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Performance data is measured in domains such as application, communication or hardware. The HAC 
model provides an intuitive way of  analyzing performance by projecting data obtained from one domain in 
to another domain. By doing this, we can correlate symptoms of  per-
formance problems in a domain to their root causes in a different 
one. Projecting data across domains can be more complicated for 
adaptive applications because the relationships between the dif-
ferent domains change as the simulation progresses. Hence, 
we need to keep track of  the movement of  data/work units 
and changes in communication across phases.

In this poster, we present the projections of  mea-
sured data across multiple domains to discover 
performance bottlencks in an adaptive code.

Projections on the application domain

Structured adaptive mesh refinement (SAMR) is an appli-
cation domain with challenges in scaling and performance 
analysis. We study a linear advection (LinAdv) benchmark 
that uses a popular SAMR library called SAMRAI. SAMR 
applications decompose the simulation space hierarchically 
into multiple mesh levels. Each mesh level is broken down 
into patches that contain cells in the areas where a mesh 
level has been refined. LinAdv has three patch levels, 0, 1 
and 2 with increasingly finer resolution.

On the left, we use VisIt to visualize the application 
domain for a 1024-core run on Blue Gene/P. Instead of  
coloring the patches by their physical properties, we color 
them by the MPI rank of  the process that owns them. 
This gives an indication of  whether neighboring patches 
in the application domain get mapped to nearby physical 
processors on the hardware domain - in this case a three-
dimensional torus network.

We can see that nearby patches are colored in similar 
shades of  red/yellow, blue or green. Even across different 
levels, patches at the same cartesian coordinates have simi-
lar colors. We can also color the patches by the average or 
maximum number of  hops traversed by messages from a 
patch to its neighbors. These mappings can be used to 
analyze if  communication between patches is efficient.

Traditional methods of  performance analysis can require significant efforts and time on the part of  the application developer. Here, we present a case study to demon-
strate the use of  visualizations in multiple domains: application, hardware and communication, for discovering performance artifacts in a parallel application. Using a 
structured adaptive mesh refinement code, we present visualization and analysis techniques which make the process of  performance debugging faster and more intuitive.

Projections on the hardware domain
Communication is becoming the dominant bottleneck as we scale to a large number of  
cores. It becomes important to analyze communication in terms of  contention on specific 
links and distribution of  network traffic between various directions. Boxfish can be used to 
visualize such data. In the figures below, an 8 x 8 x 16 torus is shown with the nodes colored 
by their load on the left and by the time spent in a phase of  load balancing on the right.

Projections on the communication domain

Load balancing in SAMRAI takes more and more time as 
the problem is scaled to a large number of  processors. 
The times spent in the three phases within load balancing 
were recorded and plotted linearly by the MPI ranks 
(above). Phase 1 i.e., load distribution appears to lead to 
longer times spent in other phases. Coloring the nodes 
in the communication domain, which happens to be a 
binary tree (right), by the amount of  load on each pro-
cessor did not provide any clues.

We then projected the timing data for phase 1 to the com-
munication domain (figure on the left). This time, we 
clearly see that a part of  the tree is significntly delayed (in 
red). Coloring the edges by the number of  boxes sent down 
the tree shows a flow problem arising from the movement of  
load from the rest of  the tree to this sub-tree. 
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We tried some preliminary solutions to mitigate the problem observed in the load balancing phase. We used 
two strategies to reduce the amount of  data being moved: 1. Send the patch destinations to the source pro-
cessor directly instead of  sending the data over the tree network, and 2. Increase the box size which reduces 
the number of  boxes. Both these measures reduce the time spent in load balancing and also the overall time. 
A scalable solution will be implemented in the future to compleletely eliminate this bottleneck.


