xAMM: “Attention” to Details Improves
Cross-Platform Prediction Accuracy

Aakash Raj Dhakal*, Tanzima Z. Islam*, Arunavo Dey*, Daniel Nichols®, Abhinav Bhatele,
Tapasya Patki*, Tom Scogland® and Jae-Seung Yeom?

*Texas State University

fUniversity of Maryland

{Lawrence Livermore National Laboratory

{nvc22,tanzima,hcs77} @txstate.edu {dnicho,bhatele} @umd.edu {patkil,scoglandl,yeom2}@lInl.gov

Abstract—As computing becomes the major enabler in more
and more fields, computing platforms also have become more
heterogeneous than ever before to support different needs.
Inevitably, high performance computing (HPC) centers and cloud
vendors offer a diverse array of computing platforms to the user,
often to a point where it overwhelms users as well as system
managers. Therefore, a cross-platform performance prediction
model, which leverages observations from one platform to predict
performance on another, can be extremely valuable. However,
building such a model for numerous platforms requires an
enormous amount of effort to collect training data, which is
often prohibitively expensive. To overcome this challenge, we
propose xAMM', an end-to-end Machine Learning (ML) pipeline
that uses the attention mechanism, a transformative concept in
generative Al for two purposes: learning smart embeddings from
raw application performance samples and constructing Abstract
Machine Models (AMMs)-compact representations of machine
properties. By integrating performance sample embeddings with
AMMs where available, xAMM improves the accuracy of the
state-of-the-art XGBoost model by 49.64% for CPU — CPU
and 99.07% for CPU — GPU prediction compared to building
the model using raw data, a common approach in the existing
literature.

Index Terms—Cross-Platform Performance Prediction, Attention,
Embedding Learning, Abstract Machine Model.

I. INTRODUCTION

As more and more scientific discoveries and engineering
campaigns rely on interdisciplinary studies, a single workflow
tends to consist of mixed tasks that are better supported by
different computing platforms. Cross-platform performance
prediction for heterogeneous High Performance Computing
(HPC) systems has become critical in today’s rapidly evolving
technological landscape. As new architectures are released ap-
proximately every six months, scientists and engineers face a
significant challenge in understanding how their set of applica-
tions will perform on these platforms. The delay in answering
these questions can be prohibitive, as traditional performance
measurement methods are time-consuming and require days
or weeks. Performance prediction across platforms without
extensive benchmarking enables users, software systems, and
facilities to make informed decisions about several HPC tasks,
including code optimization, and machine procurement.

There exist prior studies on cross-platform performance pre-
diction. Some rely on analytical models or simulations [1],
[2]. Nevertheless, adapting to rapidly evolving architectures at

'Pronounced as “Exam”

a reasonable computational cost to capture the behavior of rep-
resentative HPC applications remains exceedingly challenging.
Others use a categorical feature to distinguish platforms, static
hardware descriptions, such as core counts and clock speeds,
or application data from target platforms [3], [4]. These
methods lack a systematic approach to represent machines
dynamically, relying instead on ad hoc, oversimplified static
information, resulting in an inextensible model even for similar
but unseen platforms. Without dynamic signatures—capturing
key properties such as memory bandwidth, computational in-
tensity, and scalability—such models risk poor generalizability
as hardware evolves. We fill this gap by proposing a prin-
cipled approach for constructing such dynamic machine
“signatures” called Abstract Machine Model (AMM).

Moreover, most ML-based performance prediction studies [3],
[4]1, [51, [6], [7], [8] use raw data to build downstream
prediction models, which can obscure critical correlations
across features and samples needed for accurate predictions.
As downstream predictive models, many leverage tree-based
models such as XGBoost [9] and neural networks [5], [10],
[11]. In contrast, we propose to transform raw data into embed-
dings using “attention”, a genAl mechanism, that calculates
weights based on feature correlations and sample importance
to transform raw data into a compact representation before
data is input to a downstream model. This approach captures
discriminatory information that improves the accuracy of
downstream models regardless of the model architecture,
making our methodology complementary to existing ones.

To address both gaps, we propose a unified data transformation
methodology that: Transforms raw performance samples

into embeddings using attention. Constructs machine-
specific dynamic signatures by capturing key properties such
as memory bandwidth, computational intensity, and scalabil-
ity, derived from running benchmark applications such as
RAJAPerfSuite [12], [13] under various configurations (e.g.,
number of threads). Specifically, we propose to calculate
attention weights for each sample in the machine benchmark
dataset based on its feature correlations. These weights are
then used to compute a weighted average of the samples,
where each sample is multiplied by its corresponding weight.
This process produces a single embedding vector that serves as
the machine’s signature, effectively summarizing its dynamic
performance characteristics in a compact representation.

Creates a unified application sample representation by con-
catenating the application sample embeddings learned in
with the source and target machines’ AMMs, if available.

We implement our proposed data transformation methodology
into an automated end-to-end data transformation and mod-
eling framework—xAMM-where users can deploy their down-
stream modeling architecture while xAMM constructs unified
input to these models. Our extensive evaluations demonstrate
the benefit of each step and their combined impact using sev-
eral scientific applications on both CPU and GPU platforms.
While @ is mandatory, is optional and is calculated
when machine benchmark data or pre-constructed AMMs
are available’. Whenever a new machine is considered, if a
machine benchmark dataset is available, xAMM can construct
its AMM offline and save it for future use.

During the training of the downstream predictive model, which
is an offline process, users provide performance profiles of
scientific applications collected on various machines. If a
training machine’s AMM is available, xAMM uses it. Other-
wise, either users must provide a machine benchmark dataset
or xAMM skips steps (5 and @ Figure 1 presents a high-
level overview of xAMM’s methodology.

During inference, users provide performance measurements of
a potentially new application on a reference machine. To take
advantage of AMMs, one of two conditions must be met: (1)
if both the source and target machines were included during
training, users need only input their names and xAMM reuses
their precomputed AMMs; or (2) if the target machine was not
part of training but its benchmark dataset is available, xAMM
constructs its AMM. However, the reference machine must
always be included in the training dataset to utilize AMMs
effectively. If AMMs for either machine are unavailable, xAMM

skips steps @ and @ and proceeds with step @
To summarize, the technical contributions of this paper are:

« Attention-based sample embedding learning;

« Novel principled approach to construct “abstract machine
model” that captures dynamic machine characteristics;

e« An end-to-end data transformation pipeline, xAMM that
integrates sample embedding learning and optional AMM
construction, enabling effective data transformation for im-
proved cross-platform prediction.

« A unique machine benchmark dataset and their correspond-
ing performance signatures (AMMSs) from 16 platforms.

II. BACKGROUND
II-A Cross-platform performance prediction

Cross-platform performance prediction estimates how compu-
tational tasks will perform across different hardware archi-
tectures, including various CPUs and GPUs. It is commonly
used in performance-aware scheduling within multi-resource
environments. Several studies have addressed this problem

2We have collected such machine benchmark datasets using RAJAPerfSuite
across 16 diverse platforms and will make the AMMs publicly available in
https://github.com/LLNL/generalizable\ _modeling.git.

by exploring diverse methodologies such as transfer learn-
ing [10], neural networks [5], and tree-based methods [3],
[4]. These works primarily use raw data to predict absolute
execution times or build increasingly complex downstream
models. While recent trends emphasize tree-based methods
for their interpretability over neural network-based black-box
architectures [4], none have highlighted data transformation as
a critical factor in enhancing predictive performance.

II-B Embedding

Embeddings are a powerful mathematical concept in machine
learning that transforms high-dimensional data into more
compact, low-dimensional representations while preserving
essential relationships and structures. Mathematically, an em-
bedding is a function f : X — X’ that maps elements
from a high-dimensional space X to a lower-dimensional
space X'. The embedding function is typically learned through
optimization processes that minimize a loss function, ensuring
that similar items in the input space remain close in the
embedded space. Physically, embeddings can be visualized as
points in a lower-dimensional space. In this paper, we use t-
SNE plots to visually validate that embeddings from samples
of similar architectures remain closer than different ones. Since
embeddings compress high-dimensional data, it mitigates the
curse of dimensionality for the downstream models [14], [15].

III. DATASET DESCRIPTION

Figure 1 presents an overview of the xAMM system, showing
that two datasets are input to xAMM during training.

III-A Machine Benchmarking Dataset

A set of quantitative benchmarking results provides more
insight into a machine’s performance characteristics than a
textual specification from a machine catalog. Each sample
includes the machine name, core counts or thread counts, and
a set of benchmark results. The input features are represented
as a vector Z = [z1,29,...,2,], where n = 64 denotes the
total number of characteristics measured by the benchmark.
We leverage RAJAPerfSuite [13], which evaluates a variety
of performance tests implemented on the RAJA portability
framework for both CPUs and GPUs. Without such a standard-
ized benchmark, comparing the performance across machines
becomes a challenging task.

For example, the Basic_DAXPY kernel in RAJAPerfSuite
performs a vector addition operation (y = a x x + y),
representing memory bandwidth-bound computations common
in scientific applications. This kernel helps characterize a ma-
chine’s memory subsystem performance. Another example is
the Basic_REDUCE kernel, which performs a sum reduction
across an array. This operation tests both the machine’s ability
to parallelize reductions efficiently and its memory bandwidth,
providing insights into the balance between the computational
and memory capabilities of the system. These are lightweight
kernels, requiring minimal data collection effort. Such data are
often collected during acceptance testing of a new system, and
therefore are already available. Even if not, we only need to
gather once per system. Our work is the first to use these

Machine benchmark dataset Uses attention

____________ F—— E ——_——a Transformed embedding @
1 - v
@ Data Enizr:dpc:ieng Construct Downstream
e Preprocessing Leerie AMMs Predictive Model
Application
performance dataset L T

Model with AMMs

(a) Automated training pipeline of xAMM

Source machine name and Target Machine’s I
benchmark dataset i

Query performance sample on a source machine

—m

Model without

AMMs
_____ AMMs available .
: @ Relative
Model performance
Selection I—— > prediction

AMMs not available

(b) Automated inference pipeline of xAMM

Fig. 1: Illustration of the xAMM system: Dotted lines and boxes represent optional components. In (a),xAMM calculates and
saves AMMs from the machine benchmark dataset, using them during training to transform application sample embeddings.
In (b), box colors correspond to functionalities labeled in the training pipeline. During inference, if the target machine was
included during training, its AMM is reused; otherwise, xAMM constructs target’s AMM using its machine’s benchmark dataset
(if provided) or skips this step. Input Preparation concatenates application sample embeddings with the source and

target machines’ AMMs, when available.

benchmark runs to build a signature for that system.
III-B Application Performance Dataset

In addition to machine benchmarking data, we collect hard-
ware performance counter data for various HPC applica-
tions executed on different machines. Hardware performance
counters capture dynamic interactions between applications
and hardware. We measure the PAPI [16] counters using
HPCToolKit [17]. Each sample includes the application pa-
rameters, the machine name, configuration parameters (e.g.,
the number of threads or tasks), and the measured hardware
performance counters. The input features are represented as a
vector X = [x1, Z2,. .., Ty], where m = 14 is the number of
counters in an application performance sample.

The methodology presented in this paper is generic and can be
applied to any set of features chosen by a user. While collect-
ing hardware performance counters can be time-consuming,
they serve as low-level performance fingerprints, capturing
critical insights into application behavior. Although this initial
data collection introduces some overhead, it is performed
only once during the construction of the source model. For
an inference task, performance data can be collected on a
reference machine by running a smaller pilot job, designed to
replicate the computational characteristics of a larger ensemble
job within the same scientific workflow.

III-C Dataset Homogeneity Assumption

In this work, we assume a homogeneous dataset where all
source applications share the same feature names, differing
only in their values. The problem of knowledge transfer
when the feature names or numbers do not match across the
samples is known as “heterogeneous knowledge transfer” and
is complementary to this work and out of scope.

IV. MODELING METHODOLOGY

Figure 1 provides an overview of our modeling approach,
implemented as an end-to-end Python-based ML pipeline

called xAMM. As shown in Figure 1(a), xAMM precomputes
and saves AMMs from a machine benchmark dataset. Dur-
ing training, it performs data preprocessing, learns sample
embeddings, constructs AMMs, prepares inputs, and trains
downstream models. During inference, x AMM executes a subset
of these tasks as applicable to the prediction process.

IV-A Problem Formulation: Predict Relative Performance

In this work, we formulate the problem of cross-platform
performance prediction as predicting an application’s relative
performance, not absolute runtime. In contrast to traditional
methods that require comprehensive data collection on every
machine, using relative performance involves detailed mea-
surements on a single reference machine. This upfront cost
is offset by eliminating the need for extensive data collection
on new platforms, making the process both scalable and effi-
cient as platforms evolve rapidly. Mathematically, Equation 1
presents relative performance of an application A; on machine
M5 compared to machine M as:

= RM2
Ry

Where Ry, is the runtime on the source or reference machine,
and Ry, is the runtime on a target machine. During training,
both runtimes are provided for the model to learn from. During
inference, Ry, is provided to the downstream model, while
the model predicts 1r°e1R‘,?/;1 _u1,- A relR <1 indicates how
much faster the application runs on the target machine, while
relR > 1 shows how much slower compared to the reference.

(D

Ai
relR My M,

Relative performance abstracts away differences in absolute
execution times caused by factors such as iteration counts.
For instance, in an iterative simulation, total runtime depends
on the number of iterations, which can vary even for the
same workload. By using relative performance, we normalize
these differences and focus on how efficiently each machine
executes a single iteration, ensuring consistent and comparable

Section IlI-C

Section Ill-E

M M. App, A

Sam::le1 exll Sample, €yl
Section llI-D
M, M, App, A,)
e, i e, i
Sample, xz Sample, xz Section llI-E
faﬁention I —MsAMM fattention A AEEEEEEEEEEEEEEE N

° ° Emm— N e’ 7 fF M,AMM 1| M,AMM

. : e % e

° e i) Average . °

i) Feature-wise normalization A ;Z "’/')/,4’/

M, eM,- iii) Variance across features PP, ./ eAi //f o

Sampley Xy Sampley ;/'l//;;'{'g/(/;:; (c) Concatenate application sample

(a) Learn sample embeddings collected from a benchmark application using
attention and combine them to construct an AMM for a particular machine M,.

(b) Embedding learning for application samples

embeddings with the source (M) and
target (M,) machines’ AMMs to prepare
input to the predictive model

Fig. 2: Illustration of different components of the xAMM system.

results. Since cross-platform performance prediction is already
challenging, this study focuses on applications with minimal
dynamism to further simplify the problem.

IV-B Data Preprocessing

To prepare the data for modeling, the Data
Preprocessing module in xAMM (Figure 1) first
removes incomplete or erroneous samples from the dataset
and normalizes by subtracting the mean and dividing by the
standard deviation for each feature to address differences
in scale across machines. This process centers the data
around zero and scales it to unit variance. During training
(Figure 1(a)), the Data Preprocessing module also
calculates the relative performance of each sample by
comparing it to similar samples from the same application
run on other machines with identical configurations (e.g., the
same number of threads used).

IV-C Sample Embedding Learning Using Attention

Representation learning, widely used in ML pipelines, trans-
forms raw data into embeddings—compact, structured rep-
resentations in a lower-dimensional space that emphasize
discriminative features while reducing noise. Studies show that
high-quality embeddings enhance the predictive accuracy of
downstream models [18]. These observations motivate xAMM
to leverage representation learning to generate embeddings
from performance samples. Common approaches for represen-
tation learning include deep neural networks, AutoEncoders,
and Variational AutoEncoders [19], [20], [21].

Instead of using these traditional methods, in this work, we
proposed to leverage “attention”, a transformative concept
in generative AI, to learn embeddings. Intuitively, the
attention mechanism mimics how humans selectively focus on
certain information while ignoring others. Physically, attention
can be considered a focus distribution across input data, where
the embedding learning model, typically a neural network
architecture, assigns more weight to certain parts of the input
based on their relevance to the current task.

Specifically, we leverage “sequential attention mechanism”
that dynamically focuses on the most relevant input features
across multiple iterations of the embedding learning process
and enables the representation learning model to iteratively
refine the learned embeddings to capture the most salient

features of the data and their correlations. Using Equa-
tion 2, xAMM calculates the embedding of a sample z;, e,;:

Performance sample Feature Importance

L2 Z
€, = faltention (X) Vv

Final performance TAttention function

sample embedding computing sample significance

Relevant features
for performing relative performance

Jattention (Xi) = Softmax | ——)

Relative Performance

Where x; represents a single performance sample, faention(X;)
gives a quantitative score for a performance sample x; de-
noting its significance in predicting relative performance. In
this context,) represents relative performance, K represents
the relevant features for predicting relative performance, V'
represents feature importance, and dj represents number of
features in the performance samples.

The Softmax (%2 term calculates attention weights, deter-
mining how much focus to put on each feature of the input
data. The final multiplication with V' aggregates the values
based on these attention weights. The resulting embedding e,
captures the most relevant aspects of the performance sample,
emphasizing features that are most important for predict-
ing cross-platform performance. The Sample Embedding
Learning module transforms machine M’s benchmark data
(Z) into e%f (Figure 2(a)) and application performance sam-
ples (X) into 634((Figure 2(b)), for both training and inference.

Rationale for using attention The attention mechanism has
been shown to enhance the quality of embeddings [22] by
focusing dynamically on the most relevant features. While
the idea of attention is not novel, to our knowledge, no one
has used attention in performance modeling. In Section VI-B,
our experiments demonstrate that using attention compared to
not using it while learning embeddings improves the accuracy
of a downstream supervised prediction model in transferring
knowledge from one machine to another.

Algorithm 1 Computation of AMM,

Require: Input embeddings e% for all samples x; collected
from machine M
Ensure: Machine-specific Abstract Machine Model (AMM),

AMM
1: Step 1: Ensure AMM, AMM,,, using one of following
options N
e Option 1: Averaging: AMM,, = NLM Sl ey
Computes the average of all sample embeddings.
o Option 2: L2-Norm: AMM, = |[e|, =
> (eM)2 // Computes the magnitude of the embed-
ings.
« Option 3: Variance: AMM ,, =

N%u Zf;{ (e, — HM)2 /I Measures the variance of
embedding features.
2: Adjust: AMM,, = ReLU(AMM,,) + 0.01 x
ReLU(—AMM,,) // Ensures non-negative values.
3: Log Transform: AMM,; = log(l + AMM),,) // Re-
duces the impact of large values or outliers.
4: Normalize: AMM,; = AMM), — max(AMM,,) //

Scales embeddings relative to the maximum value.

IV-D Combine Sample Embeddings Using Attention to
Construct AMMs

Whenever a new machine M’s benchmark data becomes
available, xAMM constructs its AMM denoted as AMM ;, by
aggregating the embeddings e} collected from the benchmark
runs on that machine. Intu1t1ve1y, an AMM is a weighted
average of the samples, which signifies a low-dimensional
representation of M’s performance characteristics. An AMM
is calculated once for every new machine and saved for reuse.

Sample aggregation strategies As an AMM is the weighted
average of the samples, we propose two different approaches
for calculating the weights. This weight acts as an “attention
score” while combining the samples into a unified embedding.
(1) L2-Norm, where xAMM sums the squared embedding
feature values and takes the square root, giving higher im-
portance to features with larger values and capturing the
overall intensity of the machine’s performance. (2) Variance,
where xAMM calculates the statistical spread of embedding
features to quantify the variability in a machine’s performance
behavior across different configurations and workloads. In this
work, we also compare our proposed attention-based aggrega-
tion methods against the traditional approach of Averaging,
where xAMM computes the mean of all sample embeddings.

Algorithm 1 presents the steps for constructing AM M,
in detail. After constructing AMM,; using one of these
methods, xAMM applies additional transformations to refine
the representation. It ensures non-negative values by applying
the ReLU function, adjusts small negative values with a scaled
correction, and reduces the influence of large values through
a logarithmic transformation. Finally, xAMM scales AMM
relative to the maximum value by subtracting it.

Rationale for using AMM We hypothesize that providing

the dynamic characteristics of source and target machines to
a predictive model will make it generalize better and improve
its accuracy in predicting cross-platform performance. The
rationale is that oversimplified static features, such as core
counts or clock speeds, are often similar across heterogeneous
platforms, failing to provide downstream models with the
necessary discriminative information. Without this, models
will likely misclassify or conflate different hardware platforms,
limiting the model’s generalizability. Our detailed experiments
in Section VI-D demonstrate that attention-based methods
(Options 2 and 3 in Algorithm 1) significantly improve the
quality of AMMs (Figure 6) compared to averaging.

IV-E Model Input Preparation

xAMM applies the attention-based representation learning
method (Section IV-C) to transform raw performance sam-
ples X; from applications A; into embeddings e ixj using
fattention. Each sample XA = [x’f‘ﬂxfi,..., x4 from
an application A, € A, the set of training applications,
is processed to generate its corresponding embedding by
leveraging the sequential attention-based method described in
Section IV-C. Figure 2(b) illustrates this process for learning

sample embeddings from application data.

Afterwards, as shown in Figure 2(c), xAMM concatenates the
application sample embeddings, e;ﬁ‘;‘ with the AMMSs of the
source (M) and target (M;) machines, if available:

I;“i = el ® AMMy, ® AMM,y,, Vi €4, ()

Where IA is the output of the j** sample of application A;,
and & represents concatenation, e represents the embedding
of sample z; for application A;, and AMM,,, and AMM,,,
are the AMMs of the source machine M, and target machine
M, respectively.

As shown in Figure 1(a), if users do not provide a machine
benchmark dataset during training, xAMM can either utilize a
pre-trained AMM for a closely related platform (selected by
the user) or skip this step entirely. Similarly, during inference
(Figure 1(b)), if users want xAMM to leverage AMMs, they
must supply the source/reference machine’s name and the
target machine’s benchmark dataset if the target machine was
not part of the training dataset. Otherwise, the target machine’s
name suffices. It is important to note that while the source
machine must be included in the training dataset, the test
application does not need to be seen previously.

IV-F Training a Downstream Predictive Model

The training phase builds a source performance model from
multiple applications run on multiple machines using various
configurations. For training a predictive model, xAMM employs
a supervised learning approach using Ij"i from Equation 3 as
features and relRﬁfs _,m, from Equation 1 as the target,

§ = h(I}) Va; € A; and Vi € |A| (4)

Where |A| is the number of training applications in the set
of A, ¢ is the predicted relative performance, and h is the

trained model function. Once the source model is built, it can
be reused for knowledge transfer across various machines.
Future work will explore few-shot learning [23] methods to
continue to update the model incrementally.

IV-G Using xAMM for Inference

Figure 1(b) outlines the steps involved during inference us-
ing xAMM, which automates the process with minimal user in-
put via a config.yml file. To use xAMM’s inference service,
users provide performance measurements of a new application
on a reference machine (M) and specify the names of the
source (M) and target (I;) machines in the configuration file.
If AMMs are to be used, and M; was included during training,
its pre-trained AMM is reused. If M, was not included, users
may provide its benchmark data, which xAMM converts into
an AMM before processing application samples. Alternatively,
users can skip AMM usage altogether, and xAMM processes the
application samples directly.

During training, xAMM builds two models using AMMs and
without. Both use attention-based sample embeddings, en-
suring functionality even if AMMs are unavailable during
inference. To add a new machine, users need to collect
its benchmark data (e.g., using RAJAPerfSuite) and update
the config.yml file. Users can select func: amm to
construct AMMs separately from the train and test tasks,
func: train to train a downstream predictive model, or
func: test for inference. If source_model_path is
unspecified, the training module is triggered automatically.
List 1 shows an example configuration file with comments
explaining its fields:

config.yml
machine_data_path: # Path to machine benchmark
dataset (only required if AMM is used)

app_train_data_path:
training dataset

app_test_data_path:
dataset

src_model_path: # Path to pre-trained source model

src_machine_amm: # Path to source machine’s saved
AMM. If omitted, then AMM is not used during
inference

target_machine_amm: # Path to target machine’s
benchmark dataset or saved AMM. If omitted, then
AMM is not used during inference

func: amm train test # Specify functionality:
construct AMMs, train, or test

Path to application

Path to application testing

Listing 1: Example configuration file for xAMM

V. EXPERIMENTAL SETUP
V-A Applications
We leverage five HPC proxy applications on three CPU and
GPU platforms. Table I describes the applications Laghos,
Kripke, miniVite, SW4lite, and TESTDFFT, the num-
ber of samples collected per application, and their significance
in many science and engineering domains.
V-B Application Performance Samples

Table II describes the set of hardware performance counters
used as features. These include ratios of branch, load, store,

TABLE I: Description of the applications

Application Description #-
Samples

Laghos Finite Element Method (FEM) for compressible gas dy- 154
namics; represents many applications in computational fluid
dynamics and material science under extreme conditions.

Kripke 3D Sn Deterministic Particle Transport Code; represents a 106
key computational method in nuclear engineering, radiation
shielding, and medical physics applications.

minivite Graph Community Detection; represents a key computa- 289
tional method in social network analysis, bioinformatics, and
cybersecurity.

SWalite Seismic Wave Simulation; represents a computation funda- 15
mental to geophysics and earthquake engineering.

TESTDFFT Parallel 3D FFT; represents fundamental computation com- 85

mon in many scientific and engineering applications, in-
cluding signal processing, computational physics, and image
processing.

TABLE II: Collected hardware performance counters

Feature Description

Ratio of branch instructions to total instruc-
tions

Ratio of load instructions to total instructions
Ratio of store instructions to total instruc-
tions

Load misses from L1 cache

Store misses from L1 cache

Load misses from L2 cache

Store misses from L2 cache

Ratio of single precision FP instructions to

Branch Intensity

Load Intensity
Store Intensity

L1 Load Misses
L1 Store Misses
L2 Load Misses
L2 Store Misses
Single Floating Point

Intensity total instructions
Double Floating Point ~ Ratio of double precision FP instructions to
Intensity total instructions

Arithmetic Intensity Ratio of integer arithmetic instructions to
total instructions

Bytes read from 10

Bytes written to 10

Extended page table size

Memory Stalls

1/0 Bytes Read

1/0 Bytes Written
Extended Page Table
Memory Stall

and arithmetic instructions to total instructions, cache miss
rates at L1 and L2 levels, floating-point operation intensities,
I/O activity, memory stalls, and extended page table sizes.
A challenge in comparing hardware performance counters
across platforms is that the names of these counters can
vary. To address this challenge, we assign high-level names
to features based on their intended use, mapping them to the
corresponding counters on a different platform. More details
on the data collection process can be found here [4].

V-C Embedding Model

To implement sequential attention for learning sample embed-
dings, we select the default deep neural network architecture
available in the TabNet [24] library, although any library can
be used. To run TabNet, we used PyTorch version 2.1.2 and
Python version 3.10.0. We used default hyperparameter values
implemented in TabNet. The embedding model produces one
vector for each sample. We also compare our fuitention
method to the state-of-the-art embedding learning methods
used in the ML domain: Neural Network (NN), Auto Encoder
(AE), Variational Auto Encoder (VAE).

V-D Downstream Models

We evaluate four
niques as the

tech-
predictive

machine learning
downstream

TABLE III: Machine Specifications

Metric My Mo Ms
Machine Quartz Ruby Corona
Name
CPU Type Intel Xeon Intel Xeon AMD Rome
E5-2695 v4 CLX-8276L
Cores/node 36 56 48
GPU Support No No Yes
GPU Type N/A N/A AMD MI50
GPUs/node N/A N/A 8
model: ADABOOST [25], BAGGING [26], RANDOM

FORREST [27], and XGBOOST [9]. The choice of a
downstream predictive model is not the primary focus of this
work. This work aims to demonstrate that the improved data
representation generated by xAMM is universally beneficial,
regardless of the prediction model used.

V-E Hardware platforms

Although we benchmarked 16 machines, we collected samples
from 5 applications on 3 platforms to keep data collection
time manageable. More details of the datasets are described
in Section III. Table IIT summarizes the specifications of these
three machines (Quartz [28] as M, Ruby [29] as M,, and
Corona [30] as M3). Quartz and Ruby are different generations
of CPU-based machines without a GPU. Quartz features 36
cores per node and Ruby features 56 cores per node. In
contrast, Corona is a GPU-based system with 48 cores per
node and equipped with 8 AMD MI50 GPUs per node. We
leverage RAJAPerfSuite to collect machine benchmark data.

The full list of 16 machines includes various processor ar-
chitectures: Intel Xeon Gold, Intel Xeon E5-2695 v2, Intel
Xeon E5-2695 v4, Intel Xeon CLX-8276L,, AMD EPYC 7742,
Intel(R) Xeon(R) Platinum 8479, Intel Xeon Platinum 8000 se-
ries (Skylake-SP), AMD EPYC 7R13, Intel Xeon 8375C, Intel
Xeon E5-2695, IBM Power9, 121 nodes AMD Rome, AMD
Trento, 96 custom Intel Xeon Scalable (Skylake) vCPUs, Intel
Xeon Gold 6140, and Intel Cascade Lake 8275CL.

V-F Evaluation Metrics

We use Mean Absolute Percentage Error (MAPE) to quantify
the average deviation of predictions of a downstream pre-
dictive model from actual values as a percentage. A lower
MAPE indicates higher accuracy. For instance, a MAPE of
10% means the predictions deviate by 10% on average from
the actual values. MAPE is mathematically calculated as:

1|y — 0
MAPE = — >~ |% ¥ 100
il Y
Where y; is the actual value, g; is the predicted value, and n

is the total number of predictions.
VI. RESULTS

In this section, we evaluate the effectiveness of our proposed
data transformation methodology. Specifically, we:

1) Evaluate the overall impact of our proposed data transfor-
mation method (fagention + AMMS) on downstream models.

2) Evaluate the impact of the fuitention method.

3) Evaluate the impact of AMMs.

4) Evaluate different options for constructing AMM:s.

99.64
300 98.54%

250
M Model with raw data

M Model with f_attention+AMM

200
99.07%

98.91%
150

100
50

35.41% 29.15%
O‘}_ LN

— — .
AdaBoost Bagging RF XGBoost |AdaBoost Bagging RF XGBoost
CPU->CPU CPU->GPU

Average MAPE (Lower is better)

Fig. 3: Our data transformation method improves the MAPE
for all models compared to their counterparts using raw data.
XGBoost achieves an average MAPE reduction of 49.64% for
CPU — CPU (predicting the performance on a CPU using
that on another CPU) and 99.07% in CPU — GPU (predicting
performance on a GPU using that on another CPU).

In Figures 3, 5, and 6, the X-axis represents different cross-
platform prediction scenarios, while the Y-axis shows the
average MAPE (lower is better) for four downstream models.

VI-A Exp 1: Evaluate the overall impact of our proposed
data transformation method

The objective of this experiment is to evaluate the impact of
our proposed data transformation method on downstream mod-
els” (Section V-D) prediction error, measured using MAPE.
We run this experiment using a one-out cross-validation setup
where in each of five iterations, one application from Table I
is used as the test application, while the remaining applica-
tions are used to train the source model. Figure 3 presents
the average MAPE across all five iterations for three cases:
CPU—CPU, CPU—GPU, and GPU—CPU. Here, M; — M,
represents the scenario of predicting the performance of an
application on M5 using its performance on M.

Observations In Figure 3, we observe that: (1) our proposed
data transformation method, f,itention + AMMs, improves
the accuracy of ADABOOST, BAGGING, RANDOM FORREST,
and XGBOOST by 84.7%, 67.5%, 63.85%, and 74.35%, re-
spectively, compared to their counterparts using raw samples
averaged across both CPU — CPU and CPU — GPU. (2)
Attention to detail in sample embedding learning and the
inclusion of AMMs reduce the prediction error of the state-of-
the-art XGBoost model by 49.64% for CPU—CPU predictions
and by 99.07% for CPU—GPU predictions. (3) All predictive
models generalize better using our method.

VI-B Exp 2: Evaluate the impact of the f,:cntion method.

This experiment evaluates the effectiveness of our proposed
attention-based sample embedding learning method. An em-
bedding learning method is effective if, using these embed-
dings, a clustering algorithm can discriminate between samples
from different machines while maintaining similarity among

Os, 9 S, 8s, AS,
a) AutoEncoder
15 s " @
L -
-,
Nm @
o R
2 "ee L. .
§ : g v h v .'.-1-
-
Y o. om LEty e ’
z ry
'z s, 3
s ERELE 2
. ",
° tSNE Feature 1
= g G 7
s a o8 L
ol o2 * (c) Variational
v
'Y -F. Autoencoder (VAE)
o F :- v
o Hae PO - on
2 o - > H v i’
3 - a *
w n® ~ mtyg ®
w 'Ll
Z -
P - ‘v* A %
(]] "_ *
“10 Y oa * +
-

tSNE Feature 1

tSNE Feature 2

tSNE Feature 2

Vs, as, O s, DS,
(b) Deep Neural Network EM,
-
: +n ave ‘: - [} Mz
. ety o L H M,
. e, " = HM,
e e e % .,'t o';:. E M,
L) v - . MG
s . Y .t oM,
e 0 Mg
-10 . Mg
tSNE Feature 1 O Mio
-15 -10 -5 [B 10 15 . M11
30 o ‘*‘1 . D M12
+7 (d) Ourmethod, [M,,
* ? fattention EI :4411:
10 "'..:.' -I' O M16
. &
, 1] :‘. - +
o e . bl 04
LAY
he 7 J

-20

20 0 20

"*tSNE Feafure 1

Fig. 4: t-SNE plots reveal that our attention-based sample embedding method creates distinct clusters for samples from different
machines while tightly grouping samples from the same machine. Although not shown in this paper, further investigation shows
that fustention-based embeddings reduce XGBoost’s MAPE by 20.3% compared to raw data, significantly outperforming VAE,

which achieves only a 3.31% reduction.

3.2%

10
M f_Attention
M f_Attention+AMM

=3

22.41%

Average MAPE (Lower is Better)
IS

36.8%
i-

XGBoost
GPU->CPU

‘ XGBoost ‘

XGBoost
CPU->CPU

CPU->GPU

Fig. 5: Adding AMMs reduces XGBoost’s average prediction
error by 3.2%, 22.41%, and 36.8% for CPU — CPU (homo-
geneous), CPU — GPU (heterogeneous), and GPU — GPU
(heterogeneous) scenarios, respectively.

samples from the same machine. For this experiment, we
compare our attention-based embedding learning method with
other state-of-the-art ones: NN, AE, VAE. The output of the
Sample Embedding Learning module is fed directly to
the clustering algorithm. Figure 4 visualizes sample embed-
dings using t-SNE [31] plots. t-SNE plots project the high-
dimensional embeddings into a two-dimensional space.

Observations Figure 4d shows that our proposed attention-
based sample embedding learning method (faenton) generates
well-separated clusters for samples from different machines
while keeping samples from the same machine tightly grouped
within distinct clusters. In contrast, embeddings generated
by AE (Figure 4a), NN (Figure 4b), and VAE (Figure 4c)

M Concat
8 B L-2 Norm Based Attention
M Variance Based Attention

10.46%

Fig. 6: AMMs constructed using L2-norm and variance based
methods (Option 2 and 3 in Algorithm 1) improve prediction
accuracy over the Concat-based approach (Option 1). For
CPU—CPU, Option 2 reduces MAPE by 25.5% and Option
3 by 10.46%. For CPU—GPU, Option 2 achieves a 2.64%
reduction, while Option 3 achieves 5.05%.

25.5%

f-attention

Average MAPE (Lower is Better)
IS

5.05%
2.64%
‘-ﬁ

f-attention
CPU->GPU

CPU->CPU

fail to capture this underlying structure, resulting in scattered
and poorly defined clusters. To further study the impact of
these embeddings, we trained XGBoost models to predict the
relative runtimes of applications across CPU — CPU and
CPU — GPU scenarios (not shown). Compared to training
XGBoost models on raw data, using futtention €mbeddings
reduced XGBoost’s MAPE by 20.3%, while VAE embeddings
achieved a reduction of 3.31%. This observation highlights the
effectiveness of attention-based embeddings in improving the
performance of downstream models.

VI-C Exp 3: Evaluate the impact of concatenating AMMs

The objective of this experiment is to evaluate the impact
of AMMs on cross-platform prediction. We compare the
effectiveness of XGBoost, since it is the best model in Fig-
ure 3, by providing two types of inputs: one using only the
application sample embeddings generated by fayenton, and the
other combining fyyenion €mbeddings with AMMs.

Observations In Figure 5, we observe that the addition of
AMMs significantly improves the accuracy of the XGBoost
model for all three scenarios. Adding AMMSs reduces the
average MAPE across one-out experiments in XGBoost by
3.2% for CPU—CPU predictions. The impact is significantly
larger for heterogeneous platforms, with reductions of 22.4%
for CPU—GPU and 36.8% for GPU—GPU compared to
using only fu¢tention- This improvement arises because AMMs
capture architectural feature relationships, such as memory
hierarchies, providing XGBoost with structural correlations.

VI-D Exp 4: Evaluate options for constructing AMMs

This experiment evaluates three different methods, as pre-
sented in Algorithm 1, of constructing AMMs. To achieve
this, we compare three aggregation methods outlined in Algo-
rithm 1: averaging, and attention using L2-norm, and variance.

Observations From Figure 6, we observe that AMMs con-
structed using L2 norm and variance-based methods (Op-
tion 2 and Option 3 in Algorithm 1) improve prediction
accuracy compared to the Concat-based approach (Option
1). For CPU—CPU predictions, L2 norm-based approach
reduces MAPE by 25.5%, while variance-based one achieves a
10.46% reduction. Similarly, for CPU—GPU predictions, L2-
norm reduces MAPE by 2.64%, and variance-based approach
achieves a 5.05% reduction.

VI-E Discussions

Our results demonstrate that (1) the proposed attention-based
embedding method improves downstream predictive accuracy,
regardless of their architectures. Future work will evaluate
the impact of our data transformation methodology on more
advanced architectures such as Transformers. (2) embeddings
generated by our proposed sequential-attention-based method
cluster samples from the same machine closely while sepa-
rating samples from different machines, as shown in t-SNE
plots (Figure 4), providing key discriminative information for
downstream models; and (3) the method generalizes across
diverse applications (can be unseen during training) and ar-
chitectures, provided the machines are included in the training
set, highlighting its significance in improving the effectiveness
of cross-platform performance prediction.

Our methodology is flexible and modular. While the com-
bination of attention-based sample embeddings and AMMs
yields the best results, even using the sample embedding
learning method alone boosts predictive accuracy. For instance,
XGBoost benefits significantly from using our attention-based
embeddings. This adaptability allows our approach to comple-
ment many existing ML-based methods.

One limitation of our work is that to use AMMs dur-
ing inference, the source model must be included during
training. Although the dataset may appear small, consisting
of 649 experiments from 5 applications across 3 platforms
(Table 1), collecting this data was time-intensive, reflecting
the practical constraints of HPC environments. Despite this
limitation, xAMM achieves a significant reduction in MAPE,
demonstrating that even with a smaller dataset, our method
enables downstream models to generalize across platforms,
underscoring the success of our approach.

VII. RELATED WORK

Several studies have explored cross-platform runtime predic-
tion in HPC, focusing on diverse methodologies. Kumar et
al. [10], Marathe et al. [5], and Wyatt et al. [11] develop trans-
fer learning methods using various neural network-based ar-
chitectures, predicting absolute execution time. Yang et al. [1]
takes a different approach by partially executing applications
and using window-based averaging to predict cross-platform
performance, which contrasts with ML-driven methodologies.
Gupta et al. [6] analyzed performance across platforms without
leveraging embedding learning or machine abstractions like
AMMs. Yokelson et al. [32] and Sun et al. [33] used linear
regression and neural networks, focusing on runtime features,
while Malakar et al. [7] benchmarked ML techniques without
exploring embedding-based representations. Similarly, Chen et
al. [34] applied ensemble learning for runtime prediction but
did not incorporate embedding learning or AMMs.

In contrast, our work is complementary to all existing model-
ing approaches, as the proposed attention-based data transfor-
mation pipeline can be applied to improve input quality and
predictive accuracy across any downstream model architecture.
Moreover, even in the absence of AMMs, our sample embed-
ding learning method alone improves predictive accuracy, as
demonstrated in our experiments with XGBoost, underscoring
the impact of our work.

While extensively used in other domains, attention mecha-
nisms remain underexplored in HPC performance analytics.
Previous methods such as AutoEncoders (AE), Variational
AutoEncoders (VAE), and Neural Networks (NN) generate
embeddings; however, these methods often fail to capture the
nuanced relationships necessary for accurate cross-platform
predictions. By incorporating attention into the embedding
learning process, xAMM encodes critical performance charac-
teristics that enable downstream models to better generalize.

For researchers without access to machine benchmark datasets
to construct AMMs, our results show that the sample embed-
ding learning method itself can still be used independently to
improve downstream model performance. While our primary
focus is on attention-based embeddings, we recognize the
potential for more sophisticated downstream models, such
as Transformer-based architectures. This provides a natural
direction for future work and highlights the flexibility of our
methodology in adapting to evolving ML paradigms.

VIII. CONCLUSIONS

This work addresses the problem of performance prediction
across heterogeneous platforms. Traditional methods, which
rely on static hardware descriptions and absolute runtimes,
often fall short of capturing the dynamic behaviors of modern
systems. To address this gap, we leverage relative performance,
propose attention-based embeddings, and, to our knowledge,
are the first to introduce a principled methodology for creat-
ing AMMs. Our evaluations show that incorporating the at-
tention mechanism alongside machine-specific representations
significantly improves cross-platform prediction accuracy.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
871860). This work was supported in part by LLNL LDRD
project 24-SI-005, the National Science Foundation Grant

No.

2443561 and 2047120, and Texas Advanced Computing

Center (TACC) at The University of Texas at Austin.

[1]

[3]

[4

=

[5]

[6]

[9]

(10]

[11]

REFERENCES

L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance
prediction of parallel applications using partial execution,” in SC’05:
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing.
IEEE, 2005.

L. Li, T. Flynn, and A. Hoisie, “Learning Generalizable Program and
Architecture Representations for Performance Modeling,” in Proceed-
ings of the Int’l Conf for High Performance Computing, Networking,
Storage, and Analysis, Nov. 2024.

A. Dey, A. Dhakal, T. Z. Islam, J.-S. Yeom, T. Patki, D. Nichols,
A. Movsesyan, and A. Bhatele, “Relative performance prediction using
few-shot learning,” in 2024 IEEE 48th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE, 2024, pp. 1764-1769.
D. Nichols, A. Movsesyan, J. Yeom, A. Sarkar, D. Milroy, T. Patki,
and A. Bhatele, “Predicting cross-architecture performance of parallel
programs,” in Proceedings of the IEEE Int’l Parallel & Distributed
Processing Symposium, ser. IPDPS *24. IEEE Computer Society, may
2024.

A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. Thiagarajan,
B. Kailkhura, J. Yeom, B. Rountree, and T. Gamblin, “Performance
modeling under resource constraints using deep transfer learning,”
in Proceedings of the Int’l Conf for High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1-12.

A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S.
Lee, V. March, D. Milojicic, and C. H. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” IEEE
Transactions on Cloud Computing, 2014.

P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran, “Benchmarking machine learning methods for performance
modeling of scientific applications,” in 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS). IEEE, 2018.

S. Kim, A. Sim, K. Wu, S. Byna, Y. Son, and H. Eom, “Towards
hpc i/o performance prediction through large-scale log analysis,” in
Proceedings of the 29th Int’l Symposium on High-Performance Parallel
and Distributed Computing, 2020.

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen
et al., “Xgboost: extreme gradient boosting,” R package version 0.4-2,
2015.

R. Kumar, A. Mankodi, A. Bhatt, B. Chaudhury, and A. Amrutiya,
“Cross-platform performance prediction with transfer learning using
machine learning,” in 2020 11th Int’l Conference on Computing, Com-
munication and Networking Technologies (ICCCNT). 1EEE, 2020.

M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and
M. Taufer, “Prionn: Predicting runtime and io using neural networks,”
in Proceedings of the 47th International Conference on Parallel Pro-
cessing, 2018, pp. 1-12.

10

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

O. Pearce, J. Burmark, R. Hornung, B. Bogale, I. Lumsden, M. McK-
insey, D. Yokelson, D. Boehme, S. Brink, M. Taufer er al., “Raja
performance suite: Performance portability analysis with caliper and
thicket,” in SC24-W: Workshops of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1EEE,
2024.

D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“RAJA: portable performance for large-scale scientific applications,” in
2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc). IEEE, 2019, pp. 71-81.

W. Gu, A. Tandon, Y.-Y. Ahn, and F. Radicchi, “Principled approach
to the selection of the embedding dimension of networks,” Nature
Communications, vol. 12, no. 1, p. 3772, 2021.

N. Pinnow, T. Ramadan, T. Z. Islam, C. Phelps, and J. J. Thiagarajan,
“Comparative code structure analysis using deep learning for perfor-
mance prediction,” 2021.

P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, vol. 710, 1999.

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance
analysis of optimized parallel programs http://hpctoolkit.org,” Concurr.
Comput. : Pract. Exper, vol. 22, no. 6, pp. 685-701, Apr. 2010.
[Online]. Available: http://dx.doi.org/10.1002/cpe.v22:6

T. Ramadan, A. Lahiry, and T. Z. Islam, “Novel representation learning
technique using graphs for performance analytics,” in I[EEE International
Conference on Machine Learning and Applications (ICMLA).

D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE transactions on Big Data, vol. 6, no. 1, pp.
3-28, 2018.

M. Tschannen, O. Bachem, and M. Lucic,
in autoencoder-based representation learning,”
arXiv:1812.05069, 2018.

M. Zhang, T. Z. Xiao, B. Paige, and D. Barber, “Improving vae-based
representation learning,” arXiv preprint arXiv:2205.14539, 2022.

M. Dippel, A. Kiezun, T. Mehta, R. Sundaram, S. Thirumalai, and
A. Varma, “Attention improves concentration when learning node em-
beddings,” arXiv preprint arXiv:2006.06834, 2020.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing surveys
(csur), 2020.

S. O. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular
learning. arxiv 2019,” arXiv preprint arXiv:1908.07442, 1908.

L. Gao, P. Kou, F. Gao, and X. Guan, “Adaboost regression algorithm
based on classification-type loss,” in 2010 8th World Congress on
Intelligent Control and Automation. 1EEE, 2010.

Q. Sun and B. Pfahringer, “Bagging ensemble selection for regression,”
in Australasian Joint Conference on Artificial Intelligence. Springer,
2012, pp. 695-706.

M. R. Segal, “Machine learning benchmarks and random forest regres-
sion,” 2004.

Lawrence Livermore National Laboratory, “Quartz compute
system,” 2025. [Online]. Available: https://hpc.lInl.gov/hardware/
compute-platforms/quartz-decommissioned

, “Ruby computing system,” 2025. [Online]. Available: https:
/fhpc.lInl.gov/hardware/compute- platforms/ruby

——, “Corona computing system,” 2025. [Online]. Available: https:
//hpe.llnl.gov/hardware/compute-platforms/corona

B. Kang, D. Garcia Garcia, J. Lijffijt, R. Santos-Rodriguez, and
T. De Bie, “Conditional t-sne: more informative t-sne embeddings,”
Machine Learning, vol. 110, 2021.

D. Yokelson, M. R. J. Charest, and Y. W. Li, “Hpc application per-
formance prediction with machine learning on new architectures,” in
Proceedings of the 2023 on Performance EngineeRing, Modelling, Anal-
ysis, and VisualizatiOn Strategy, ser. PERMAVOST °23. Association
for Computing Machinery, 2023.

J. Sun, G. Sun, S. Zhan, J. Zhang, and Y. Chen, “Automated performance
modeling of hpc applications using machine learning,” IEEE Transac-
tions on Computers, vol. 69, no. 5, 2020.

X. Chen, H. Zhang, H. Bai, C. Yang, X. Zhao, and B. Li, “Runtime
prediction of high-performance computing jobs based on ensemble
learning,” in Proceedings of the 2020 4th Int’l Conference on High
Performance Compilation, Computing and Communications, 2020.

“Recent advances
arXiv preprint

