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HPC Performance Data Sources 

…in the software domain: 

Network Data 

Core Level Data 
FLOPs 
Instructions 
Cache misses 
Memory accesses 

Uncore 
Data 

Bandwidth 
I/O counters 
Page faults 
 

Packets sent/received 
Link utilization 
Network failures 

Cluster Level 
Data 

Node utilization 
Temperature 
Humidity 

Facility Level 
Data 

Power consumption 
Cooling unit utilization 
Facility temperature 

Node Data 

Node temperature 
Utilization 
Jobs allocated 
 

Library Traces 
Application 

Output 

Custom 
Annotation 

Performance 
Libraries 

Counters 
Samples/Profiles 
Timers 
Memory tracking 

Algorithm phases 
Annotated blocks 
Recorded state variables 

PMPI 
OMPT 
Custom hooks 

Simulation data 
Meshes 
Iterations 

Abstract 
Understanding and improving the performance and efficiency of HPC centers 

requires detailed analysis of running systems. To this end, modern HPC facilities 
provide extensive capabilities for collecting performance-related data for 
analysis. However, these data sources are most often disparate from one another, 
measuring different components in different domains. It is not clear, for example, 
how to correlate per-rack temperature readings with mesh input sizes recorded 
for a particular physics simulation.  

We are developing a performance analysis system that combines disparate 
data sources into a centralized database and automatically performs complex 
transformations on the data to yield indirect relationships between them.  

Merging Disparate Data 

The SONAR Data Cluster 
Above results used >8GB data (only 2 days worth) 
 
Soon will be collecting continuous HPC performance data 

•  Power 
•  Temperature 
•  LDMS (counters on cores, uncore, and motherboard) 
 

Need long-term massive storage, large-scale data processing 

SONAR: newly deployed data cluster 
•  13 nodes, SSDs, data software stack 
•  Apache Cassandra distributed database 
•  Apache Spark distributed data-local processing (used here) 

Time FLOP Counter 

10:00 6453 

10:01 34 

10:02 786 

10:03 244556 

Time Temperature 

10:01 55.6 

10:03 58.2 

Time Temperature FLOP Counter 
10:00 UNDEFINED 6453 

10:01 55.6 34 

10:02 UNDEFINED 786 

10:03 58.2 244556 

Time Temperature FLOPs 

10:01 55.6 6453+34 

10:03 58.2 244556+786 

Basic  
merge 
(JOIN) 

Better 
merge 

T FLOP Counter 

54453 6453 

64453 34 

74453 786 

84453 244556 

Time Temperature 

10:01 55.6 

10:03 58.2 

Case: No one-to-one mapping 

Case: Same domain, different units 

Solution: Semantic Table 
Column Units Aggregator Conversions 

T cycles N/A f(T) => Time 

Time HH:MM N/A f-1(T) => T 

FLOP Counter count Sum none 

Temperature Celsius Average c(T) => Fahrenheit 

No columns to JOIN! 

This tells us:  1) if two data sources may be merged, and  
    2) how to merge them  

And in turn:  3) possible datasets that may be produced by  
  different sequences of merges (see below) 

T x 
FLOPs 

Time x 
Temp 

Time x 
Job 

Job x 
Inputs 

How do my application’s FLOPs 
vary with different inputs? 

 
We can perform 3 merges to 
obtain a new dataset with 
Inputs x FLOPs 

1.  What is the best sequence of merges to perform? 
2.  How much error does each merge produce? 

Preliminary Results 
Dedicated Access Time (DAT) for 2 days on Cab (1296 nodes) 
Data collected: 

1.  Job queue information (slurmq) 
2.  Facility temperature (9 sensors per rack, 23 racks) 
3.  Facility layout (assignment of nodes to racks) 

How much heat is generated by different jobs? 

Left: 
•  Rack id, heat, list of running jobs 

(and number of nodes used) 
•  AMG generated the most heat 
 
Below:  
•  Heat over time for rack 17 
•  Generated heat = temperature 

difference between hot and cold 
aisles 

Time 

H
e

a
t 

Rack x  Time x Heat x Joblist (sorted by heat) 

Disparate data sources often require more advanced merging than a simple SQL 
JOIN operation. 

Job x TimeRange x 
Nodelist Node x Rack 

Rack x Time x 
Temperature 

Node  x Job x 
Time  

Rack x Node  x 
Job x Time  

Rack x Joblist x Time 

Rack x Joblist x Time x Heat 

Heat = Hot aisle - Cold aisle 

AMG 

…in the hardware domain: 


