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Human cognitive responses, behavioral responses, and disease dynamics co-evolve over the course 
of any disease outbreak, and can result in complex feedbacks. We present a dynamic agent-based 
model that explicitly couples the spread of disease with the spread of fear surrounding the disease, 
implemented within the EpiCast simulation framework. EpiCast models transmission within a realistic 
synthetic population, capturing individual-level interactions. In our model, fear propagates through 
both in-person contact and broadcast media, prompting individuals to adopt protective behaviors that 
reduce disease spread. In order to better understand these coupled dynamics, we create and compare 
a range of compartmental models to ensure that introducing additional disease states does not 
prevent the emergence of multiple waves in these simpler models. Additionally, we compare a range 
of behavioral scenarios within EpiCast, varying the level and intensity of fear and behavior change. 
Our results show that the addition of asymptomatic, exposed, and pre-symptomatic disease states 
can impact both the rate at which an outbreak progresses and its overall trajectory in compartmental 
models. In EpiCast, the combination of non-local fear spread via broadcasters and strong behavioral 
responses by fearful individuals generally leads to multiple epidemic waves, an outcome that occurs 
only within a narrow parameter range when fear spreads purely through local contact. Accounting for 
the coupled spread of fear and disease is critical for understanding disease dynamics and designing 
timely, targeted responses to emerging infectious threats.
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Looking back on the early stages of the COVID-19 pandemic reveals a dizzying array of responses across all 
levels of society, across the entire world. The response to the COVID-19 pandemic may have been the largest 
coordinated behavior change in the history of humanity. From state-mandated lockdowns and school closures to 
individual masking, testing, and vaccination, these responses shaped both personal experiences of the pandemic 
and observed outcomes at a societal level1–4.

Unfortunately, accurately anticipating individual behavior has proved challenging for the similarly diverse 
array of models developed to simulate the disease’s spread5. The most common method of accounting for 
behavioral changes has been to use exogenous data sources, such as cell phone mobility data or historical public 
health policies, to impose top-down behaviors6. However, exogenous approaches struggle to capture the two-way 
feedback between behavioral changes and disease spread, since they mostly treat behavior as an input parameter, 
able to be scheduled in advance7. Truly dynamic behaviors require incorporating a behavioral model into the 
heart of a simulation, able to respond flexibly to changes in the global or local simulation state.

However, most such endogenous behavioral models operate within high-level compartmental models, where 
a series of ordinary differential equations (ODEs) govern the changing proportion of the population in different 
disease states8,9. Such models can only answer population-level questions about disease spread because they 
smooth over the heterogeneity of real-world populations. In contrast, agent-based models (ABMs) capture this 
heterogeneity by directly modeling the disease state and behavior of each individual in the simulated population. 
This capability has enabled the use of ABMs for retrospective analysis of COVID-19 spread patterns10, 
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evaluation of public health interventions11–13, and the study of differential COVID-19 outcomes across regions 
and demographic groups14. However, ABMs rarely include endogenous behaviors8, and the few existing ABMs 
which do only simulate relatively small populations consisting of at most a million people15.

To address these gaps, we present a coupled contagion model of interdependent disease and fear spread 
implemented in EpiCast. EpiCast is a production ABM capable of simulating the spread of an infectious 
disease  –  such as COVID-19  –  on a digital twin of the full US population while accounting for varying 
demographic and occupational distributions, as well as commute and flight patterns across the country11,16. 
In our model, fear of a disease spreads alongside the disease itself, influencing individuals to adopt various 
protective behaviors that either reduce their number of contacts or the likelihood they are infected by any given 
contact. This fear can spread through either in-person contact – much like the disease – or through broadcast 
media. To our knowledge, this is the first work to model the coupled dynamics of two contagions in an agent-
based simulation of this scale and complexity.

Additionally, we present a series of ODE-based models we developed to ensure that solely introducing new 
disease states used in EpiCast would not disrupt the dynamics found in existing ODE-based coupled contagion 
models. EpiCast includes several disease states beyond the standard susceptible, (symptomatic) infectious, 
recovered (SIR) model, such as asymptomatic and presymptomatic infectious states. As most prior coupled 
contagion models have been based on the SIR model, we found it useful to first adapt existing ODE-based 
models to account for these new disease states, settling on a high-level design before translating the resulting 
system into the agent-based context. We then analyzed how the incremental inclusion of disease states in these 
ODE models changes their dynamics.

In the process of designing and evaluating our model, we sought to answer the following research questions: 

RQ 1:  How does the introduction of additional disease compartments change outbreak dynamics?

RQ 2:  How do different types of fear-induced behavior impact outbreak dynamics in a large scale ABM?

RQ 3:  How do key parameters in our models relate to important outbreak characteristics, such as the total at-
tack rate or the number of epidemic waves?

Related work
The most common mechanism for incorporating changing behavior into epidemic models is using data-
driven, exogenous behavior models. Exogenous models treat behavior as an independent variable, rather than a 
simulation output; they do not allow behavior to be tightly coupled with simulation results like the prevalence 
of the disease at a given time. In contrast, endogenous behavior models incorporate a framework for human 
behavior directly into a simulation. For example, students could stay home from school after their teacher 
tests positive for a disease. This tight coupling allows endogenous models to react flexibly to novel scenarios. 
Such models have proven able to produce multiple epidemic waves and at times dramatically improve model 
predictions17,18, and generally fall into three categories8: 

	1.	 Feedback loop models, where behavior directly depends on disease prevalence. This can be in the form of 
either agents adopting behavior when the disease prevalence passes a certain threshold, or by scaling adop-
tion probabilities or intensities based on prevalence. One noteworthy example by Rahmandad et al. outper-
formed the majority of the U.S. Center for Disease Control COVID-19 Forecasting Hub models by scaling 
the transmission rate in a SEIR compartmental model by a prevalence-dependent scaling factor17. Kasa et al. 
provide an overview of such models19.

	2.	 Game theoretic models, where individuals select an option that maximizes a utility function describing their 
preferred outcomes. These models can typically consider two types of agents, individual decision-makers 
with their own behaviors: 1) central planners, which select policies or incentive structures to maximize a 
global measure of social good, and 2) self-interested agents seeking to maximize their private utility. These 
two types of agents may be used alone or together. Huang et al. survey models of this type20.

	3.	 Coupled contagion models, where an individual’s behaviors depends on their beliefs, or some other internal 
state. An individual’s beliefs are generally represented as discrete compartments, similar to disease states, 
with transition probabilities determined by a combination of other individuals’ beliefs and information re-
garding the state of the pandemic. Beliefs and prevalence information can both be either global or local, 
spreading between neighbors in an ABM, and therefore may spread in a manner similar to the disease. 
Epstein et al. present such a model where two contagions – fear of the disease and the disease itself – spread 
simultaneously through a population21, adding a third contagion – fear of vaccination – in a later version of 
the model22.

Several models also combine elements from multiple categories above. Poletti et al. developed a behavioral model 
for H1N1 Influenza where individuals choose between protective and normal behaviors so as to maximize a 
utility function based on the recent disease prevalence23. Jovanovic et al. compare models of vaccine uptake using 
an objective function which incorporates population-level prevalence information and local-level information 
spread through neighbors in a information diffusion network24.

Agent-based modeling of endogenous behavior
Despite the range of developed behavioral models, the vast majority are built on top of standard compartmental 
models, most of which add a simple feedback loop to the system of ordinary differential equations (ODEs) for 
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the model. In particular, there are only a handful of agent based models (ABMs) which use coupled contagion 
models8.

Epstein et al.21 develop a relatively simple ABM where 1800 agents move around a 2D grid. Agents can 
spread fear and disease to agents in adjacent cells, and can either flee, isolate, or retain the same behavior while 
fearful. Note that while they demonstrate the emergence of waves in the ODE version of their model, they 
fail to do so for the ABM. Rajabi et al.25 also use a grid-based ABM, but only have agents quarantine when 
fearful. They demonstrate how multiple waves can emerge in their simulation and simulate the impact of travel 
restrictions and contact tracing on disease spread in a 5000 agent population. Both ABMs are highly idealized, 
with agents lacking realistic schedules. Palomo-Briones et al.26 present a more complex but still spatially explicit 
400 agent model where agents have a short visit schedule consisting of visits to their home, social activities, and 
economic activities, and can chose to wear masks, social distance, or wash hands based on a combination of 
other agents’ beliefs and the results of their previous behavior. Curiel et al.27 use a small 5000-agent network-
based ABM where a disease spreads alongside anti-vaccine beliefs under different network topologies and 
vaccination strategies. While these two models introduce more sophisticated behaviors, they deal with very small 
populations, much like the previous models. Mao15 presents a detailed simulation of the Buffalo metropolitan 
area with nearly a million agents, with a schedule of activities drawn from demographic data. Agents can decide 
to use flu prophylaxis using a threshold-based decision model based on either infection risk or prophylaxis 
adoption among contacts. While these models range in complexity, only Rajabi et al., with the simplest model, 
demonstrates an ability to produce multiple epidemic waves. In addition, the largest simulated population is 
smaller than most U.S. states and tuned for a narrow geographic area, which limits the usefulness of its results 
for state-level and national policy-makers.

The EpiCast simulator
The smaller scales of the coupled contagion ABMs described above contrast sharply with that of HPC-scale 
simulators like EpiCast. EpiCast simulates disease spread on a massive artificial surrogate population of the full U.S. 
containing over 322 million agents11,16. In the baseline version of EpiCast, this behavior relies on a combination of 
fixed exogenous responses based on demographics and top-down public health interventions taken as input. The 
population used in EpiCast is built using UrbanPop28, a framework which uses American Community Survey 
(ACS) Data to create high-fidelity synthetic populations. Compared to similar frameworks, UrbanPop captures 
more of the heterogeneity in real-world populations, producing cross-sectional representations of agents across 
sociodemographic, economic, educational, and mobility characteristics. UrbanPop assigns each member of the 
generated population to a specific household in a specific census block group, in a manner which ensures the 
aggregate demographics of the generated block group correspond precisely to those observed in census data. In 
EpiCast, these households form the basis for dividing the population into communities, within which agents 
have varying contact intensities defined by whether they share a household, neighborhood, workplace, school, 
etc. These contact intensities determine the pairwise likelihood that disease transmission occurs between two 
agents within the same community. Agents then commute between a home and a work or school community 
each day in a manner consistent with Department of Transportation commute flow data, and occasionally 
engage in long distance travel to geographically distant communities based on flight data.

Methods
In designing our model, we seek to adapt an existing coupled contagion ODE model to function within 
EpiCast, which requires accounting for all of the disease states present in the original code. We first construct 
a SIR-based ODE-model as a simple baseline, then incrementally incorporate new disease states until we have 
accounted for all those used by EpiCast. Once this design is complete, we then modify the model to function in 
an individualized context. In the process, we introduce both short- and medium-distance mechanisms for fear 
spread and two types of behavioral responses to fear with an eye toward reproducing the twin epidemic waves 
found in the ODE models.

Coupled contagion ODE models
We take a streamlined version of Epistein et al.’s model of coupled fear and disease spread21 as our starting 
point due to its flexibility and ability to produce multiple epidemic waves. We then incrementally add the 
asymptomatic, presymptomatic and exposed disease states present in EpiCast to this model, in order to ensure 
that the dynamics found in the simpler models are not disrupted by the addition of these disease states. The final 
model uses all disease states present in EpiCast. We refer to this series of models using the Cartesian product of 
the two types of states. For example, we describe a standard SIR model paired with a fear model with Neutral 
and Fearful states as an SIR × NF  coupled model. Note that these models are not intended to be directly 
compared with the extension of EpiCast described in “Coupled contagion agent-based model”. We instead use 
them to inform the high-level design of the model implemented in EpiCast, with a focus on how to couple the 
dynamics of disease, fear, and behavior.

We designed the following series of models: 

	1.	 SIR × NF , the closest to Epstein et al.’s original model. The flow rate from neutral to fearful compartments 
is slower by a factor of ρf  from the Recovered state. ρf = 0 corresponds to the Epstein model.

	2.	 SIsIaRsRa × NF , distinguishing between symptomatic and asymptomatic Infectious and Recovered 
states. Of the disease states, only Rs has a reduced flow rate from neutral to fearful compartments and con-
tributes to a reduction in fearful agents. This is because agents are only aware of symptomatic infections, giv-
en that we do not currently model testing.
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	3.	 SEP IsIaRsRa × NF , adds an Exposed state to represent the incubation period and a Presymptomatic 
state to allow for disease spread prior to the potential onset of symptoms. This is the closest to the model 
implemented in EpiCast.

For brevity, we present only the SEP IsIaRsRa × NF  system in full. The SEP IsIaRsRa × NF  flow 
diagram is shown in Supplementary Fig. S1 and the full system of equations is given in Supplementary Section 
S1. The other models are special cases of this system and can be derived by setting the the compartments not 
present in a given model to 0.

Coupled contagion agent-based model
The EpiCast coupled contagion model can be thought of as a translation of the SEP IsIaRsRa × NF  model 
into the individualized context of EpiCast. This requires reworking aspects of the basic functionality of the 
original EpiCast simulator to facilitate fear spread and tie an individual’s behavior to their fear state.

Modeling fear spread
We implement two methods of fear spread in EpiCast: one which operates based on an agent’s local neighborhood 
of contacts in a manner similar to disease spread, and a second that approximates the effect of traditional 
newspaper publishers and broadcast media. For simplicity, we do not distinguish between these two forms of 
media, and refer to media outlets of either type as ”broadcasters” below when describing the model.

In order to implement local fear spread, we took advantage of EpiCast’s preexisting methodology for 
computing disease spread, refactoring the code to allow for fear spread using different per-contact transmission 
probabilities. Fear is spread by symptomatic and fearful agents, and countered by agents who know they have 
recovered from an infection and have a neutral fear state (i.e. agents in disease state Rs and fear state N).

For non-local fear spread, we created broadcasters capable of taking one of three positions on the disease. They 
may either: (1) spread fear, (2) counter fear spread, or (3) remain neutral. In order to site these broadcasters, we 
begin by examining the occupations of agents in each community, which are identified by 2017 North American 
Industry Classification System (NAICS) codes in EpiCast. If we identify at least one agent who works in 
publishing (NAICS code 511) or broadcasting (NAICS code 515) in a given community we locate a media outlet 
there and assign all agents within the relevant industry to work there. Each broadcaster is able to potentially 
influence anyone within the census tract in which they are located, and starts by taking a neutral position.

Once initialized, a broadcaster’s position is determined by a combination of the fear states of its employees 
and the level of disease spread in the broadcast area. When the proportion of employees at a broadcaster who are 
fearful of the disease crosses a certain threshold, pbc_start, the broadcaster begins spreading fear. We then record 
the current infection rate, the number of new infections in the broadcast area as a proportion of its population, 
as Ė0. In future timesteps, the broadcaster determines its position by comparing the current infection rate, Ėt, 
against Ė0 as follows: 

	1.	 If Ėt < pbc_counter · Ė0, the broadcaster begins countering fear spread.
	2.	 Otherwise, if Ėt < pbc_neutral · Ė0, the broadcaster takes a neutral position.
	3.	 Otherwise, the broadcaster spreads fear of the disease.

where pbc_counter < pbc_neutral.
For each agent in the broadcast area of a given broadcaster, they have a fixed chance, pbc, of being influenced 

by that broadcaster in a given timestep if the broadcast is not neutral and their fear state does not correspond to 
the broadcaster’s position.

Modeling behavior
We modeled two different ways in which agents may change their behavior when they are fearful: (1) taking 
protective measures (such as masking and hand-washing) while maintaining their normal routine, and (2) 
withdrawing from their normal routine and remaining at home. We model this first measure by reducing the 
susceptibility of agents in state < S, F >, similar to how this is handled by Epstein et al.22 and in the ODE 
model.

In the second case, we modify an agent’s routine so that they remain in their home community, neither 
commuting to their work community nor engaging in long distance travel, and only interacting with other 
members of their household. If currently traveling, they immediately return to their home community. Note that 
this is different from a complete quarantine, as they can still transmit the disease or their fear to their household. 
If agents are fearful, they can either withdraw purely due to fear with a fixed probability pfear for a given duration 
twith, or due to having a symptomatic infection (i.e. being in state < Is, F >). Note that any agent with a 
symptomatic infection will withdraw if their symptoms are severe enough for them to be hospitalized, regardless 
of their fear state.

Experimental setup
First, we sought to examine how different sets of disease compartments impact outbreak dynamics (RQ 1). 
We find numerical solutions to each ODE model through utilizing an initial value problem (IVP) solver – the 
solve_ivp function from the Scipy integrate package (v1.14.0) –  under different parameter choices. In 
the process, we identify scenarios under which each of our ODE models produce multiple epidemic waves, 
providing a comparison of when the same parameter values produce substantially different outcomes between 
models. Parameter values are shown in Supplementary Table S1.
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Second, we sought to compare the outbreak dynamics resulting from several different sets of fear-induced 
behaviors (RQ 2). We run a range of scenarios in EpiCast where agents withdraw from everyday activities under 
certain conditions (most in part due to fear) and have a reduced susceptibility to infection due to protective 
actions. This includes withdrawls by agents who are (1) hospitalized (hospitalized withdrawals), (2) symptomatic 
and fearful (sick withdrawals), and (3) only fearful (fear-only withdrawals). These scenarios also compare the 
impact of purely local (based on physical contact with agents in the same community) and non-local (based on 
broadcasters operating within a given census tract) fear spread modes. For these scenarios, we use a synthetic 
population of about 322 million agents representing the 48 contiguous U.S. states and Washington DC. We 
seeded index cases on a per-county basis using estimates of active cases on 25 March 2020 derived from data 
from The New York Times, based on reports from state and local health agencies. Index cases were seeded on 
each of the first five days of the simulation, for an average of 856 thousand seed cases per day (about 0.265% of 
the population). Parameter values are shown in Supplementary Table S2.

Finally, we investigated how a couple key model parameters impact the dynamics produced by the behavioral 
model implemented in EpiCast (RQ 3). We conduct a series of sensitivity analyses comparing EpiCast outputs 
for a range of values of pfear and σf , which determine the strength of an agent’s behavioral response to fear of 
the disease. We draw these values from the range [0, 1], trying five values for each parameter for a total of 25 
combinations. We run each combination twice–once with only local fear spread and once with both local and 
broadcaster-based fear spread. These experiments are conducted on the contiguous U.S. dataset described above. 
Choices for parameters other than pfear and σf  correspond to Scenarios (c) and (d) from Supplementary Table 
S2 (or, equivalently, Scenarios (e) and (f)) without and with broadcasters, respectively. In order to compute the 
number of epidemic waves programmatically, we first compute a centered 7-day rolling maximum of new case 
counts–so as to avoid identifying peaks caused solely by weekly variation–then call the find_peaks function 
from the Scipy signal package (v1.14.0) in Python with a prominence of 0.0001. This value indicates that new 
cases should fall by at least 1 new infection per 10,000 people before rising again if we are to consider a given 
local maximum to be the peak of a given epidemic wave. We find this value avoids spurious peaks (i.e. those in 
the long tail of some outbreaks) while still capturing those most visually prominent in the data.

Results
We describe the results of the three main sets of experiments described above.

Comparing ODE models
For the ODE comparison experiments, Fig. 1 shows the solutions corresponding to the parameter choices that 
either failed to produce a second epidemic wave within 360 days (top) or produced such a wave (bottom). For 
the SIR × NF  model, we observe that changing the likelihood that those who recovered from a symptomatic 
infection become newly fearful of the disease, ρf , has a dramatic impact on whether or not a second wave 
occurs. With ρf = 1 the percentages of the population in the susceptible or fearful states largely plateau around 
80% and 60%, respectively, after 360 days, as shown in Fig. 1a. In contrast, these percentages plateau at around 
35% and 0%, respectively, when we use ρf = 0, as shown in Fig. 1d. In addition, a second wave only occurs in 
the latter case, peaking after about 150 days.

When we introduce asymptomatic disease states, as in the SIsIaRsRa × NF  model, the situation changes 
further. Keeping all parameters used in the ρf = 1 run the same with this model results in 80% of the population 
still susceptible and 40% fearful after 360 days, and no second epidemic wave, as shown in Fig. 1b. Changing 
the susceptibility of fearful agents, σf , from 25% to 35%, however, is sufficient to produce a second wave in this 
model, albeit a smaller one which peaks much later at around 275 days, as shown in Fig. 1e. Under this scenario, 
about half of the population is still susceptible after 360 days, although this proportion is still decreasing. The 
fearful proportion, while approaching zero by 360 days, does so about 160 days later than in the two wave 
scenario without asymptomatic infections (Fig. 1d).

Introducing an exposed state and a pre-symptomatic infectious state into the model produces the 
SEP IsIaRsRa × NF  model, and further changes the solution space. Using the same pair of parameter values 
as with the SIsIaRsRa × NF  model results in faster disease spread and decay in fear levels. Figure 1c shows 
that about 70% and 20% of the population is susceptible and fearful, respectively, after 360 days with σf = 0.25 
in this model. Additionally, while we do not see a second wave peak within 360 days here, we do see the start 
of such a wave and the lack of a plateau of fear levels that corresponds to a single-wave outbreak in the other 
models. When using σf = 0.35 with the SEP IsIaRsRa × NF  model, Fig. 1f shows that fear levels reach zero 
and a second epidemic peak occurs, as with the SIsIaRsRa × NF  model. However, both these events happen 
much sooner in the former model, although still about 100 days later than in the SIR × NF  model.

Altogether, with respect to RQ 1 we find that adding asymptomatic states to the ODE models significantly 
delays the progression of multiple waves and reduces the rate of infections and fear decay as well as the total 
attack rate, while adding an exposed state has the opposite effect. Neither addition significantly changes the peak 
of fear levels. As for RQ 3, we find that changing the values of ρf  and σf  both showed the potential to change 
both whether or not we observe a second wave and the total attack rate.

Comparing selected scenarios in EpiCast
We now examine the results of the various scenarios evaluated for the coupled contagion model implemented in 
EpiCast, so as to explore RQ 2. Figure 2a showcases the differences in the count, height, and timing of epidemic 
peaks between scenarios. In particular, we see the highest peak in the scenario with only hospitalization-based 
withdrawals (hosp), as well as the highest total attack rate. This is followed by the scenario where we allow 
withdrawals based on having symptoms (hosp+sick) and pure-fear withdrawals as well (hosp+sick+fear), 
which also show a single peak. The scenario with the smallest peak (and also the lowest total attack rate) comes 
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from using hospitalization-based and symptomatic withdrawals along with a susceptibility reduction from 
fear (hosp+sick+reduced_sus), which also has a single peak. The only scenarios wherein we observe multiple 
peaks are those where we add broadcasters as a fear spread mechanism with purely fear-based withdrawals 
(hosp+sick+fear+bc) and a fear-based susceptibility reduction (hosp+sick+reduced_sus+bc), with the former 
having higher peaks than the latter, and the second peak occurring at roughly the same time in both cases.

We observe that fear levels peak after 35 to 60 days at around 60-70% of the population in most cases, with 
the exception of the pure-fear withdrawal scenario without broadcasters (hosp+sick+fear), where fear levels 
peak after 85 days at around 38% of the population. In most cases, fear levels fall dramatically from this peak 
before the end of the simulation. The scenarios with reduced susceptibility due to fear both buck this trend, with 
fear levels only falling slightly by day 200 without broadcasters (hosp+sick+reduced_sus) and dropping slowly 
by around 15 percentage points in total with broadcasters (hosp+sick+reduced_sus+bc). We note that, in the 
absence of broadcasters, the reduced susceptibility case (hosp+sick+reduced_sus in Fig. 2b) displays the highest 
fear levels for most of the simulation and the pure-fear withdrawal case the lowest (hosp+sick+fear in Fig. 2b). 
In the presence of broadcasters, fear trends more closely resemble other runs. Fear levels fall significantly after 
their peak in the susceptibility reduction case (hosp+sick+reduced_sus+bc in Fig. 2b), when they remaining 
roughly constant in the absence of broadcasters. Conversely, fear levels rose much higher before falling in the 
pure-fear withdrawal case (hosp+sick+fear+bc in Fig. 2b), peaking at above 60% of the population rather than 
less than 40%.

In both scenarios with broadcasters, more broadcasters spread fear than countered it throughout the majority 
of the run, though in the pure-fear withdrawal case this changed shortly before the end of the run. Far more 
broadcasters were spreading fear in the susceptibility reduction scenario than in the pure-fear withdrawal 
scenario for the entire duration (compare hosp+sick+reduced_sus+bc and hosp+sick+fear+bc in Fig. 2c), while 
the reverse is true for fear countering for most of the duration of the run (Fig. 2d). Broadcasters were not used 
in the other scenarios.

Figure 3 highlights the geographical distribution of new cases for selected time steps and US states for two 
of the scenarios shown above. Figure 3a,b represent the results of the scenario with pure-fear withdrawals with 
only local fear spread, where Fig.  3c,d do so when fear spread through broadcasters is additionally allowed 
(hosp+sick+fear and hosp+sick+fear+bc, respectively, in Fig. 2). The time steps chosen represent peaks (days 

(a) (b) (c)

(d) (e) (f)

Fig. 1.  ODE model comparison: We show outputs with attention to parameter choices which impact the 
emergence of multiple epidemic waves. On the top and bottom we show solutions corresponding to parameter 
choices which fail to produce, or produce, respectively, a second wave within 360 days. We show these results 
for models combining (1) a basic Susceptible Infectious Recovered model with Neutral and Fearful states 
(SIR × NF , a and d, varying the relative likelihood an individual becomes fearful after recovering from a 
symptomatic infection, ρf ), (2) seperating symptomatic and asymptomatic infectious and recovered states 
(SIsIaRsRa × NF , b) and introducing Exposed and Presymptomatic states (e, varying the susceptibility of 
fearful individuals to infection, σf ), and SEP IsIaRsRa × NF  (c and f, varying σf ). For ease of comparison, 
we combine all infected (including E), recovered, and fearful compartments in each model into a single line in 
each of the plots above.
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50, 100, and 130) and a trough (day 75) in the latter, multi-wave scenario. Particular US states were chosen to 
represent different epidemic trajectories.

For the former case, Fig. 3b shows how the state-level trajectories differ primarily based on the height of their 
peak, though Texas (TX) does generally lag behind the trends displayed by the other selected states by a handful 
of days, with the exception of Colorado (CO) in the declining phase of the outbreak.

In contrast, we see significant divergence between states in the broadcaster scenario, seen in Fig. 3d. South 
Dakota (SD) and Washington (WA) both have high initial peaks which transition into lower secondary peaks, 
with WA having an earlier first peak and consistently lower case counts throughout. Utah (UT), Colorado (CO), 
and Texas (TX), by contrast, each have low initial peaks and higher secondary peaks. For UT, there is very little 
decline in cases before the upward trend towards the second peak begins, with case counts peaking roughly 20-
30 days before the other states. UT and CO reach similar heights to each other for each peak, while TX has a 
lower second peak, only slightly above WA.

EpiCast sensitivity analysis
In order to get a better sense of how varying the behavioral response to fear within EpiCast influences the overall 
trajectory of disease outbreaks, as per RQ 3, we ran a number of simulations varying two influential parameters. 
The first was the likelihood that an agent who is fearful of the disease–but not currently showing symptoms–
withdraws from their regular schedule of activities purely due to fear, pfear. The second was the scaling factor 
applied to an fearful agent’s susceptibility to infection, σf , which represents the impact of fearful agents adopting 

(a) (b)

(c) (d)

Fig. 2.  EpiCast fear spread scenarios: new cases (a), total fear levels (b), total broadcasters spreading fear (c), 
and total broadcasters countering fear spread (d) for six different scenarios run in EpiCast. These scenarios 
can include agents withdrawing from their normal schedules due to being hospitalized (hosp), being fearful of 
the disease while having symptoms of it (sick), and fear of the disease without symptoms (fear), as well as non-
local fear spread through broadcast media (bc), and fearful agents having a lower susceptibility to the disease 
due to taking protective actions such as masking (reduced_sus).
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protective behaviors that do not directly change their daily schedule, such as masking, maintaining social 
distance while in public, and hand-washing.

The results of conducting this parameter sweep with only local fear spread are shown in Fig. 4. Figure 4a displays 
the overall trajectories of each outbreak, with the proportion of new cases shown in orange, that of fearful agents 
show in blue, and epidemic peaks indicated by the dashed vertical lines. Note that all parameter combinations 
produce a single epidemic wave. The simulation which comes the closest corresponds to pfear = 0 and σf = 0.5. 
Further experiments, shown in Fig. 4b, revealed that a very narrow range of values – pfear = 0, 0.05, σf = 0.4, 
and pfear = 0.1, σf = 0.45 – produce multiple waves, but that a deviation by as little 0.05 in either parameter 
can be sufficient to return to the single wave scheme. Figure 4c shows the total attack rate of each simulated 
outbreak.

We observe the highest attack rate with pfear = 0 and σf = 1, which represents a minimal behavioral 
response to fear (and corresponds to Scenario (b) from “Comparing selected scenarios in EpiCast”), followed by 
the cases with pfear = 1 with lower values of σf . Notably, fear levels are much lower in the latter case. The lowest 
attack rates, in contrast, are observed when pfear and σf  are both small.

Higher values of pfear correspond to fewer fearful agents and result in reduced variation in fear trajectories 
for different values of σf . For pfear ≤ 0.5, we observe that fear levels rapidly plateau for σf ≤ 0.25 and rise to a 
peak before falling to varying degrees for σf ≥ 0.5. This drop in fear levels is more pronounced for larger values 
of σf , when the overall attack rate is higher.

The results of conducting this parameter sweep with both local and broadcaster-based fear spread are 
shown in Fig. 5. The overall trajectories of each outbreak are shown in Fig. 5a with the dashed vertical lines 
indicating where peaks occur, and the orange and blue lines indicating proportion of new cases and fearful 
agents, respectively. Figure  5b highlights which combinations of parameters produce one and two epidemic 
waves. All single wave scenarios occur with low values of pfear, and either a high or low value of σf  (i.e the upper 
right corner of Fig. 5b and the top two cells in the left of that figure). All other parameter combinations produce 
two waves. These two waves are generally about the same height with pfear = 1 but the second is both taller and 
longer than the first in most other cases.

(a) (b)

(c) (d)

Fig. 3.  Geographic distribution of outbreaks in two EpiCast fear spread scenarios: geographic distribution 
of new case counts for selected timestamps (left) and overall new case trends for selected states (right) for 
scenarios with pure-fear withdrawals without (upper) and with (lower) broadcaster-based fear spread.
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(a)

(b) (c)

Fig. 4.  EpiCast local fear spread sensitivity analysis: New cases by day (with peaks indicated by dashed 
vertical line) for (a) a coarse-grained parameter search and (b) a finer-grained search highlighting cases with 
multiple waves, and (c) total attack rate for various rates of purely fear-based withdrawals (pfear) and levels 
of susceptibility scaling due to fear (σf ) with only local fear spread. This parameter search compares different 
levels of susceptibility to infection for fearful agents (σf ) and rates of withdrawal by fearful agents (pfear).

 

Scientific Reports |        (2025) 15:42235 9| https://doi.org/10.1038/s41598-025-26425-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(a)

(b) (c)

Fig. 5.  EpiCast broadcaster fear spread sensitivity analysis: (a) new cases by day (with peaks indicated by 
dashed vertical line), (b) number of epidemic waves, and (c) total attack rate for various rates of purely fear-
based withdrawals (pfear) and levels of susceptibility scaling due to fear (σf ) with both local and broadcaster-
based fear spread. This parameter search compares different levels of susceptibility to infection for fearful 
agents (σf ) and rates of withdrawal by fearful agents (pfear)..
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The same parameter combinations that produce a single wave also produce the most extreme attack rates, 
as highlighted by Fig.  5c. The upper right corner (with high values of σf  and low values of pfear) contains 
cells with the highest total attack rates, while the single wave runs in the upper left corner exhibit the lowest. 
Compared to the corresponding simulations without broadcaster-based fear spread, those with broadcaster-
spread fear tend to show more moderate attack rates. For example, attack rates fall from 58% − 64% (bottom 
row of Fig.  4c) to 43% − 41% (bottom row of Fig.  5c) when broadcasters are introduced with pfear = 1.0. 
Conversely, attack rates largely rise in the top half of the first two columns the figure, with for instance the attack 
rate with pfear = 0, σf = 0 increasing from 1.4% to 3.9%, and that with pfear = 0.25, σf = 0.25 rising from 
7% to 19%.

Fear levels generally follow the same basic trajectory, rising to an initial peak before declining steeply for a 
short period, followed by a secondary slow decline. The transition between these two periods of decline generally 
corresponds to when cases begin rising for a second epidemic wave. The main exceptions are found in the top left 
and right corners of Fig. 5a, which show a plateau after a very short decline from the initial peak in the former 
case and a single accelerating decline for two cells in the latter. These mostly correspond to the cells with a single 
epidemic wave. The height of the initial peaks decreases as pfear increases and fear levels fall farther when more 
cases occur.

Discussion
Examining the fear levels in each scenario, shown in Fig. 2b, offers some insights into why we might observe 
multiple peaks primarily in cases with non-local fear spread via broadcasters. In cases where fear reduces agent 
susceptibility to infection, in the absence of fear spread through broadcasters (hosp+sick+reduced_sus) fear 
levels never fall far below their peak, at around 50 days. This is likely due to infection levels never rising to 
the point where there is a sufficient number of agents in the Rs state to cause fearful agents to lose their fear. 
This is in contrast to what occurs with fear spread through broadcasters (hosp+sick+reduced_sus+bc), where 
fear levels quickly fall after reaching their peak. This suggests that the influence of broadcasters is sufficient to 
lower fear levels to the point where the disease can start spreading again, causing a second wave. Roughly the 
opposite appears to occur in the cases where we allow purely fear-based withdrawals; without the influence of 
broadcasters (hosp+sick+fear), fear levels remain lower than in any other scenario for the duration of the run. 
This is likely because withdrawals reduce both fear and disease spread in this mode and there is a high chance 
that any given fearful person will withdraw. Conversely, with the influence of broadcasters (hosp+sick+fear+bc) 
fear levels rise much higher before falling, though they remain lower than in all other scenarios except that with 
only hospitalization-based withdrawals. This suggests broadcasters allow fear to spread even when most fearful 
agents remain withdrawn.

These explanations are supported by examining the number of broadcasters spreading (see Fig.  2c) and 
countering fear spread (see Fig. 2d) over time. The period from days 25–50 where fear levels peak and then begin 
to fall in the reduced susceptibility scenario with broadcasters is also the period when we see the number of 
broadcasters countering fear spread dramatically increase, before reaching a much slower sustained growth rate. 
This slower growth period corresponds to a slow linear decrease in the number of fearful agents. The number 
of fear spreading broadcasters follows a similar trend to fear levels in this case, albeit with a smaller falloff after 
the peak. Similarly, we see that overall fear levels and the number of fear-spreading broadcasters show similar 
patterns in the pure-fear withdrawal case, with the dramatic reduction in fearful agents between days 50 and 100 
matched by decline in fear-spreading broadcasters of similar magnitude.

In addition, the very narrow range of parameter values for which we do observe multiple waves with purely 
local fear spread appears to fall in the midst of a phase transition between a regime of small, short outbreaks 
and large, long outbreaks as represented by the cell pfear = 0, σf = 0.25, and the cell pfear = 0, σf = 0.75 in 
Fig. 4a, respectively. The former regime corresponds to lower values of σf  which represent a strong behavioral 
response to fear, implying that fear-induced behavior reduces disease spread sufficiently to forestall a larger 
outbreak here. The latter regime, by contrast, represents minimal behavioral responses to fear, as seen by the fact 
it centers on pfear = 0, σf = 1, where fear has no impact on the behavior of agents without symptoms. These 
two regimes also appear with broadcaster-based fear spread, and correspond to the only cells that do not exhibit 
multiple waves in Fig. 5a.

Altogether, these observations suggest that we observe two waves for opposite reasons in these cases. With 
reduced susceptibility, fear levels generally do not fall far enough for disease transmission to pick back up and 
produce a second wave without broadcasters countering fear spread. Conversely, with pure-fear withdrawals, 
fear levels generally fail to rise high enough fast enough for the first wave to leave a large reservoir of susceptible 
agents without broadcasters increasing the rate of fear spread. In either case, non-local fear spread, as represented 
by broadcasters, appears to facilitate a transition from high initial fear levels to low final fear levels in the presence 
of fear-based behaviors that significantly reduce disease spread. We posit that this transition only occurs under a 
narrow range of conditions in the case of purely local fear spread as a result of fear both spreading and receding 
relatively slowly. In contrast, the faster rate at which fear levels rise and fall in the presence of broadcasters may 
explain why multiple epidemic waves are more commonly observed under these conditions. In other words, 
in order to produce multiple epidemic waves in this model, fear must first spread significantly faster than the 
disease and then recede faster than it as well. Within this framing, it is clear why broadcasters facilitate the 
formation of multiple waves: information and the behavioral changes it engenders both spread and recede more 
rapidly when less tightly constrained by physical distance.

These results demonstrate that bottom-up drivers of behavior can shift outcomes in infectious disease 
simulations even in the absence of top-down interventions, like lockdown orders. Additionally, the difference 
in dynamics produced by adding non-local fear spread to our model further suggest that different structures 
of interaction between private actors may produce a range of different behaviors, even when the underlying 
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attitudes of the population remain unchanged. These findings complement observational work from the 
COVID-19 pandemic. One such study by Pan et al.29 found that social distancing levels began rising prior to 
when lockdown orders were issued and fall before those orders were lifted in many U.S. states. Together, these 
results highlight the importance of securing broad buy-in from the public when implementing population-wide 
policy interventions in response to a pandemic.

The results we present in this paper are perhaps best understood as an exploration of the high-level 
implications of our model. Though the foundational elements of EpiCast are mature and have been calibrated 
extensively, there remain significant obstacles to doing so for the fear-based components of the model. While 
some survey data are available describing various behaviors throughout portions of the pandemic30, it is much 
more difficult to tie behavior to specific influences or rationales. We thus confine ourselves to presenting the 
model itself and exploring the impact of varying parameter values, and leave calibration efforts to future work.

In addition, we acknowledge that the parameter sweep based sensitivity analysis study presented above is 
necessarily incomplete. While we explore the full possible range of parameter values for pfear and σf , we do so 
at a relatively coarse resolution, so as to limit the total number of simulation runs. As evidenced by the multi-
wave scenarios presented in Fig. 4b, this coarseness means that this study may miss dynamics that only emerge 
for a small range of parameter values. In addition, there are many simulation parameters beyond the two we 
chose to study. Extending the parameter sweep method to the other model parameters would be prohibitively 
computationally expensive, but in the absence of such an experiment it is unclear how varying those parameters 
might affect the dynamics in EpiCast.

Conclusion
In this work we present a series of models which capture the coupled spread of fear of a disease and the disease 
itself. We do so with several ODE models in order to demonstrate the impact of adding additional disease states 
to the model, representing asymptomatic, exposed, and pre-symptomatic disease states, and an ABM covering 
all disease states with both local and non-local mechanisms for fear spread implemented.

We find that the total attack rate is reduced by the addition of asymptomatic states and increased by the 
addition of a pre-symptomatic state in our ODE models, and the reverse is true for the rate at which an outbreak 
progresses.

In our ABM implementation in EpiCast, we primarily observe multiple epidemic waves when using our 
non-local fear spread mechanism, which represents broadcast media (regional information communication, 
including print, radio, and TV). We find that a combination of (1) high initial fear levels, (2) a strong behavioral 
response to fear, and (3) low fear levels later in the simulation produce multiple waves in our model. Thus, one 
potential explanation for why we only observe multiple waves with purely local fear spread for a very small 
range of parameter choices is that fear generally spreads (and recedes) much more slowly in the absence of 
broadcasters in our model.

Data availability
We have publicly released all output data from simulations described in this paper through Zenodo here: ​h​t​t​
p​s​:​/​/​z​e​n​o​d​o​.​o​r​g​/​u​p​l​o​a​d​s​/​1​5​7​0​6​5​7​7​​​​​. The source code for the scripts used to solve the ODE models, analyze all 
simulation results, and produce the plots shown in this manuscript are publicly available here: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​
c​o​m​/​l​a​n​l​/​e​p​i​c​a​s​t​-​c​o​u​p​l​e​d​. The source code for EpiCast is available from Los Alamos National Laboratory, but 
restrictions apply to the availability of this code, which was used under license for the current study, and so is 
not publicly available. The code is, however, available from the corresponding authors upon reasonable request 
and with permission of Los Alamos National Laboratory.
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