
Combining Disparate Data Sources in the HPC Ecosystem
Alfredo Giménez, Todd Gamblin, Peer-Timo Bremer, Abhinav Bhatele, Martin Schulz

HPC Performance Data Sources

…in the software domain:

Network Data

Core Level Data
FLOPs
Instructions
Cache misses
Memory accesses

Uncore
Data

Bandwidth
I/O counters
Page faults

Packets sent/received
Link utilization
Network failures

Cluster Level
Data

Node utilization
Temperature
Humidity

Facility Level
Data

Power consumption
Cooling unit utilization
Facility temperature

Node Data

Node temperature
Utilization
Jobs allocated

Library Traces
Application

Output

Custom
Annotation

Performance
Libraries

Counters
Samples/Profiles
Timers
Memory tracking

Algorithm phases
Annotated blocks
Recorded state variables

PMPI
OMPT
Custom hooks

Simulation data
Meshes
Iterations

Abstract
Understanding and improving the performance and efficiency of HPC centers

requires detailed analysis of running systems. To this end, modern HPC facilities
provide extensive capabilities for collecting performance-related data for
analysis. However, these data sources are most often disparate from one another,
measuring different components in different domains. It is not clear, for example,
how to correlate per-rack temperature readings with mesh input sizes recorded
for a particular physics simulation.

We are developing a performance analysis system that combines disparate
data sources into a centralized database and automatically performs complex
transformations on the data to yield indirect relationships between them.

Merging Disparate Data

The SONAR Data Cluster
Above results used >8GB data (only 2 days worth)

Soon will be collecting continuous HPC performance data

•  Power
•  Temperature
•  LDMS (counters on cores, uncore, and motherboard)

Need long-term massive storage, large-scale data processing

SONAR: newly deployed data cluster
•  13 nodes, SSDs, data software stack
•  Apache Cassandra distributed database
•  Apache Spark distributed data-local processing (used here)

Time FLOP Counter

10:00 6453

10:01 34

10:02 786

10:03 244556

Time Temperature

10:01 55.6

10:03 58.2

Time Temperature FLOP Counter
10:00 UNDEFINED 6453

10:01 55.6 34

10:02 UNDEFINED 786

10:03 58.2 244556

Time Temperature FLOPs

10:01 55.6 6453+34

10:03 58.2 244556+786

Basic
merge
(JOIN)

Better
merge

T FLOP Counter

54453 6453

64453 34

74453 786

84453 244556

Time Temperature

10:01 55.6

10:03 58.2

Case: No one-to-one mapping

Case: Same domain, different units

Solution: Semantic Table
Column Units Aggregator Conversions

T cycles N/A f(T) => Time

Time HH:MM N/A f-1(T) => T

FLOP Counter count Sum none

Temperature Celsius Average c(T) => Fahrenheit

No columns to JOIN!

This tells us: 1) if two data sources may be merged, and
 2) how to merge them

And in turn: 3) possible datasets that may be produced by
 different sequences of merges (see below)

T x
FLOPs

Time x
Temp

Time x
Job

Job x
Inputs

How do my application’s FLOPs
vary with different inputs?

We can perform 3 merges to
obtain a new dataset with
Inputs x FLOPs

1.  What is the best sequence of merges to perform?
2.  How much error does each merge produce?

Preliminary Results
Dedicated Access Time (DAT) for 2 days on Cab (1296 nodes)
Data collected:

1.  Job queue information (slurmq)
2.  Facility temperature (9 sensors per rack, 23 racks)
3.  Facility layout (assignment of nodes to racks)

How much heat is generated by different jobs?

Left:
•  Rack id, heat, list of running jobs

(and number of nodes used)
•  AMG generated the most heat

Below:
•  Heat over time for rack 17
•  Generated heat = temperature

difference between hot and cold
aisles

Time

H
e

a
t

Rack x Time x Heat x Joblist (sorted by heat)

Disparate data sources often require more advanced merging than a simple SQL
JOIN operation.

Job x TimeRange x
Nodelist Node x Rack

Rack x Time x
Temperature

Node x Job x
Time

Rack x Node x
Job x Time

Rack x Joblist x Time

Rack x Joblist x Time x Heat

Heat = Hot aisle - Cold aisle

AMG

…in the hardware domain:

