consider Figure 4, wherein GPUs (0, 4, 6, 2) and
GPUs (1, 5, 7, 3) are executing two independent collectives
using the ring algorithm simultaneously. In this case, the
available inter-node bandwidth will be shared between these
two collectives and βi =

βinter

2 .
The first scenario occurs in the case when the process groups

preceding the ith process group in the hierarchy are of size
one, i.e. Gj = 1 ∀j < i. Whereas the second scenario occurs
in the case when at least one of these preceding process groups
is of a size > 1. In that case, we get multiple ring messages
crossing node boundaries and the bandwidth gets distributed
between the rings. However, note that the maximum reduction
in the bandwidth is bounded by the total number of GPUs on
each node, as there can’t be more inter-node ring links than
GPUs on a node. Equation 7 models all the scenarios to obtain
the observed bandwidth:

β⃗i =
βinter

min
(
Gnode,

∏i−1
j=0 Gj

) (7)

We use this bandwidth term in Equations 1 through 5 of
our model. We use the model to create an ordered list of
configurations, and then we can pick the top few configurations
for actual experiments.

Validating the Performance Model: To validate the model,
we collect the batch times for all possible configurations of
the 4D virtual grid when training GPT-20B on 32 GPUs and
GPT-40B on 64 GPUs of Perlmutter. Using the observed batch
times, we label the ten fastest configurations as ‘efficient’ and
the rest as ‘inefficient’. When creating the validation plots,
we rank the configurations using the ordering provided by
the performance model. Figure 2 shows the empirical batch
times on the Y-axis and the rank output by the performance
model on the X-axis. The fastest configurations should be in
the lower left corner. We observe that nine out of the top ten
configurations predicted by the performance model are indeed



‘efficient’ as per their observed batch times. This shows that
the model is working very well in terms of identifying the
fastest configurations.

C. Automated Tuning of BLAS Kernels

In deep neural networks, a significant portion of the com-
putational workload is matrix multiplications kernels or “mat-
muls“, particularly in transformer models. These matmuls
can be performed in one of three main modes based on
whether the operands are transposed: NN, NT, and TN. Prior
research has highlighted that NT and TN kernels are often less
optimized than NN kernels in most BLAS libraries [34]. In our
experiments, we found this discrepancy to be more pronounced
when running transformers with large hidden sizes on the
AMD MI250X GPUs of Frontier. For example, in the GPT-
320B model (described in Table II), we observed that a matrix
multiply defaulting to the TN mode in PyTorch achieved
only 6% of the theoretical peak performance, whereas other
matmuls reached 55% of the peak.

To address this issue, we implemented an automated tuning
strategy in which, during the first batch, each matmul operation
in the model is executed in all three modes (NN, NT, and TN)
and timed. We then select the most efficient configuration for
each operation, which is subsequently used for the remaining
iterations. This tuning approach ensures that our deep learning
framework, AxoNN, avoids the pitfalls of using suboptimal
matmuls that could significantly degrade performance. For
the aforementioned 320B model, our BLAS kernel tuning
approach successfully switches the poorly performing TN mat-
mul with a nearly 8× faster NN matmul, thereby reducing the
total time spent in computation from 30.1 seconds to 13.19s!
Note that for other models used in Table II, the speedups
attained via tuning are relatively modest (See Figure 7).

D. Overlapping Asynchronous Collectives with Computation

We use non-blocking collectives implemented in NCCL and
RCCL on NVIDIA and AMD platforms respectively. This
enables us to aggressively overlap the collective operations
in AxoNN with computation, which can minimize communi-
cation overheads.

Overlapping All-reduces with Computation (OAR): In this
performance optimization, we overlap the all-reduce across
the X-tensor parallel groups in the backward pass (Line 12
of Algorithm 1) with the computation in Line 13. Once this
computation has completed, we wait on the asynchronous all-
reduce. Note that for layers with ‘transposed’ weight matri-
ces, this communication happens across the Y -tensor parallel
groups.

Overlapping Reduce-scatters with Computation (ORS):
Next we overlap the reduce-scatters in the backward pass (line
14 of algorithm 1). The outputs of this reduce-scatter are the
gradients of the loss w.r.t. the weights. These outputs are not
needed until the backward pass is completed on all the layers
of the neural network and we are ready to start issuing the
all-reduces in the data parallel phase. Exploiting this, we issue

these reduce-scatters asynchronously and only wait on them
once all layers have finished their backward pass. This allows
us to overlap the reduce-scatter of one layer with the backward
pass computations of the layers before it.

Overlapping All-gathers with Computation (OAG): Our
next optimization overlaps the all-gather operations in the
forward pass (line 2 of Algorithm 1) with computation. We
observe that this all-gather operation does not depend on any
intermediate outputs of the forward pass. Leveraging this, we
preemptively enqueue the all-gather for the next layer while
the computation for the current layer is ongoing. At the start of
training, we generate a topological sort of the neural network
computation graph to determine the sequence for performing
the all-gathers. Subsequently, we execute them preemptively
in this order.

Figure 5 shows the performance improvements from the
three successive collective overlap optimizations (OAR: Over-
lap of all-reduces, ORS: Overlap of reduce-scatters, and
OAG: Overlap of all-gathers). The baseline here refers to the
scenario with no communication overlap. We also show the
breakdown of the total time per batch into computation and
communication. As we can see, the times spent in computation
do not change significantly, however, the time spent in non-
overlapped communication reduces with successive optimiza-
tions, leading to an overall speedup. For the 80B model in the
figure, we see a performance improvement of 18.69% over the
baseline on 8,192 GCDs of Frontier.
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Fig. 5. The impact of overlapping non-blocking collectives with computation
on the training times of different sized models on 8,192 GCDs of Frontier.

VI. HOW PERFORMANCE WAS MEASURED

All of our innovations are implemented in an open-source
framework called AxoNN [9], which can be integrated easily
as a backend in existing serial training codebases. This section
provides details of the experimental setup for benchmarking
training performance using AxoNN.

A. Applications: Model Architecture Details
We evaluate the effectiveness of our implementation by con-

ducting experiments on a well-known neural network architec-



ture: Generative Pre-trained Transformer (GPT) [35]. The GPT
architecture is a popular transformer architecture [36] that has
been used to train several large language models [5], [35],
[37], [38]. Table II presents the sizes of the different model
architectures used in the experiments, and their important hy-
perparameters. Due to the extremely large activation memory
requirements of training GPT models, we turn on activation
checkpointing [39]. Additionally, we employ mixed precision
(bf16/fp32) for all our training runs. We use bf16 since it has
been shown to achieve the same performance and stability as
fp32 [40], and it maintains the same range as fp32. This makes
it a suitable choice over fp16, which has been known to be
numerically unstable for LLM training.

TABLE II
ARCHITECTURAL DETAILS OF THE GPT-STYLE TRANSFORMERS [35]

USED IN THE PERFORMANCE EXPERIMENTS.

Model # Parameters # Layers Hidden-Size # Heads

GPT-5B 5B 24 4096 32
GPT-10B 10B 32 5120 40
GPT-20B 20B 32 7168 56
GPT-40B 40B 38 9216 72
GPT-60B 60B 56 9216 72
GPT-80B 80B 42 12288 96
GPT-160B 160B 84 12288 96
GPT-320B 320B 96 16384 128
GPT-640B 640B 192 16384 128

On Perlmutter, we use the sequential model training code
from the Megatron-LM codebase [6], and parallelize it using
AxoNN. However, on Frontier, we observed training instabili-
ties with Megatron-LM, and switched to using LitGPT [41] for
the model architectures on Frontier and Alps. We parallelized
LitGPT also using our 4D implementation in AxoNN. We
conduct weak scaling experiments with the GPT-3 models,
ranging from 5 billion to 320 billion parameters. We also
conduct strong scaling experiments on Frontier using the 80
billion and 640 billion parameter models to predict the time-
to-solution for 2 trillion tokens.

B. Systems and Environments

Our experiments were conducted on three supercomputers,
Perlmutter at NERSC/LBL, Frontier at OLCF/ORNL, and
Alps at CSCS. Each node on Perlmutter is equipped with four
NVIDIA A100 GPUs, each with a DRAM capacity of 40 GB.
On Frontier, each node has four AMD Instinct MI250X GPUs
each with a DRAM capacity of 128 GB. Each MI250X GPU is
partitioned into two Graphic Compute Dies (GCDs) and each
64 GB GCD can be managed independently by a process. On
Alps, each node has four GH200 Superchips, where each H100
GPU has a DRAM capacity of 96 GB. Nodes on all systems
have four HPE Slingshot 11 NICs, with each NIC capable of
bidirectional link speeds of 25 GB/s.

In our Perlmutter experiments, we use CUDA 11.7, NCCL
2.15.5, and PyTorch 1.13. On Frontier, we use PyTorch 2.2.1
with ROCm 5.7 and RCCL 2.18.6. On Alps, we use PyTorch
2.4.0 with CUDA 12.5.1 and NCCL 2.22.3. On all the systems,

we use the AWS OFI plugin (NCCL or RCCL) which enables
us to use libfabric as the network provider on the Slingshot
network, and provides high inter-node bandwidth. We want to
note here that several runs on Perlmutter and Alps were done
in a system-wide reservation, and even so, we noticed signif-
icant run-to-run performance variability. This was most likely
due to network congestion [42] or file-system degradation [43]
impacting performance.

C. Evaluation Metrics

In all our experiments, we run the training loop for ten
iterations (batches), and report the average time per iteration
(batch) for the last eight iterations to account for any per-
formance variability due to initial warmup. We calculate half
precision flop/s (often called “model flops”) using Narayanan
et al.’s analytical formulation [6] for the number of floating
point operations in a transformer model. We did a small
experiment to verify that this formulation matches the total
number of floating point operations measured by Nsight Com-
pute, an empirical tool. We compare this number against the
theoretical (vendor advertised) peak performance of each GPU
(312 Tflop/s per GPU on Perlmutter, 191.5 Tflop/s per GCD
on Frontier, 989 Tflop/s per GPU on Alps), and report the
achieved percentage of peak as well as the total sustained bf16
flop/s.

Since the vendor advertised peak performance is often not
practically achievable, we also ran a simple GEMM bench-
mark on 1 GPU/GCD of Perlmutter/Frontier to gather empir-
ically observed peak flop/s. We invoked equivalent cuBLAS
and rocBLAS kernel calls to multiply two bf16 square matrices
with dimensions ranging from 1024 to 65536. On Perlmutter,
the highest sustained flop/s for matrices of dimensions of
32768 × 32768 is 280 Tflop/s (90% of peak). On Frontier,
the highest sustained flop/s is 125 Tflop/s on 1 GCD (65% of
peak) for the same matrix dimensions. For Alps, we referred
to a GH200 benchmark guide from NVIDIA that reported a
sustained performance of 813 Tflop/s (82% of peak). These
numbers show that the vendor advertised peak performance is
almost always not achievable in practice. In our evaluation,
we also report the % of peak empirical performance achieved
by our implementation using the numbers mentioned above.

VII. PERFORMANCE RESULTS

We now discuss the results of our performance benchmark-
ing experiments described in Section VI.

A. Weak Scaling Performance

We first present the weak scaling performance of AxoNN
on Perlmutter, Frontier and Alps using GPT-style transformers
as the application in Figure 6. We observe that on all three
systems, AxoNN achieves near-ideal weak scaling up to 4096
GPUs/GCDs. This is particularly promising because most
large-scale LLM training falls within this hardware range.
When running the 60B model on 6144 H100 GPUs of Alps,
we see a small reduction in efficiency – 76.5% compared to
the performance on 1024 GPUs.
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Fig. 6. Weak scaling performance (time per batch or iteration) of AxoNN on
Frontier, Perlmutter, and Alps for models with 5 to 320 billion parameters.

Since Frontier has a significantly large number of GPUs
than the other two platforms, we scaled AxoNN on Frontier
to 32,768 GCDs. We see near perfect weak scaling up to
8,192 GCDs with a significantly high efficiency of 88.3%
(compared to the performance on 512 GCDs). Although our
weak performance drops at 16,384 GCDs, we are still able
to sustain an efficiency of 79.02%. However, with rising
overheads of communication, there is a notable decline in our
performance on 32,768 GCDs, and a corresponding drop in
efficiency to 53.5%.

We used timers to gather breakdowns of the time per batch
into computation and non-overlapped communication to better
understand the impact of the performance optimizations de-
scribed in Section V. We present these results in Figure 7, for
some model sizes running on 512–8,192 GCDs of Frontier. As
a baseline, we use a configuration of AxoNN that corresponds
to a hybrid of 1D tensor parallelism within node (similar to
Megatron-LM [14]) and hybrid sharded data parallelism across
nodes (similar to FSDP [12], [27]).

We observe that using the 3D parallel matrix multiplication
and performance model to select the best configuration results
in significant performance improvements of 13-45% over the
baseline. Most of the improvement comes from a significant
reduction in communication times. For the models in the plot,
the improvements in the batch times due to our BLAS kernel
tuning are relatively modest (2–4%). Finally, the improvement
from our overlap optimizations is largest for the largest model
in this series i.e. 80B on 8192 GCDs. In this case, we observe a
22% reduction in the batch times! This is expected because the
overheads of communication tend to increase with scale and
subsequently the benefits of our overlap optimizations become
more pronounced.
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Fig. 7. The impact of our performance optimizations on weak scaling of GPT
models. For the bars labeled “Perf model”, we use the best out of the top-10
configurations suggested by our communication model. For the bars labeled
“Kernel Tuning” and “Comm Overlap”, we enable our matrix multiplication
tuning and communication overlap optimizations.
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Fig. 8. Sustained flop/s on different platforms. The FLOP count is calculated
analytically for all the matrix multiplication kernels in the code.

B. Sustained floating point operations per second (flop/s)

Next, we examine the floating-point operations per second
(flop/s) achieved by AxoNN. In Figure 8, we present the
total bf16 flop/s sustained by AxoNN in our weak scaling
experiments on Perlmutter, Frontier and Alps. In Table III, we
also show our sustained flop/s as a percentage of the vendor
advertised and empirical obtained peak flop/s. As discussed
in Section VI-B, we use 280 Tflop/s, 125 Tflop/s, and 813
Tflop/s as the empirical peak bf16 flop/s for an A100 GPU,



an MI250X GCD and an H100 GPU respectively.
On Perlmutter, we observe that AxoNN consistently sustains

50% or higher fraction of the advertised peak of 312 Tflop/s
per GPU. As a result of our near perfect weak scaling, we
observe that the sustained flop/s also increase linearly from
80.8 Pflop/s on 512 GPUs by nearly 8× to 620.1 Pflop/s
on 4096 GPUs. Since the advertised and empirical peak bf16
flop/s of an A100 GPU are close (312 vs. 280 Tflop/s), our %
flop/s numbers are also in the same ball park.

TABLE III
SUSTAINED FLOP/S FOR WEAK SCALING ON PERLMUTTER, FRONTIER

AND ALPS.

# GPUs
/ GCDs Model Total

Pflop/s
% of

Advertised Peak
% of

Empirical Peak

Pe
rl

m
ut

te
r 512 5B 80.8 50.6 56.2

1024 10B 197.8 61.9 68.8
2048 20B 352.5 55.2 61.3
4096 40B 620.1 48.5 53.9

Fr
on

tie
r

512 5B 40.4 41.1 63.3
1024 10B 77.3 39.3 60.4
2048 20B 145.7 37.0 57.0
4096 40B 295.9 37.6 57.9
8192 80B 571.4 36.3 56.0

16384 160B 1019.9 32.4 49.9
32768 320B 1381.0 22.0 33.8

A
lp

s

1024 10B 310.0 30.6 37.3
2048 20B 621.6 30.7 37.4
4096 40B 1095.8 27.0 33.0
6144 60B 1423.1 23.4 28.6

On Frontier, in the 512 to 4,096 GCD range, AxoNN
achieves near-perfect weak scaling in terms of sustained
flop/s which translates to a throughput of around 40% of
the advertised peak performance. Notably, this is a significant
improvement over Yin et al. [3] and Dash et al. [4] – they
achieved a peak of only 30% in a similar range of GCDs,
model sizes, and batch sizes on Frontier. AxoNN continues to
scale well up to 8,192 GCDs, sustaining 36.3% of the peak and
571.4 Pflop/s in total. Beyond this scale, we start observing
scaling inefficiencies. On 16,384 GCDs, we achieve 32.4% of
the peak, which amounts to 1.02 Exaflop/s in total. Finally on
32,768 GCDs, our performance drops to 22% of the peak and
a total flop/s of 1.381 Exaflop/s. In Section VI, we mentioned
a significant difference between the advertised peak and the
empirically measured peak on a single MI250X GCD (192
vs. 125 Tflop/s). As a result, there is a large difference between
AxoNN’s flop/s expressed as a percentage of the advertised
peak versus the empirical peak. For instance on 32,768 GCDs,
these numbers are 22.0% and 33.8% respectively.

On Alps, we observe a similar trend as Perlmutter, with
AxoNN consistently sustaining ∼30% of the advertised peak
up to 4096 GPUs. At 6144 GPUs, we see a slight drop
to 23.42% of peak. At 6144 GPUs, we achieve our highest
sustained flop/s of 1423.10 Pflop/s across all three machines.

C. Predicted Time-to-solution
The training of state-of-the-art large language models

(LLMs) presents a significant computational challenge due

to two key factors. First, the models themselves are large,
with current state-of-the-art models comprising hundreds of
billions of trainable parameters. Second, LLMs are trained on
massive and continually expanding text corpora, often contain-
ing trillions of tokens. In this section, we show how AxoNN
can significantly reduce the time-to-solution of training such
state-of-the-art LLMs on large text corpora. To demonstrate
this, we pick the 80B and 640B parameter GPT models from
Table II and collect the per iteration times at various GCD
counts. We run the 80B model on 128 to 8,192 GCDs on
Frontier, and the 640B model on 512 to 8,192 GCDs. We
then extrapolate the batch times to estimate the time it would
take to rain these models to completion i.e. to ingest two
trillion tokens. These time-to-solution results are presented in
Figure 9. Note that both the model size and the number of
tokens are representative of modern LLM training setups such
as Meta’s Llama [21].
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Fig. 9. Strong scaling showing expected time-to-solution on Frontier. Using
the average time per iteration, we predict the training times for GPT-80B and
GPT-640B on 2T tokens for various GCD counts.

As the plot shows, training an 80B model on 128 GCDs
will take 50 months or more than four years. This emphasizes
the critical role of large-scale parallelism in LLM training. As
we scale to more GCDs, we see the expected time to solution
drop almost linearly till 8,192 GCDs. Our estimate for the total
training time of the 80B model on 8,192 GCDs is a much more
reasonable 25.5 days. For the 640B model, even a much larger
GCD count of 512 GCDs is impractical, with the estimated
time-to-solution amounting to 14 years. However, on 8,192
GCDs, the estimated total training time is 15 months, which
is an 11× improvement. For both models, this amounts to a
strong scaling efficiency of more than 90%. These experiments
underscore AxoNN’s efficacy in significantly reducing the pre-
training time for cutting-edge LLMs trained using massive
datasets. By enabling faster training cycles on large scale
multi-GPU clusters such as Frontier and Alps, AxoNN has
the potential to accelerate the overall pace of LLM research
and development.



VIII. IMPLICATIONS

A scalable training framework such as AxoNN and access
to large supercomputers such as Frontier and Alps can enable
studying properties of LLMs at scales that were impossible
before. Below, we present a study on the behavior of memo-
rization by large language models.

A. Memorization of Training Data by Large Language Models

A growing body of work has shown that language models
memorize a portion of their training data and can reproduce
this training data at inference time [44]. The ability of LLMs
to reproduce training data has become a flashpoint for the
AI community, as it poses major privacy and legal risks for
commercial models [44]–[46].

It is thought that memorization is largely due to training data
repetition, and it may be mitigated by dataset deduplication.
Other factors such as data structure and model size may play
a factor, but the issue is not well understood because public
experiments have been constrained to smaller models (e.g. the
popular Llama-2 7 billion parameter model [21]) with limited
capacity and correspondingly small rates of memorization
[44], [47]. As we observe below, the ability to memorize entire
documents emerges only for large model sizes. Further, we
hypothesize that models above a certain size threshold may
exhibit catastrophic memorization, in which documents are
memorized immediately in one single pass. When training
a model above this size limit, even perfectly deduplicated
datasets may still result in privacy and copyright leaks.

By creating scalable, user-friendly and portable access to
model parallelism, AxoNN unlocks the potential for training
and fine-tuning much larger models under commodity comput-
ing constraints using sequential LLM training codebases. This
creates a scientific laboratory where large-model phenomena
such as memorization can be publicly reproduced and studied.
It also raises the ability of many practitioners to fine-tune
large models on domain-specific data, expanding the need to
understand memorization risks.

B. Experimental Setup: Training Llama models on Wikipedia

We design a targeted set of continued pre-training exper-
iments to quantify the relationship between model size and
memorization. We consider the Llama family of LLMs with
publicly available pre-trained weights, and use the AxoNN
infused LitGPT framework (introduced in Section VI-A) to
parallelize the models. Our experiments start with pre-trained
checkpoints for the TinyLlama-1B model [48], the 7B, 13B,
and 70B parameter models in the Llama 2 family [21] and the
8B, 70B, and 405B parameter models from the recent Llama
3.1 release [49]. We train on English text data from Wikipedia
with varying levels of repetition to quantify how memorization
depends on model scale.

We train on English Wikipedia pages with 2048 tokens
or more. The articles are randomly placed into one of four
disjoint “buckets,” each with 200 articles. During training, the
first three buckets are repeated for 1, 4, or 6 “epochs” (one
pass over every page in the bucket) respectively. The fourth

bucket is a control group to measure baseline preexisting
memorization from pre-training, and we do not perform any
further training on the pages in the fourth bucket. After training
is complete, we prompt the model with the beginning of each
training sequence, and let the model write the last 50 tokens.
We consider a sequence memorized if the model perfectly
reproduces the correct 50 tokens.

We train the 1B, 7B, and 8B models on eight GCDs of
Frontier using 8-way Z-tensor parallelism (i.e. Gz = 8),
the 13B model using 16 GCDs, the 70B models using 64
GCDs, and the 405B model using 128 GCDs, each with a
corresponding level of Z-tensor parallelism. The total batch
size is fixed at 128 samples for all model sizes. In the case
of smaller models, lower level of tensor parallelism is needed,
so data parallelism is used to utilize the remaining GPUs. We
warm up each model for 50 steps, increasing the learning rate
to 3 × 10−4 on the non-bucketed Wikipedia pages, and then
inject the three buckets of target data over the next 50 steps
of training while decaying the learning rate to 3× 10−5. We
report memorization for each bucket separately, and also for
the held-out (“0 Ep”) control bucket.

C. Results: Catastrophic Memorization as a Function of
Model Size

Figure 10 shows the impact of parameter count and number
of epochs on exact memorization under otherwise identical
conditions. At the 1B-13B scale (left plot), training for up
to six epochs causes memorization of less than 1% of the
200 documents on average. However, we observe that the
70B models and the 405B model are capable of significant
memorization (right plot). After just six passes over the data,
the 70B Llama 2 and 70B Llama 3.1 models memorize 47%
and 67% of documents on average respectively. Furthermore,
we observe catastrophic memorization behavior starting at the
70B scale; roughly 5% of documents are memorized in just
one single pass.

Moving to the 405B scale, we make several surprising
observations. This model had already memorized over 10% of
the control documents (see the bars labeled “0 Ep”) before our
experiment even began, showing that the ability to memorize
and retain documents during pre-training has emerged at
this scale. While Wikipedia pages were certainly included
in the training corpus of the Llama 3.1 series of models,
only this largest model in the family exhibits such non-trivial
levels of memorization without further continued training.
Counterintuitively, we note that the rate of memorization of
the 405B model during continued training was slower than
that of the 70B model. This is likely because we used one set
of hyperparameters for all models, and extreme scales likely
require different hyperparameters for optimal learning.

D. Results: Goldfish Loss Stops Memorization in its Tracks

Observing extreme levels of memorization for models at the
70B parameter scale and above, we deploy a recently proposed
technique for mitigating memorization in large language mod-
els. Language model training minimizes the expected cross-
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Fig. 10. Memorization as a function of parameter count and epochs (repetitions of the training data). For each model size, we show the “Exact Match” rate
at which the model correctly reproduces the last 50 tokens of articles after being trained on them for various numbers of epochs. (Left) Memorization is
difficult to observe for small models. (Right) The ability to efficiently memorize emerges at larger models scales. We see that a 70B model is even capable
of catastrophic memorization, as it memorized entire documents after seeing them just once. For models with parameter counts in the 1B-13B range, we
report the average over five trials, for 70B, we report the average over three trials, and for 405B we report a single trial. Error bars depict the min and max
observed scores.

entropy between the language model’s next-token distribution
and the true tokens as they appear in the training corpus. The
Goldfish Loss [50] technique introduces a mask such that some
tokens in any given training sequence are randomly omitted
from the loss computation. The model cannot memorize the
masked tokens, and must “guess” them when trying to repro-
duce a training sequence at inference time, making it very
unlikely that long sequences can be exactly reproduced.
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Fig. 11. The impact of applying Goldfish Loss during training to mitigate
memorization in large models. The Exact Match rate reduces to levels
comparable to the control data.

Figure 11 shows the results of re-running our training ex-
periments with Goldfish Loss activated (using Goldfish param-
eters k=2, h=13). Even after continued training, memorization
now reduces to levels comparable to the control data (0 Ep).
We do observe a small increase in memorization as the 405B
model trains, likely because the model has already memorized

the masked tokens from when it was pre-trained on Wikipedia.
However, as we can see, the reduction in memorization when
using the Goldfish Loss is significant, both for the 70B models
and the 405B model.
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