
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-055 (LLNL-POST-662676)	

 	

Supervised	 Learning	 for	 Parallel	 Application	 Performance	 Prediction	
Andrew Titus1, 2 and Abhinav Bhatele2 (advisor) ���

 1Department of Electrical Engineering and Computer Science - Massachusetts Institute of Technology, ���
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory	

Experimental	 Approach	
I. Generate task mappings, both with random
ordering of MPI ranks and with Rubik, a
mapping tool developed at LLNL [1]	

II. Run pF3D and MILC on 1K and 4K nodes of
Vulcan, a LLNL-hosted IBM Blue Gene/Q
supercomputer, using these mappings to
generate network counter data	

	

	

	

	

	

	

III. Run 6 different supervised machine
learning regression algorithms, provided by
the Scikit-learn Python package, on the
generated network counter data 	

IV. Evaluate scalability and effectiveness of
predictions by these models!
Regression	 Algorithms	 Used	

Decision Trees	

Gradient Boosted Regression Trees (GBRT)	

Randomized Forests of Decision Trees	

Ridge Regression	

Bayesian Ridge Regression	

Support Vector Machines (SVM) !
Model	 Inputs	

15 different communication features, derived
from hardware network counters, are used as
inputs. These are based upon three main
categories of metrics:	

Bytes passing between nodes on network	

Buffer size of network routers	

Queue time of data packets on routers	

Conclusion	
We see high correlations between network
counters and communication time for
production applications 	

Hybrid metrics tend to consistently have the
highest prediction ability with ensemble
methods (GBRT, Random Forests)	

Best metrics for performance prediction
typically use many different communication
features in various proportions	

	
Future	 Work	

Use of other communication features as
model inputs	

Evaluation of other machine learning methods	

Evaluation of these metrics on other parallel
applications	

Further study of feature importance !
!
!
!
!

Acknowledgements	
Machine learning performed using Scikit-learn Python package	

http://scikit-learn.org/stable/ 	

[1]	 A.	 Bhatele	 et	 al.	 Mapping	 Applica3ons	 with	 Collec3ves	 over	 Sub-‐
communicators	 on	 Torus	 Networks.	 In	 Proceedings	 of	 SC	 ‘12,	 November	 2012.	
LLNL-‐CONF-‐556491	

[2]	 N.	 Jain,	 A.	 Bhatele,	 M.	 P.	 Robson,	 T.	 Gamblin,	 and	 L.	 V.	 Kale.	 Predic3ng	
applica3on	 performance	 using	 supervised	 learning	 on	 communica3on	 features.	
In	 Proceedings	 of	 SC	 '13,	 November	 2013.	 LLNL-‐CONF-‐635857	

Abstract We evaluate supervised machine learning methods as tools for prediction of communication time of large parallel applications. Through these methods, we correlate time for different task mappings
to the corresponding network hardware counters in the context of two production applications, MILC and pF3D. The results from these machine learning regression algorithms are used to gain insight into the

relative importance of different hardware counters or metrics for predicting application performance.	

Evaluation	 of	 Prediction	 Success	
Success of a model here is determined by Rank Correlation Coefficient (RCC), a metric
that relates the number of correctly predicted pair orderings of performance rankings
to the actual pair orderings of performance rankings [2]	

	

	

	

	

	

	

	

	

	

	

Feature	 Importance	 Analysis	
Analysis of the relative importance of communication features used as inputs in the
best hybrid metrics can provide insight into the causes of network congestion	

	

	

	

	

	

	

	

	

	

	

Simplified Example	

(a) 2D Halo (b) 3D Halo (c) Sub A2A

Figure 4: Performance variations with di↵erent task mappings on 16,384 cores of BG/Q. As benchmarks
become more communication intensive, even for small message sizes, mapping impacts performance.

mine the correct ordering between the mappings in terms of
performance. Hence, we focus on a rank correlation metric
for determining success; we also present results for a metric
that compares absolute values for completeness.

Rank Correlation Coe�cient (RCC): Let us assign
ranks to mappings based on their position in two sorted
sets (by execution time): observed and predicted perfor-
mance. RCC is defined as the ratio of the number of pairs
of task mappings whose ranks were in the same pairwise
order in both the sets to the total number of pairs. In sta-
tistical parlance, RCC equals the ratio of the number of
concordant pairs to that of all pairs (Kendall’s Tau [1]).
Formally speaking, if observed ranks of tasks mappings
are given by {x1, x2, · · · , xn}, and the predicted ranks by
{y1, y2, · · · , yn}, we define RCC as:

concord ij =

8
><

>:

1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

RCC =
⇣ X

0<=i<n

X

0<=j<i

concordij
⌘
/(

n(n� 1)
2

)

Absolute Correlation (R2): To predict the success for
absolute predicted values, we use the coe�cient of determi-
nation from statistics, R-squared,

R2(y, ŷ) = 1�
P

i(yi � ŷi)
2

P
i(yi � ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

X

i

yi

5. PERFORMANCE PREDICTION OF
COMMUNICATION KERNELS

In this section, we present results on the prediction of exe-
cution times of several communication kernels (Section 4.2)

for di↵erent task mappings.

5.1 Performance variation with mapping
Figure 4 presents the execution times for the three bench-

marks for four message sizes – 8 bytes, 512 bytes, 16 KB and
4 MB. These sizes represent the amount of data exchanged
between a pair of MPI processes in each iteration. For ex-
ample, for 2D Halo, this number is the size of a message
sent by an MPI process to each of its four neighbors. For a
particular message size, a point on the plot represents the
execution time (on the y-axis) for a mapping (on the x-axis).
For 2D Halo, Figure 4(a) shows that for small messages

such as 8 and 512 bytes, mapping has an insignificant im-
pact. As the message size is increased to 16 KB, in addition
to an increase in the runtime, we observe up to a 7⇥ dif-
ference in performance for the best mapping in comparison
to the worst mapping (note the logarithmic scale on the y-
axis). Similar variation is seen as we further increase the
message size to 4 MB. For a more communication intensive
benchmark, 3D Halo, we find that mapping impacts per-
formance even for 512-byte messages (Figure 4(b)). As we
further increase the communication in Sub A2A, the e↵ect of
task mapping is also seen for the 8-byte messages as shown
in Figure 4(c). In the following sections, we do not present
results for the cases where the performance variations from
mapping are statistically insignificant: 8- and 512-byte re-
sults in case of 2D Halo and 8-byte results in case of 3D
Halo.

5.2 Prior features
We begin with showing prediction results using prior met-

rics/features (described in Section 2) and quantify the good-
ness of the fit or prediction using rank correlation coe�cient
(RCC) and R2 (Section 4.4). Figure 5 (top) presents the
RCC values for predictions based on prior features (maxi-
mum dilation, average bytes per link and maximum bytes
on a link). In most cases, we find that the highest value
for RCC is 0.91, i.e., the pairwise ordering of 91% of map-
ping pairs was predicted correctly. For a testing set of 28
samples, an RCC of 0.91 implies incorrect prediction of the
pairwise ordering of 38 mapping pairs. A notable exception
is the 512-byte case for 3D Halo where the RCC is 0.96. In

Mapping !
1 !
2 !
3 !
4 !
!

Actual !
10s !
15s !
20s !
25s !

Predicted !
15s !
20s !
15s !
30s !

RCC Value: !
5 correct orderings/ 6 pair orderings = .833 !

Best RCC Values for each algorithm (among all single and hybrid metrics)	

MILC	
 pF3D	

Best RCC Values for single and hybrid metrics using GBRT	

MILC on 1K nodes	
 MILC on 4K nodes	
 pF3D on 1K nodes	
 pF3D on 4K nodes	

S1: average bytes S3: average buffer S5: average queue H1-H6: best hybrid metrics per
S2: maximum bytes S4: maximum buffer S6: maximum queue application and node count

	

MILC on 1K nodes	
 MILC on 4K nodes	

pF3D on 1K nodes	
 pF3D on 4K nodes	

H6	 	 	 	 -‐	 	 	 	 H1	 H6	 	 	 	 -‐	 	 	 	 H1	

H6	 	 	 	 -‐	 	 	 	 H1	 H6	 	 	 	 -‐	 	 	 	 H1	

 Single Metric: Predictions that use only one communication feature as input	

 Hybrid Metric: Predictions that use a combination of communication features as input [2]	

