
Revealing Performance Artifacts in Parallel Codes through Multi-domain Visualizations
ABHINAV BHATELE | TODD GAMBLIN | BRIAN T N GUNNEY | MARTIN SCHULZ | PEER-TIMO BREMER | KATHERINE E ISAACS

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-527971).

The HAC model

Application Domain
(Physical simulation space)

Hardware Domain
(Flops, cache misses,
network topology)

Communication
Domain

(Virtual topology)

Data Analysis
and

Visualization

Performance data is measured in domains such as application, communication or hardware. The HAC
model provides an intuitive way of analyzing performance by projecting data obtained from one domain in
to another domain. By doing this, we can correlate symptoms of per-
formance problems in a domain to their root causes in a different
one. Projecting data across domains can be more complicated for
adaptive applications because the relationships between the dif-
ferent domains change as the simulation progresses. Hence,
we need to keep track of the movement of data/work units
and changes in communication across phases.

In this poster, we present the projections of mea-
sured data across multiple domains to discover
performance bottlencks in an adaptive code.

Projections on the application domain

Structured adaptive mesh refinement (SAMR) is an appli-
cation domain with challenges in scaling and performance
analysis. We study a linear advection (LinAdv) benchmark
that uses a popular SAMR library called SAMRAI. SAMR
applications decompose the simulation space hierarchically
into multiple mesh levels. Each mesh level is broken down
into patches that contain cells in the areas where a mesh
level has been refined. LinAdv has three patch levels, 0, 1
and 2 with increasingly finer resolution.

On the left, we use VisIt to visualize the application
domain for a 1024-core run on Blue Gene/P. Instead of
coloring the patches by their physical properties, we color
them by the MPI rank of the process that owns them.
This gives an indication of whether neighboring patches
in the application domain get mapped to nearby physical
processors on the hardware domain - in this case a three-
dimensional torus network.

We can see that nearby patches are colored in similar
shades of red/yellow, blue or green. Even across different
levels, patches at the same cartesian coordinates have simi-
lar colors. We can also color the patches by the average or
maximum number of hops traversed by messages from a
patch to its neighbors. These mappings can be used to
analyze if communication between patches is efficient.

Traditional methods of performance analysis can require significant efforts and time on the part of the application developer. Here, we present a case study to demon-
strate the use of visualizations in multiple domains: application, hardware and communication, for discovering performance artifacts in a parallel application. Using a
structured adaptive mesh refinement code, we present visualization and analysis techniques which make the process of performance debugging faster and more intuitive.

Projections on the hardware domain
Communication is becoming the dominant bottleneck as we scale to a large number of
cores. It becomes important to analyze communication in terms of contention on specific
links and distribution of network traffic between various directions. Boxfish can be used to
visualize such data. In the figures below, an 8 x 8 x 16 torus is shown with the nodes colored
by their load on the left and by the time spent in a phase of load balancing on the right.

Projections on the communication domain

Load balancing in SAMRAI takes more and more time as
the problem is scaled to a large number of processors.
The times spent in the three phases within load balancing
were recorded and plotted linearly by the MPI ranks
(above). Phase 1 i.e., load distribution appears to lead to
longer times spent in other phases. Coloring the nodes
in the communication domain, which happens to be a
binary tree (right), by the amount of load on each pro-
cessor did not provide any clues.

We then projected the timing data for phase 1 to the com-
munication domain (figure on the left). This time, we
clearly see that a part of the tree is significntly delayed (in
red). Coloring the edges by the number of boxes sent down
the tree shows a flow problem arising from the movement of
load from the rest of the tree to this sub-tree.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

0 256 512 768 1024

T
im

e
(s

)

Different phases of load balancing (1024 cores)

phase 1
phase 2
phase 3

MPI Rank

Performance improvements

 0
 5e-07
 1e-06

 1.5e-06
 2e-06

 2.5e-06
 3e-06

 3.5e-06
 4e-06

 4.5e-06

256 512 1K 2K 4K 8K 16K 32K 64KW
al

l c
lo

ck
 t

im
e

pe
r

ce
ll

up
da

te
 (

s)

Number of cores

Time spent in load balancing

Indirect send
Direct send

 10

 15

 20

 25

 30

 35

 40

256 512 1K 2K 4K 8K 16K 32K 64K

W
al

l c
lo

ck
 t

im
e

(s
)

Number of cores

Time spent in solving and adaptation

box size 5,5,5
box size 7,7,7
box size 9,9,9

box size 11,11,11

We tried some preliminary solutions to mitigate the problem observed in the load balancing phase. We used
two strategies to reduce the amount of data being moved: 1. Send the patch destinations to the source pro-
cessor directly instead of sending the data over the tree network, and 2. Increase the box size which reduces
the number of boxes. Both these measures reduce the time spent in load balancing and also the overall time.
A scalable solution will be implemented in the future to compleletely eliminate this bottleneck.

