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Abstract

An important challenge to web technologies
such as proxy caching, web portals, and ap-
plication servers is keeping cached data up-
to-date. Clients may have di�erent prefer-
ences for the latency and recency of their data.
Some prefer the most recent data, others will
accept stale cached data that can be delivered
quickly. Existing approaches to maintaining
cache consistency do not consider this diver-
sity and may increase the latency of requests,
consume excessive bandwidth, or both. Fur-
ther, this overhead may be unnecessary in
cases where clients will tolerate stale data that
can be delivered quickly. This paper intro-
duces latency-recency pro�les, a set of pa-
rameters that allow clients to express prefer-
ences for their di�erent applications. A cache
or portal uses pro�les to determine whether
to deliver a cached object to the client or to
download a fresh object from a remote server.
We present an architecture for pro�les that
is both scalable and straightforward to imple-
ment at a cache. Experimental results using
both synthetic and trace data show that pro-
�les can reduce latency and bandwidth con-
sumption compared to existing approaches,
while still delivering fresh data in many cases.
When there is insuÆcient bandwidth to an-
swer all requests at once, pro�les signi�cantly
reduce latencies for all clients.
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1 Introduction

Recent technological advances and the rapid growth
of the Internet have increased the number of clients
who access objects from remote servers on the Web.
Remote data access is often characterized by high la-
tency due to network traÆc and remote server work-
loads. Data at remote servers is often characterized by
frequent updates. For example, stock quotes may be
updated as frequently as once per minute[12].

The increased popularity of the Internet has re-
sulted in a corresponding increase in the diversity of
both the clients and the types of data and services that
they request. As a consequence of this increased di-
versity, clients may have varying preferences about the
recency and latency of their requests. For example, a
stock trader who requires accurate stock information
may be willing to wait longer for the most recent data.
On the other hand, if there is heavy congestion on the
Internet or at a remote server, a client reading the
news may accept slightly stale data if it can be deliv-
ered quickly.

To date, there have been many caching solutions
developed to improve access latencies and data avail-
ability on the Web. However, the e�ectiveness of all
these approaches is limited by cached data that be-
comes stale as updates are made at remote servers.
In addition to the more traditional technologies such
as proxy caching, newer technologies such as web por-
tals and application servers also utilize caching. At
present, techniques used to keep cached objects up-to-
date cannot handle diverse client preferences and may
perform poorly with respect to either latency, recency,
or bandwidth consumption. To handle the popularity
and diversity of the web and to scale to the large num-
ber of clients and data sources, it is crucial to develop
web caching technologies that can accomodate diverse
client preferences with respect to recency and latency.

This paper introduces latency-recency pro�les to ad-
dress this limitation of current web technologies. We
�rst describe some existing caching technologies to
improve latency and availability. We then present



consistency mechanisms that are currently used by
these technologies, and discuss their shortcomings. Fi-
nally, we introduce latency-recency pro�les, our ex-
ible, scalable solution that allows clients to express
their preferences with respect to latency and recency
of data.

1.1 Web Caching Technologies
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Figure 1: Proxy Cache Architecture

Proxy Caches

Client-side proxy caching is a widely used technique to
reduce access latencies on the Web [7, 10, 20]. In this
architecture, a cache resides between a group of clients,
e.g., a company or university campus, and the Inter-
net. This architecture is shown in Figure 1. A proxy
cache stores objects previously requested by clients,
and these cached objects may be used to serve subse-
quent requests. Since multiple clients access objects
through the proxy, a proxy cache can leverage com-
monalities in client requests and reduce access laten-
cies.
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Figure 2: Application Server Architecture

Application Server Caches

Application servers are an emerging technology to
improve the performance of data intensive web sites
by o�oading some functionality from web servers.
Many commercial products are available, e.g., Ora-
cle9iAS Web Cache[4], IBM WebSphere[29], and BEA
WebLogic[28]. Application servers are well-suited for
large scale data handling, and can perform caching to
further improve performance. For example, an appli-
cation server cache can reside between database server
and the Internet, and cache components of dynami-
cally generated web pages. The application server can
then automatically generate pages without contacting
the database server. The Oracle Application Server

Web Cache [4] is an example of a product with this
functionality. We note that there is typically some
cooperation between the database server and the ap-
plication server, and there may be a high-bandwidth
link connecting them. The architecture is shown in
Figure 2.
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Web Portals

Portals make it easier for clients to locate and access
relevant information. Earlier portals served primarily
as \hubs" to direct users to relevant web sites. Today,
however, many portals cache data gathered from other
sites, so clients can easily access all relevant informa-
tion from a single site. According to a recent study by
Booz-Allen & Hamilton[26], an increasing number of
portals serve as destinations themselves, rather than
gateways to other sites, and 60% of Web sessions in-
clude at least one access to a portal site. The web por-
tal architecture is shown in Figure 3. The challenge of
providing up-to-date data is critical to the success of a
portal, in particular, since clients will only visit portals
that meet their needs. Any portal that fails to do so
risks losing clients to competitor sites. Therefore, it is
crucial for portals to keep cached data up-to-date while
meeting client preferences with respect to latency and
recency.

A challenge for all these technologies is that cached
data becomes stale as updates are made at remote
servers. To date, several techniques have been pro-
posed to keep cached data consistent with data at re-
mote servers. Most implementations of proxy caches,
portals, and application server caches use some com-
bination of these. However, none of these techniques
consider diverse client preferences. We describe these
existing consistency approaches and discuss their limi-
tations. In the following discussion, we use the generic
term \cache" to refer to any of the above technologies.

1.2 Existing Consistency Approaches

Time-to-Live (TTL)

An accepted strategy for maintaining the consistency
of cached objects is to assign each object a time-to-
live (TTL) [8, 11, 17], i.e., the estimated length of
time the object will remain fresh. If the TTL of a
requested object has expired, the cache must validate



the objects (check for updates) at the remote server.
Note that this approach requires no cooperation from
remote servers. While TTL delivers more recent data
to clients, validation adds overhead to client requests
and reduces the bene�ts of caching. Further, it is dif-
�cult to accurately estimate an object's TTL. An es-
timate that is too conservative will improve freshness
but result in many unnecessary validations at remote
servers, while an estimate that is too optimistic re-
duces contact with remote servers but may result in
many clients receiving stale data. TTL is the most
commonly used mechanism in proxy caches, and may
also be used by web portals.

Always-Use-Cache (AUC)

Another strategy is to serve all requests from a cache,
and perform prefetching in the background to keep
cached objects up to date. We refer to this approach
as Always Use Cache (AUC). Prefetching strategies
to maximize the overall recency of a cache are de-
scribed in [9]. This approach has several limitations.
First, in the general case where there is no cooperation
from remote servers, the cache has no knowledge of
when updates occur. Therefore, AUC typically must
poll remote servers to keep cached data up to date.
This may consume large amounts of bandwidth and
does not scale well to large numbers of objects. Also,
there may be some delay between when the update oc-
curs and when the cache checks for updates. During
this time, the cache will return stale data. Therefore,
while AUC minimizes the latency of client requests,
it may perform poorly with respect to recency and
consume large amounts of bandwidth, since it does
not scale well to large caches or frequently updated
objects. AUC is commonly used by web portals and
other technologies that maintain copies of objects from
many web sites.

Server-Side Invalidation (SSI)

A third approach to maintaining cache consistency is
to have servers maintain information about objects
stored in client caches, and send invalidation messages
to caches when an object is updated. Alternatively,
a server may push the updated object to caches. We
refer to this approach as SSI. This approach has been
studied in the context of proxy caching in [23], and
related techniques have been studied by the database
community in [2, 19, 25]. SSI requires cooperation
from remote servers. When a server sends only inval-
idation messages to the cache, SSI has performance
comparable to TTL assuming TTL estimates are ac-
curate. This approach was shown to be feasible in
terms of bandwidth and server load in [23]. However,
if servers instead send the updated objects after each
update, as is the case with many application server
caches[4], the overhead of SSI may be considerably
greater.

SSI is often used in application server caches or web
portals. It may be feasible in these environments be-
cause the number of servers and caches is typically
�xed, which facilitates cooperation and reduces scala-
bility concerns. It is unlikely to be a viable alternative
in proxy caches because many web servers are either
unable or unwilling to implement it.

To summarize, existing approaches to maintain
cache consistency may increase the latency of requests,
consume excessive bandwidth, or do both. Further,
this overhead may be unnecessary in cases where
clients will tolerate stale data that can be delivered
quickly. A scalable solution that can handle clients
and applications with diverse latency and recency re-
quirements is needed.

1.3 Our Solution: Latency-Recency Pro�les

In this paper, we present latency-recency pro�les to
overcome the limitations of existing approaches. Pro-
�les comprise a set of parameters that allow clients
to express their preferences with respect to latency
and recency for their di�erent applications. A client
may choose a single pro�le for all applications. Al-
ternatively, a client can specify a set of application
speci�c pro�les. A pro�le-based downloading strategy
(labelled Pro�le) uses latency-recency pro�les to de-
termine whether to download a requested object or to
use a cached copy.

Pro�le is a generalization of TTL and AUC. TTL
aims to deliver the most recent data, while AUC aims
to minimize latency. The parameters of Pro�le can be
tuned to provide performance anywhere between these
two extremes. Pro�le can also provide an upper bound
with respect to latency or recency. Further, unlike SSI,
it requires no cooperation from remote servers, and can
potentially be used for any data source on the web.

Pro�le is further distinguished by its scalable archi-
tecture. A client's browser can communicate pro�le
parameters to a cache by appending parameters to an
HTTP request. Pro�le incorporates these parameters
into the downloading decision. The advantage of this
architecture is that it is straightforward to implement.
It also eliminates the need for caches to maintain pro-
�le information and allows a cache to scale to a large
number of clients. Further, clients can easily change
their pro�les without having to inform the cache.

There are incentives for both clients and caches to
support pro�les. From the client's perspective, they
can reduce access latencies compared to the more
traditional TTL when appropriate, while providing
greater recency than AUC. From the cache's perspec-
tive, pro�les can reduce bandwidth consumption com-
pared to TTL, AUC, and SSI, which can reduce the
cache's operating costs and can improve access laten-
cies for clients who access data from remote servers.

Another key bene�t to using pro�les is that they
are well-suited to handling brief periods of overload



(\surges") which often occur on the web. Surges can
be caused by congestion on the link connecting a proxy
cache to the internet, or by a large number of requests
at a popular server. When there is insuÆcient band-
width or server capacity to process all requests during
such surges, using pro�les can reduce the latency of
all requests by downloading only the ones that require
the most recent data.

The rest of this paper is organized as follows: Sec-
tion 2 surveys related work, Section 3 describes the
framework for latency-recency pro�les. We present ex-
perimental results using both synthetic and trace data
in Section 4, and conclude in Section 5.

2 Related Work

There has been much research in the web caching com-
munity [7, 10, 11, 17, 27] on proxy caching to im-
prove performance on the web. Cache consistency
techniques are presented in [8, 11, 17, 23]. [8, 11, 17]
present the TTL approach described in the previous
section. [23] studies techniques for strong cache consis-
tency, i.e. guaranteeing fresh data. The authors show
that server-side invalidation is e�ective for maintain-
ing strong cache-consistency, however this technique
must be implemented by remote servers. [9] consid-
ers prefetching locally cached objects to improve the
overall recency of a cache. This work assumes that
all requests are served from the cache, and does not
consider client preferences for recency or latency.

Recent work in the database community considers
caching dynamically generated web content [6, 24].
Work in [24] caches components of dynamically gener-
ated web pages to exploit overlap in queries. However,
this work does not consider updates to the underly-
ing databases, and requires cooperation from remote
servers. [6] presents techniques for database-backed
web sites to invalidate cached dynamic content. These
techniques apply only to servers and are not appro-
priate for other caching technologies, e.g., client-side
proxy caching or portals.

Work in materialized views, e.g.,[16, 18, 30] also
considers the problem of keeping data up to date.
These works typically assume full knowledge of up-
dates to the underlying database. Work in [14] allows
stale data to be incorporated into materialized views
by adding an obsolescence cost, and shares our goal
of allowing clients to accept stale data in exchange for
lower latencies. WebView materialization [21, 22] ad-
dresses the problem of computing materialized views
for web-accessible databases. EÆcient strategies for
the database to propagate updates to the WebView
are presented in [22]. Our problem di�ers from [21, 22]
since we address updating cached objects at the client
side, when we do not know exactly when objects are
updated at remote servers.

There is also relevant work in the database com-
munity [2, 19, 25] that relaxes the requirement that

cached copies be consistent with objects that reside
on remote servers. These works allow cached copies
of objects to deviate from the data at the server in
a controlled way. This requires servers to propagate
updates to the client-side cache when a cached value
no longer has an acceptable degree of precision; which
places a burden on servers and does not scale well to
a large number of clients.

3 Latency-Recency Pro�les

Our latency-recency pro�les allow clients to express
their preferences for their applications using a few pa-
rameters. Pro�les are set individually by each client,
and a single client can specify either a single pro�le
or di�erent pro�les for di�erent applications. We �rst
discuss several key issues that are crucial to success-
fully implementing and using pro�les. We then de-
scribe how clients can choose target latency and re-
cency values, and present a parameterized decision
function that can capture the latency-recency tradeo�
for a particular client or application. This is the basis
of our approach labelled Pro�le. Finally, we briey dis-
cuss upper bounds provided by our function, and de-
scribe how the parameters can be tuned to meet client
requirements with minimal overhead for the clients.

3.1 Issues

There are several issues that are important to suc-
cessfully implementing and using client pro�les at a
cache. The �rst issue is scalability. An implementa-
tion of pro�les that requires a cache to store detailed
information about each client would add considerable
overhead because clients would need to register pro-
�les with the cache, and the cache would need to keep
the information up to date. This does not scale well
to large numbers of clients. While our solution Pro�le
exploits knowledge of pro�les, it does not require the
cache to store any pro�le information. Browsers ap-
pend the pro�le parameters to client HTTP requests,
and Pro�le uses these parameters in the decision func-
tion. Thus, Pro�le can easily scale to a large number
of clients, with no additional communication overhead
between the client and the cache. This scalability is a
key bene�t to using a parameterized function.

A second issue is exibility. Clients should be able
to specify pro�les that are appropriate for each of their
applications, and they should be able to easily adjust
their pro�les as needed. To allow clients to use di�er-
ent pro�les for di�erent applications, clients can choose
a default pro�le which they can override for speci�c
domain names or URLs. For example, a client requir-
ing the most recent stock quotes may specify that all
requests to the domain finance.yahoo.com [12] re-
quire the most recent data, but that all other requests
can tolerate up to 1 update. Clients can easily change
their pro�les using their browser, without communi-
cating with the cache.



The third issue is ease of implementation. It is
straightforward to modify a cache to implement Pro-
�le. Pro�le allows clients with diverse pro�les to share
a cache without adding any overhead to each other's
requests. For each individual request, the cache will
use Pro�le to choose how to serve the request based
on that client's pro�le. If clients with di�erent pro-
�les request the same object simultaneously, the cache
could serve one client's request from the cache while
downloading a fresh copy for the other client.

The �nal issue relates to guarantees. Pro�le is a
generalization of TTL, which guarantees fresh data
(assuming TTL estimates are accurate) and AUC,
which guarantees low latency. In addition, Pro�le can
support upper bounds on either latency or recency,
which other approaches do not support.

3.2 Parameters

Pro�les include the following parameters:
Target Latency: The �rst parameter is a target la-

tency (TL), which is the desired end-to-end latency to
download an object. We note that the cache can esti-
mate the latency of downloading an object using tech-
niques described in [1, 15], which have been shown to
be reasonably accurate in practice.
Target Recency (Age): Clients specify a target re-
cency TR. There are many possible recency metrics
that could be chosen. In this paper our recency metric
is the number of times the object has been updated at
the remote server since it was cached. We refer to this
metric as age.

We briey discuss our choice of recency metric.
There have been many di�erent metrics described and
used in the literature, e.g., [2, 9, 14, 19]. One met-
ric is the amount of time elapsed since the cached
object became stale[9]. Obsolescence measures age
in terms of the number of insertions, deletions, and
modi�cations[14]. Work in [19] considers age, the num-
ber of times an object has been updated at the remote
server. The choice of recency metric depends on the
semantics of the application and the types of updates
that occur, so each of the above metrics is useful in dif-
ferent circumstances. In this paper we selected age as
the recency metric[19] because we believe this metric
is useful for a variety of applications. In the remain-
der of this paper, we use the terms recency and age

interchangeably.

3.3 Pro�le: Parameterized Decision Function
and Pro�le-Based Downloading

We now present the details of Pro�le. It uses a param-
eterized function that incorporates client pro�les into
the decision of whether to download a requested object
or to use a cached copy. First, we describe the deci-
sion function. We note that there are many di�erent
functions that could be used. We chose this particu-
lar function because it has several desirable properties.

First, it can be tuned to provide an upper bound with
respect to latency or recency. Second, when it is im-
possible to meet both targets, two parameters can be
set to reect a tradeo�, i.e., the relative importance of
meeting each of the targets.

Our function �rst calculates a score for both recency
and latency as follows:

Score(T; x; K) =

�
1 if x � T

K=(x� T +K) otherwise

T is the target value of recency or latency, x is the
actual value, and K is a constant �0 that is used to
tune the rate at which the score decreases. Let KL be
the K value used to control the latency score, and let
KR be the K value used to control the recency score.
Note that the K values are set automatically by the
browser based on client preferences, using a graphical
interface (described in Section 3.4).

Combined Weighted Score

The decision function is a separable function that com-
bines the scores for recency and latency. It can also
be tuned to capture the latency-recency tradeo� for a
client or application. This is done by assigning (rela-
tive) weights to the importance of latency and recency.
The sum of the weights must equal 1. For some appli-
cations it may be more important to meet the recency
target; for others it may be more important to meet
the latency target. Let w be the weight assigned to
meeting the latency target, and let (1 - w) be the
weight assigned to meeting the recency target. We
compute the combined score of an object as follows:

CombinedScore = (1 - w)*Score(TR, Age, KR) +

w*Score(TL,Latency, KL)

Pro�le-Based Downloading

Our algorithm Pro�le uses the combined scoring
function to make the decision of whether or not
to download an object. When an object is re-
quested, we compute the score of either download-
ing the object (DownloadScore) or using the cached
copy (CacheScore). The Pro�le policy is as follows:
When an object is requested, if DownloadScore >
CacheScore, the object is downloaded from the remote

server. Otherwise the cached copy is used.

We compute DownloadScore for an object as fol-
lows: Recall that when an object is downloaded, its
Age is 0 because the remote server always provides the
most recent data. Therefore, Score(TR, Age, KR)

is always 1.0. Latency is the estimated latency of
downloading the object from a remote server. Thus,
DownloadScore, the combined score of downloading
an object, is

DownloadScore = (1-w)*1.0 + w*Score(TL,

Latency, KL)



We now consider CacheScore. Recall that when an
object is read from the cache, its Latency is 0. There-
fore, Score(TL,Latency, KL) is always 1.0. Age

is the estimated age of the cached object. Thus,
CacheScore, the combined value of using a cached
copy of an object, is

CacheScore = (1-w)*Score(TR, Age, KR) +

w*1.0

3.4 Choosing a Pro�le

The success of latency-recency pro�les depends on the
ease of creating a pro�le. If setting the parameters is
complicated and time consuming, clients will be less
inclined to use pro�les. We describe an interface that
allows clients to express the most appropriate pro�les
for their applications.
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Figure 4: Behavior of (a) TTL (b) AUC (c) Pro�le
with TR=TL=0, w=0.5, and KR=KL=1

Default Pro�les

The default pro�le has its targets set to provide iden-
tical performance to TTL. This corresponds to set-
tings of w=0 and TR=0. Note that with these settings,
the TL value is irrelevant. This TTL setting is what
many caches currently provide, e.g., proxy caches [5].
For those clients who wish to explicitly trade recency
for improved latency, the browser will present a small
number of parameter settings to the client, and let the
client choose the settings that best suit their needs for
each application. We describe how this choice can be
made using the graphical interfaces of Figure 4 and
Figure 5.

Figure 4 illustrates the latency-recency tradeo�s of
three possible parameter settings. In these graphs, we
plot the recency (age) of a cached object as x num-
ber of updates on the x axis and the latency of down-
loading the object as y seconds on the y axis. If a
point (x,y) lies in the shaded area, then the object
is downloaded. If (x,y) lies in the white area, then
the object is read from the cache. Figure 4(a) displays
the behavior of the default TTL pro�le (w=0, TR=0)
to the user. Any object with 0 updates is served from
the cache, while any object with 1 or more updates is
downloaded. Figure 4(b) displays the behavior of AUC
(w=1, TL=0), where the client will tolerate any amount
of staleness to minimize access latency. AUC always
uses the cached object (no shaded area), regardless of
the number of updates.

Tuning Pro�les

For clients who desire performance between the two
extremes of TTL and AUC, a pro�le with parameters
(w = 0.5, KR and KL=1, and TR and TL=0) can be
chosen. Figure 4(c) displays the behavior of this pro-
�le. We see that the decision function captures the
latency-recency tradeo�. When objects have higher
access latencies, users may tolerate older cached ob-
jects (white area). Conversely, as the cached object
becomes more stale, users are willing to wait longer to
download a fresh object (gray area).

The pro�les illustrated in Figure 4 can be tailored
further. This is straightforward to do in our frame-
work. For example, consider a client who wishes to
receive data with recency of no more than 1 update.
Such a client could choose the default TTL as in Fig-
ure 4(a), but change the TR value from 0 to 1. This
would result in any object with 2 or more updates
being downloaded, rather than 1 or more updates as
shown in Figure 4(a).

Upper Bounds

The pro�les of Figure 4 do not provide any upper
bounds on latency or recency. For clients who desire
even greater control over the settings of their pro�les,



the values for w and KL and KR can be chosen to pro-
vide upper bounds. Clients do not need to manually
choose w and K values. Instead, clients are aided by
a graphical interface (similar to Figure 5) that illus-
trates the tradeo� for settings of w and K values, and
allows them to make the appropriate choice.
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Figure 5: Upper Bounds on the Latency-Recency
Tradeo�

An upper bound for either latency or recency can
be chosen. In particular, assigning a higher weight to
latency (w > 0.5) places an upper bound on the latency
of a downloaded request, and assigning a higher weight
to age (w < 0.5) places an upper bound on the age of
an object delivered to the client from the cache.

In Figure 5, w = 0.6 and TL, TR=0. The upper
bound on latency is 4 seconds. The choice of KL and
KR in Figure 5 (a) and 5 (b) illustrate the latency-
recency tradeo� that the clients can select that con-
trols how the latency asymptotically approaches the
upper bound of 4 seconds. The choice of values makes
Pro�le more aggressive to download data as reected
by the larger shaded area.

4 Experiments

We use both trace data and synthetic data to compare
Pro�le against three algorithms, TTL, AUC, and SSI.
Our simulation models the proxy cache architecture
of Figure 1.1 We �rst describe the details of these
algorithms. We then describe the details of both the

1These results also apply to portals, if we do not consider the
additional time to send data from a portal to a client.

trace and synthetic datasets. Finally, we present our
results. Our key results are as follows:

� Pro�le signi�cantly reduces bandwidth consump-
tion compared to all approaches for both trace
and synthetic data. Compared to TTL, Pro�le re-
duces bandwidth consumption with only a slight
increase in the amount of stale data delivered to
clients (trace data). Pro�le also provides better
recency than AUC (trace and synthetic data).

� Pro�le can bene�t from an increased cache size
more than either TTL or AUC (trace data). AUC
cannot deliver recent data when the cache size is
large, while TTL cannot utilize a larger cache size
to reduce latency. Pro�le can exploit increasing
cache size to reduce both age and latency.

� In the presence of surges, Pro�le improves laten-
cies for all clients, even for clients who require the
most recent data.

4.1 Algorithms

We consider the following algorithms:

� TTL: This is the cache consistency mechanism
currently used in most proxy caches [5, 8, 11, 17].
Cached objects are assigned a TTL value which
is an estimate of how long they will be fresh
in the cache. The TTL approach guarantees
that all cached objects are up-to-date if the TTL
estimate is accurate. It uses two parameters,
UpdateThreshold and DefaultMax; these are ex-
plained in Section 4.2.

� AUC: We implemented a modi�ed version of the
prefetching strategy presented in [9]. We relax
their assumption that all objects must be in the
cache. Instead, we refresh objects that are cur-
rently in the cache in a round robin manner. On
a cache miss, objects are downloaded from a re-
mote server. This strategy has the advantage of
being straightforward to implement at the cache,
and was shown to be near optimal in [9]. Ob-
jects are validated in the background at a spec-
i�ed PrefetchRate, and only validated objects
that have been updated at the remote server are
downloaded.

� Pro�le: This is implemented as was described in
Section 3. The decision function uses the esti-

mated latency of downloading objects, and the es-
timated age of cached objects. We describe how
to compute these for the trace data in Section
4.2. The settings of the pro�le parameters are
described with the results in Section 4.4.

� SSI-Msg: We consider two variations of SSI. In the
�rst, SSI-Msg the server sends invalidation mes-

sages to a cache whenever an object is updated,



but does not send the actual object to the cache.
If the cached object is subsequently requested, the
updated object is downloaded from the server.
Note that this approach is comparable to TTL
with accurate expiration times. This approach
was shown to consume a comparable amount of
bandwidth to TTL in [23].

� SSI-Obj: In the second variation, SSI-Obj, the
server sends all updated objects to the cache.
This consumes more bandwidth than SSI-Msg but
guarantees that all cached objects will be up-to-
date, which reduces the latency of requests.

4.2 Data

We now describe the trace and synthetic data used in
our experiments.

4.2.1 Trace Data

We used trace data from NLANR[13]. This data was
gathered from a proxy cache in the United States in
January 2002. We considered approximately 3.7 mil-
lion requests made over a period of 5 days. We per-
formed preprocessing on the NLANR trace data to
prepare it for the experiments. Speci�cally, the trace
data did not report on object modi�cation or expira-
tion times, which we need to make downloading de-
cisions and to determine the recency of cached ob-
jects. Our solution to this problem was to create an
\augmented" trace using the workload from the orig-
inal NLANR trace data. Over a period of 5 days, we
replicated the trace workload by sending requests to
the servers in the traces at (approximately) the same
time of day as in the original workload. The requests
were made from the domain umiacs.umd.edu which is
connected to its ISP via a high speed DS3 line with
a maximum bandwidth of 27 Mbps. When each re-
quested object arrived, we logged the latency of the re-
quest and the time the object was last modi�ed (when
available). We used the logging mechanism provided
by the Squid cache[5], but did not cache any objects.
This augmented trace data provided the information
we needed for this study.

In our trace-based experiments, we cached only ob-
jects that had last modi�ed information available and
were not labelled uncacheable. For the TTL algorithm,
to estimate the TTL of an object, we use the policy im-
plemented in Squid[5]. When an object's last-modi�ed
timestamp is available, Squid estimates the lifetime of
an object using the adaptive TTL technique[8, 17].
In adaptive TTL, an object's TTL is estimated to be
proportional to the age of the object at the time it
was cached. The exact value depends on a parame-
ter UpdateThreshold. We used an UpdateThreshold

of 0.05, which is representative of values used in
practice [5]. We calculate TTL = (CurrentTime -
LastModifiedTime) * UpdateThreshold. An object's

ExpirationTime = CurrentTime + TTL. If this esti-
mate exceeds a default maximum value DefaultMax,
then an object's TTL is estimated as DefaultMax. As in
the Squid cache implementation we use a DefaultMax

of 3 days.

For the Pro�le algorithm, we need estimates of the
latency and recency of objects to make a download-
ing decision. We estimated the latency of an object as
the average latency over all previous requests, which
was shown to perform well in [1]. To estimate the
age of cached objects, we de�ned UpdateInterval

as ExpirationTime - LastModifiedTime, and de-
�ned the age of a cached object as (CurrentTime -
LastModifiedTime)/UpdateInterval.

For AUC, all cache hits were served directly from
the cache, and we validated objects in the background
at a speci�ed PrefetchRate. We considered AUC
with two di�erent prefetch rates, 60 objects per minute
(AUC-60) and 300 objects per minute (AUC-300).
Note that for TTL and Pro�le we did not perform
any prefetching in this study.

On a cache hit, we need to determine if an object is
fresh or stale. For all schemes, an object was fresh if
the object's last-modified time was unchanged since
the previous request. For TTL and Pro�le, an object
was stale if its last-modified time had changed. For
AUC, we also need to consider the e�ects of prefetch-
ing. If the object's last-modified time had changed
and was more recent than the time the object was
last prefetched, the object was stale. Otherwise it was
fresh.

4.2.2 Synthetic Data

To complement our trace results and study the perfor-
mance of pro�les, we also performed simulation studies
using synthetic data, where we control updates at re-
mote servers, and use more accurate age information.
We used the following parameters to generate the syn-
thetic data:

� Update Interval is the average length of time be-
tween consecutive updates. In our simulation this
value ranged from once every 10 minutes to once
every 2 hours.

� Estimated Latency is the expected end-to-end la-
tency of downloading the object from the remote
server. We modeled the latencies of objects using
latency distributions from NLANR traces[13]. To
reduce the e�ects of network and server errors in
this data we considered only requests with laten-
cies of less than 5000 msec. The distribution of
these values was highly skewed, with a median of
approximately 200 msec and a mean of approxi-
mately 500 msec. 90% of the requests had laten-
cies less than 1400 msec.



� Workload is the average number of requests per
minute. We report on a workload of 8 re-
quests/sec (480 requests/minute), which is rep-
resentative of many cache workloads[13]. We ran
simulations for 6 hours of simulation time for a
total of �172800 requests.

� World Size: We considered a world of 100,000 ob-
jects with a popularity following a Zipf-like dis-
tribution. The ith most popular object had pop-
ularity proportional to 1/i�, where � is a value
between 0 and 1.0. We generated a distribution
with �= 0.7, which was typical of traces analyzed
in [3].

We note that for TTL and Pro�le, for the synthetic
data we assumed that the cache had accurate expira-
tion times (TTL estimates) for all objects. We use the
trace data to compare TTL, AUC, and Pro�le in the
real world case where estimates are often inaccurate.

4.3 Setup and Metrics

We implemented our simulation environment in C++.
We ran simulations and experiments with trace data
on a Sparc 20 workstation running Solaris 2.6. We
assumed the cache was initially empty.

For the synthetic data, we ran simulations for 2
hours of simulation time to warm up the cache, then
ran them for an additional 6 hours. For the trace data,
we used the �rst 12 hours of the trace to warm up
the cache, then collected data on the remainder of the
trace. We repeated each simulation 10 times to verify
the accuracy of our results, and validated that our re-
sults satis�ed the 95% con�dence intervals. For both
trace and synthetic data, we consider cache sizes rang-
ing from 1% of the world size to an in�nite cache. We
�rst report on results for an in�nite cache. We then
consider the e�ects of varying cache size on the perfor-
mance of all approaches. We used the Least Recently
Used (LRU) policy to replace objects when the cache
was full; this is commonly used in practice [5].

We report on the following metrics:

� Validation messages (vals): This is the number
of messages that were sent between cache and re-
mote servers. For TTL, AUC, and Pro�le, a vali-
dation message is sent from the cache to a server
to check for updates. The requested object was
only downloaded if it had actually been updated.
For SSI-Msg, a validation message is sent from
a server to a cache to invalidate cached objects.
Messages are typically much smaller than the ac-
tual objects. We note that for SSI-Obj, the server
sends the actual objects to the cache, so no mes-
sages are sent.

� Downloads (Useful Validations): This is the num-
ber of requested objects that were validated and

SSI-Obj SSI-Msg TTL

Val. Msgs 0 161768 67170
Downloads 161768 67170 67170

AvgAge 0 0 0
StaleHits 0 0 0

AUC-60 AUC-300 Pro�le

Val. Msgs 21600 100797 15932
Downloads 16158 75833 15932

AvgAge 2.09 0.61 1.38
StaleHits 112492 74548 96281

Table 1: Results for Experiments with Synthetic Data

subsequently downloaded because they were stale
in the cache. For SSI-Obj, this includes all ob-
jects that were updated at remote servers and sent
to the cache. For SSI-Msg,TTL and Pro�le, this
includes requested cached objects that were not
suÆciently recent in the cache. For AUC, this
includes objects that were prefetched (validated)
in the background and were downloaded because
they were stale.

� Useless Validations: For the trace data, we also
report on useless validations. These are objects
that were in the cache and were validated at the
remote server, but had not actually been modi�ed
since they were cached. Since useless validations
add unnecessary latency to requests, it is impor-
tant to minimize this number.

� Stale Hits: For the trace data, this is the number
of objects served from the cache (without valida-
tion), but that had actually been updated at the
remote server.

� Age: This is the average age of objects delivered
to clients, i.e., the number of times they were up-
dated at the remote server. Objects that were
downloaded from a server always had an age of 0.

� Latency: This is the average latency of the re-
quests in msec.

4.4 Comparison of Pro�le to Existing Tech-
nologies

Our �rst set of results shows the bene�ts of using Pro-
�le for an in�nite cache. We �rst show simulation re-
sults using synthetic data. We then use the trace data
to compare Pro�le to TTL and AUC. The trace data
reects the situation when TTL estimates are inaccu-
rate, which is often the case in practice. We do not
study SSI on the traces since it requires server coop-
eration.

In these experiments, all clients used a single pro�le
with TR =1 update and TL=1 second. The other
settings were w = 0.5 and KL, KR = 1. Recall that
with w=0.5, neither latency nor recency is favored in
the tradeo�.



TTL AUC-60 AUC-300 Pro�le

Val. msgs 151367 378312 1891560 92943
Useful vals 24898 933 2810 22896
Useless vals 122074 279349 327776 67601

Avg Est.Age 0 18.4 11.1 0.87
Stale Hits 4282 31285 22897 7704

Table 2: Results for Experiments with Trace Data

The number of validations and downloads for the
simulation study with synthetic data is shown in Ta-
ble 1. The �rst observation is that SSI-Obj consumes
the most bandwidth because it sends a large number of
objects to the cache to keep the cache up to date. This
is shown in the Downloads row. SSI-Msg and AUC-300
also consume signi�cant amounts of bandwidth com-
pared to Pro�le. While they download fewer objects
than SSI-Obj, they still send many validation mes-
sages. In contrast, Pro�le performs fewer validations
and fewer downloads than all other approaches. We
will use the trace data to further quantify the band-
width savings of Pro�le relative to TTL and AUC.

The average ages of objects and number of stale hits
are also shown in Table 1. These results show that
while AUC-60 and Pro�le have a comparable number
of downloads, AUC-60 does so at the cost of delivering
signi�cantly less recent data. AUC-60 delivers objects
with an average age of 2.09 updates compared to 1.38
updates for Pro�le. AUC-60 also provides nearly 20%
more stale hits than Pro�le. AUC-300 provides bet-
ter recency (0.61) than Pro�le. However, it does so
at the cost of validating 600% more objects than Pro-
�le (100797 vs. 15932) and downloading nearly 500%
more objects(75833 vs. 15932).

Our trace results further compare TTL, AUC, and
Pro�le in the real-world case where TTL estimates are
often inaccurate. Table 2 shows the number of val-
idations for TTL, AUC, and Pro�le, for an in�nite
cache. The �rst observation is that both variants of
AUC validate signi�cantly more objects than either
TTL or Pro�le. Recall that AUC validates objects at
the speci�ed PrefetchRate. TTL also validates many
more objects than Pro�le.

The number of useful and useless validations are
shown in the second and third lines of Table 22. We
note that for AUC, for a fair comparison we measured
useful and useless validations only for prefetched ob-
jects that were subsequently requested.

A key observation is that TTL performs nearly
twice as many useless validations as Pro�le (122074 vs.
67601). In these cases, TTL adds latency to requests
without improving the recency. In contrast, Pro�le can
signi�cantly reduce the number of useless validations
(by � 60,000) with only a small increase in the number
of stale hits (� 4000 more than TTL). Another key ob-

2In some cases the trace did not contain a last modi�ed date
to determine if a validation was useful or useless, therefore the
sum of these values is less than the total validations.

servation is that both variants of AUC perform many
more useless validations than either TTL or Pro�le.
Further, AUC performs very few useful validations for
objects that are subsequently requested (less than 3000
for AUC-3000 vs. 24898 for Pro�le). Thus, AUC can
consume large amounts of bandwidth to keep the cache
refreshed while doing little to improve the recency of
data delivered to clients.

Since the trace data does indicate how many
times servers actually modi�ed objects, we must
estimate the age, i.e., number of times a stale
object was updated at a server since it was
cached. We compute age= (CurrentTime -
LastModifiedTime)/UpdateInterval,
where UpdateInterval is estimated as de�ned in Sec-
tion 4.2. While this is an estimate, it gives an idea of
how out of date the stale objects were.

Both variants of AUC prefetch a large number of
objects, while still delivering many stale objects to
clients. The average estimated age of the stale hits
is shown in the last line of Table 2, and show that
AUC can deliver very out of date objects. This is
because the prefetching strategy for AUC prefetches
all objects with equal frequency, which may cause fre-
quently updated objects to become very out of date.
While this prefetching strategy is near optimal for min-
imizing the number of stale hits[9], our results clearly
show that AUC may nevertheless result in very stale
data. Thus, prefetching may not be appropriate for
applications that cannot tolerate stale data, especially
when the data is updated frequently.

4.5 E�ect of Cache Size

We now use the trace data to measure the performance
of TTL, AUC, and Pro�le for varying cache sizes. We
varied our relative cache size from 1% of the world
size to 100% of the world size (i.e., an in�nite cache).
We show that Pro�le can better utilize cache size to
reduce latency (compared to TTL) and to reduce age
(compared to AUC).
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Figure 6: E�ect of Cache Size on Average Latency
The average latency for Pro�le and the baseline al-

gorithms are plotted in Figure 6. The �rst observa-
tion is that both Pro�le and AUC better utilize in-



creased cache size to reduce latency. While increasing
the cache size increases the number of objects that
can be cached, objects that expire in the cache must
always be validated for TTL. Increasing the cache size
does not decrease the number of stale objects in the
cache, so TTL does not bene�t signi�cantly from a
larger cache. In contrast, Pro�le and AUC can bene-
�t more from an increased cache size. While objects
in the cache may be stale, they may still be useful to
some clients.
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Figure 7: E�ect of Cache Size on Number of Stale Hits

Figure 7 shows the number of stale hits. As the
cache size increases, the stale hits for both AUC-60
and AUC-300 increase dramatically. This is because
prefetching for AUC does not scale well and a greater
number of client requests are being serviced by (pos-
sibly stale) cached objects, so the number of stale hits
increases. This shows that the reduced latency of AUC
comes at the high cost of delivering very stale data. In
contrast, the number of stale hits for Pro�le increases
by a much smaller amount. In summary, AUC cannot
utilize a large cache size to reduce age and delivers very
stale data. Similarly TTL cannot utilize a larger cache
size to reduce latency. In contrast, Pro�le is exible
and can exploit increasing cache size to reduce both
age and latency.

4.6 E�ect of Surges

Under normal workloads, there is typically suÆcient
bandwidth and server capacity to handle all requests.
However, from time to time networks or servers may
experience \surges", i.e., a period of time during which
the available resource capacity exceeds the demand.
During surges, many request will be backlogged and
their processing may be delayed signi�cantly. As an
example, we consider the case where there is insuÆ-
cient bandwidth between a cache and the servers. In
this case, the servers will attempt to deliver many ob-
jects simultaneously, which will cause delays delivering
the objects to the cache. This could occur in a proxy
cache if a surge in remote requests saturates the band-
width between the Internet and the cache. It could
also occur in an application server cache if many clients
make requests to the server simultaneously.

Our �nal experiment is a simulation that compares
Pro�le to TTL in the presence of surges. A surge is
represented by a capacity ratio. The capacity ratio
is the ratio of available resources per second to the
resources required per second. For example, during a
surge period, if a server can handle 10 requests per
second and requests arrive at the rate of 20 requests
per second, then the capacity ratio during this period
is 1/2. A capacity ratio of 1 means there are suÆcient
resources to handle all requests, and requests will incur
no extra delay as a result of the surge. However, if this
ratio is less than 1, performance can severely degrade.

We consider two groups of clients. The �rst group,
MostRecent, has TR = 0 updates and TL = 1 sec. The
second, LowLatency, has TR = 1 update and TL = 0
sec. For both groups, the other settings were w = 0.5
and KL, KR = 1. In our simulation, we considered a
surge with duration 30 seconds. The request rate is 100
requests per second. We vary the available capacity
from 20 to 100 objects per second, i.e., the capacity
ratio varies from 0.2 to 1.0. For simplicity, we assume
no requested objects are evicted from the cache during
the surge period. We warmed up the cache for 10000
requests at a non-surge workload of 8 requests/sec,
then began the surge period and gathered data.
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Figure 8: Avg. Latency during a 30-sec. surge period

Figure 8 plots the average latencies of all requests.
For TTL, all requests are treated equally, and all ob-
jects that have expired in the cache are downloaded.
As expected, the latency is very high, especially when
the capacity ratio is below 0.5. However, Pro�le can
distinguish between the two groups of clients and bet-
ter serve their requests. As expected, the latency for
some LowLatency clients is signi�cantly lower than for
TTL. This is because, when a requested object is in the
cache, stale data can be delivered to the LowLatency

clients. Consequently, there is more available band-
width to serve the other clients. Thus, the latency
for the MostRecent clients also decreases compared to
TTL. Thus, using Pro�le during a surge can signi�-
cantly improve access latencies for all clients, not just
those that can tolerate stale data.



5 Conclusions and Future Work

The growing diversity of clients and services on the
Web requires data delivery techniques that can ac-
comodate diverse client needs with minimal overhead
to clients, caches, and web servers. This paper intro-
duced latency-recency pro�les, a scalable, tunable ap-
proach to delivering web data that is straightforward
to implement for both clients and caches, and requires
no cooperation from remote web servers. Our results
show that pro�les can signi�cantly reduce bandwidth
consumption compared to existing technologies, while
also providing greater exibility than TTL or AUC.

In future work, we plan to explore prefetching
strategies that exploit pro�les. For example, objects
for which clients require the most recent data should be
kept more up-to-date. We will also consider the e�ects
of wide variations in pro�les on performance. Finally,
we plan an implementation of pro�les in Squid[5], and
plan to use it to further study the e�ectiveness of pro-
�les.
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