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Abstract

Dynamic mechanism design is a challenging extension to or-
dinary mechanism design in which the mechanism designer
must make a sequence of decisions over time in the face of
possibly untruthful reports of participating agents. Optimiz-
ing dynamic mechanisms for welfare is relatively well un-
derstood. However, there has been less work on optimizing
for other goals (e.g. revenue), and without restrictive assump-
tions on valuations, it is remarkably challenging to character-
ize good mechanisms. Instead, we turn to automated mech-
anism design to find mechanisms with good performance in
specific problem instances. We extend the class of affine max-
imizer mechanisms to MDPs where agents may untruthfully
report their rewards. This extension results in a challeng-
ing bilevel optimization problem in which the upper prob-
lem involves choosing optimal mechanism parameters, and
the lower problem involves solving the resulting MDP. Our
approach can find truthful dynamic mechanisms that achieve
strong performance on goals other than welfare, and can be
applied to essentially any problem setting—without restric-
tions on valuations—for which RL can learn optimal policies.

1 Introduction
Dynamic mechanism design studies sequential decision-
making problems, where decisions are based on the self-
reported preferences of agents. A typical model is that the
environment consists of a Markov decision process (MDP),
and the mechanism controls the process given reported util-
ities by the agents. This has important applications, such as
ad auctions or more generally online pricing (e.g. Berge-
mann and Välimäki 2019) but also problems of decen-
tralised decision making in RL (e.g. Chang et al. 2020).

Much work in dynamic mechanism design has focused
on maximizing welfare (Athey and Segal 2013; Nisan et al.
2007a; Lyu et al. 2022b) subject to strategyproofness (there
should be no incentive for untruthful reports by agents).
Some other work considers different goals, notably rev-
enue (Bergemann and Välimäki 2010; Kakade, Lobel, and
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Nazerzadeh 2013; Hajiaghayi, Kleinberg, and Parkes 2004;
Hajiaghayi, Kleinberg, and Sandholm 2007) but needs to
make restrictive assumptions about the space of agent types.
Work on dynamic mechanism design, for general goals and
for broad spaces of agent types, is much more limited.

Dynamic mechanism design includes as a special case
static mechanism design, and here the situation is similar.
To maximize welfare while ensuring strategyproofness, one
can use the celebrated and well-understood Vickrey-Clarke-
Groves (VCG) mechanism (Vickrey 1961; Clarke 1971;
Groves 1973). For optimizing revenue, Myerson (1981)
completely settles the question under the restrictive assump-
tion that agents’ types are single-dimensional (essentially,
that there is only one type of item up for sale); beyond this
there has been little progress except for very specific prob-
lem instances (Yao 2017). But for static settings, automated
mechanism design (AMD) (Conitzer and Sandholm 2002;
Sandholm 2003; Curry, Sandholm, and Dickerson 2023) has
been used: this is a data-driven search through some class
of mechanisms in order to find one that performs well while
satisfying the constraints of strategyproofness and individual
rationality. Automated mechanism design has in some cases
found the highest-performing mechanisms known so far, and
can recover optimal mechanisms in special cases where they
are known (Duetting et al. 2019; Ivanov et al. 2022; Shen,
Tang, and Zuo 2019).

Given the successes of automated mechanism design for
static problems, it is surprising that its use for dynamic prob-
lems is relatively underexplored.

Our Contributions

Our present paper develops automated dynamic mechanism
design techniques which can be applied to a very broad
range of problems. In particular, we consider mechanism de-
sign on general MDPs. Our model works with many loss
functions (including revenue but also other domain-specific
loss functions), not just the easier goal of welfare, and we do
not assume one-dimensional agent types. Our assumptions
are sufficiently general to capture essentially all of static



multi-parameter mechanism design as a special case1.
Optimal mechanism design over all possible mechanisms

entails the very difficult problem of computing equilibria in
imperfect information games, to understand whether or not
any agent has any incentive to deviate from truthful report-
ing. Inspired by prior work for static mechanism design, we
sidestep this issue by focusing on the class of affine maxi-
mizers (AMAs), which we define on MDPs.2 These mecha-
nisms are always strategyproof.

We justify this restriction in two ways. First, as men-
tioned, our problem assumptions capture multi-parameter
mechanism design—but finding optimal mechanisms in this
setting has proven extremely difficult, so it makes sense to
search within a more tractable class of mechanisms. Second,
our framing of the problem is broad enough that it captures
problem instances where Roberts’ theorem (Roberts 1979)
applies, which states that under general agent type spaces,
only affine maximizers can be strategyproof.

We frame the search for a high-performing dynamic
affine maximizer mechanism as a bilevel optimization
problem, where the outer problem consists of choosing
weights and (possibly state-dependent) boosts—the AMA
parameters—to minimise a given loss function. The inner
problem consists of learning to control an MDP to max-
imise affinely-transformed social welfare (the definition of
an affine maximizer), given the weights, boosts, and agents’
type reports (see equation 1 below). The derivatives of this
inner problem do not exist at many points: however, we show
that for the important case of revenue, the expected loss over
the distribution (with a continuous density) of agent valua-
tions is differentiable.

We solve the inner problem via (possibly regularized) lin-
ear programming. We also propose a variety of ways to solve
the outer problem: by grid search, by differentiating through
the regularized LP, or by using zeroth-order methods to ap-
proximate the LP gradient. These latter two approaches ex-
plicitly or implicitly smooth the objective and avoid the
problem of nonexistent derivatives. In experiments on sev-
eral dynamic mechanism design settings, such as sequential
auctions, task scheduling and navigating a gridworld, our ap-
proaches result in truthful mechanisms that outperform the
VCG baseline.

2 Related Work
Maximizing Welfare in Dynamic Mechanisms
Athey and Segal (2013) consider a dynamic mechanism de-
sign setting where agents update their beliefs over time, and
where the goal is an efficient and budget-balanced outcome.
Parkes (Nisan et al. 2007b) describes a dynamic mecha-
nism design setting where the focus is on agents who may

1If we restrict the MDP to have a single state, then we recover
ordinary mechanism design, with each possible action correspond-
ing to an outcome.

2The acronym AMA refers to “affine maximizer auctions”. We
consider affine maximizer mechanisms, but we stick to the AMA
acronym because it is widely used and to avoid confusion with
AMM used to refer to “automated market makers”.

arrive and depart at different periods. Both of these ap-
proaches simply assume an optimal policy is available. More
recently, Lyu et al. (2022b) presents a model for learning
this policy in an offline RL setting; another work focuses
on the online case (Lyu et al. 2022a). Chang et al. (2020)
consider a dynamic VCG mechanism for decentralised RL
where agents bid on the MDP transitions. Bergemann and
Välimäki (2010) presents a VCG-like “dynamic pivot mech-
anism”.There are different modeling choices and goals in
each of these approaches, but the common theme is that the
allocation problem involves making decisions on some MDP
after observing agent reports. All of these papers consider a
dynamic analogue to the VCG mechanism, i.e. the mech-
anism designer acts according to the welfare-optimal pol-
icy and charges agents their externalities to ensure incentive
compatibility. This is in contrast to our work, where we are
concerned with goals beyond welfare.

Dynamic Mechanism Design for Goals Other Than
Welfare
There is some existing work in this direction as well, with
a particular focus on revenue. Pavan, Segal, and Toikka
(2014) and Kakade, Lobel, and Nazerzadeh (2013) both con-
sider cases where the private information about the value of
the item is 1-dimensional. This allows for a Myerson-style
analysis of the actual profit-maximizing mechanism. Other
work considers optimal selling of items to agents who ar-
rive and depart over time from the perspective of optimal
stopping, but again considers single-parameter item valua-
tions (Hajiaghayi, Kleinberg, and Parkes 2004; Hajiaghayi,
Kleinberg, and Sandholm 2007; Kleinberg 2005). Berge-
mann and Välimäki (2019) surveys other results that make
similar assumptions for tractability. Pai and Vohra (2008)
considers a similar setting and finds the optimal Bayes-
Nash incentive compatible mechanism. Still other work con-
siders settings where the mechanism designer may update
the mechanism online over time (e.g. by changing reserve
prices) (Shen et al. 2017) and where bidders may even strate-
gically attempt to manipulate the learning process (Amin,
Rostamizadeh, and Syed 2014). Overall, these approaches
are restrictive in terms of their assumed value model and fre-
quently focus on analytic results, while our computational
approach allows more general values and loss functions.

Preference Elicitation from Multiple Agents and
Multistage Mechanisms
Another line of work considers iterative preference elicita-
tion (Conen and Sandholm 2001; Sandholm and Boutilier
2006): based on past agent reports, the mechanism can query
what preference information it needs most. Existing ap-
proaches make use of an analogy to query learning (Zinke-
vich, Blum, and Sandholm 2003; Blum et al. 2004; Lahaie
and Parkes 2004), or leverage machine learning (Soumalias
et al. 2023; Weissteiner et al. 2023; Brero, Lubin, and
Seuken 2019). In this context, Sandholm, Conitzer, and
Boutilier (2007) use automated mechanism design to first
find good mechanisms (for general type spaces) and then
convert them into multistage mechanisms. While these ap-



proaches are typically focused on making a single final de-
cision, but eliciting agent’s preferences over multiple stages,
our automated dynamic mechanism design approach is con-
cerned with making a sequence of decisions over time, while
eliciting preferences once.

Static Automated Mechanism Design
Due to the difficulty of analytically finding optimal mech-
anisms, a number of works have instead attempted to
treat static mechanism design as a computational optimiza-
tion problem, starting with Conitzer and Sandholm (2002)
and Sandholm (2003), and learn good mechanisms from
samples, starting with Likhodedov and Sandholm (2004).
One line of work makes use of static affine maximizers
and achieves good performance in multi-item multi-bidder
auctions (Sandholm and Likhodedov 2015; Curry, Sand-
holm, and Dickerson 2023; Duan et al. 2023). There is
also a line of learning theory research on choosing the
AMA parameters given samples from the valuation distri-
bution (Balcan, Sandholm, and Vitercik 2016, 2018; Bal-
can et al. 2021). Another direction is to start with a poten-
tially non-strategyproof mechanism and iteratively modify it
to improve strategyproofness. This is known as incremental
mechanism design (Conitzer and Sandholm 2007). One line
of work in this direction makes use of rich function approxi-
mators to learn mechanisms. Duetting et al. (2019) presents
one influential direction, which uses neural networks to op-
timize revenue and a penalized loss to approximately en-
force strategyproofness, with many followups (Curry et al.
2021, 2020; Ivanov et al. 2022; Rahme, Jelassi, and Wein-
berg 2021; Rahme et al. 2021). Shen, Tang, and Zuo (2019)
presents an alternative approach for single-bidder settings
which can cope with broader classes of utility functions. As
mentioned above, the success of these techniques in static
settings is our motivation to develop such approaches for the
dynamic setting.

3 Preliminaries
Below, we describe our mechanism design problem. The
nature of the problem and our mechanism design desider-
ata motivate our choice to restrict attention to affine max-
imizer mechanisms. We then describe in more detail how
these mechanisms work in a dynamic setting.

Formal Model of Problem Setting
Environment and policy/allocation rule Consider some
MDPM = (S,A, P ) (with reward not yet specified), where
S is a set of states, A is a set of actions, and P is a transition
function. There are n agents, each with their own reward
function ri : S × A → R drawn from a distribution with
density fi. We emphasize that these agents are not them-
selves taking actions in the MDP—this is done by the mech-
anism. Their only choice will be which rewards to report to
the mechanism. We assume the mechanism designer wants
to minimize some loss function (which will often be the neg-
ative of some objective to be maximized) L in expectation
over the fi, which in general depends on the agents’ rewards
and the chosen policy π on the MDP. The latter corresponds
to the allocation rule in traditional mechanism design.

Mechanism Design Desiderata
Incentive compatibility and payments In order to
achieve its goal, the mechanism will need access to the true
ri(s, a). However, in general, we should expect the agents
to misreport their reward function if they think it will bene-
fit them. Thus, we will allow for some side payments to be
made based on the MDP’s solution and the agents’ reports,
in order to ensure that there is no incentive to misreport, that
is, making the mechanism incentive compatible (IC) or strat-
egyproof. (Such payments only exist for some choices of π.)
We assume agent utility is quasilinear, that is, positive pay-
ments just correspond to negative reward.

Individual rationality We also want to guarantee indi-
vidual rationality (IR), meaning that agents should not be
charged so much that they receive negative utility and would
be better off not participating in the mechanism.
Remark. The mechanism designer’s goal may also relate to
the payments. For example, a canonical mechanism design
goal is to maximize revenue—in our setting, choose a policy
π∗ such that payments can be made as high as possible while
still ensuring IC and IR.

Background on Affine Maximizers
As motivated above our goal is to choose some π such that
IC/IR side payments can be constructed, while also perform-
ing as well as possible on the mechanism designer’s higher-
level objective.

Unlike prior work (e.g., Kakade, Lobel, and Nazerzadeh
2013; Bergemann and Välimäki 2010), we do not make
any assumptions about the structure of the reward functions.
Our setting is therefore general enough to incorporate many
hard problems such as optimal multi-item mechanism de-
sign, and is thus at least as hard as those. Therefore hoping
to get the truly best-performing π, even only in an infinite-
sample/asymptotic sense, is too much. Thus it is appropriate
to restrict attention to a more tractable class of mechanisms.

Also, our problem setting is general enough to include
situations where a result known as Roberts’ theorem ap-
plies (Roberts 1979). It states that under certain conditions
(arbitrary rewards, at least 3 outcomes), the only allocation
rules that can possibly have IC payments take the form of
affine maximizers.

Below, we give the standard definition of affine maxi-
mizer mechanisms in terms of the allocation and payment
rules, modified for our dynamic problem setting.
Definition 3.1 (Affine maximizers). Given so-called
weights w ∈ Rn

+ and boosts b ∈ R|S|×|A|, a dy-
namic affine maximiser mechanism (AMA) takes reported
reward functions r ∈ R|S|×|A|×n and returns a policy
π∗(w, b, r) on the MDP that maximizes the affine social wel-
fare asw(π)(w, b, r) where

asw(π)(w, b, r) = Eπ

[
T∑

t=0

(
n∑

i=1

wiri(st, at)

)
+ b(st, at)

]
Defining asw(w, b, r) = asw(π∗(w,b,r))(w, b, r) as the

maximum affine social welfare for reports r, the resulting
payment is then



pi(w, b, r)

=
1

wi

asw(−i)(w, b, r)

−

Eπ∗(w,b,r)

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


where asw(−i)(w, b, r) defined as

maxπ Eπ

[∑T
t=0

(∑
j ̸=i wjrj(st, at)

)
+ b(st, at)

]
is

the maximum affine social welfare, when disregarding i.
No matter the choice of weights and boosts, every result-

ing AMA is strategyproof ex-post—after learning the re-
wards of the other agents, reporting truthfully is a dominant
strategy—and IR in expectation over the MDP trajectories.
The proof can be found in Appendix A.

4 Dynamic Mechanism Design as Bilevel
Optimisation

The problem of searching for a performant mechanism
within the class of AMAs can be naturally formulated as
stochastic bilevel optimization as follows3:

(1)

min
w,b

Er ∼f [L (π∗, w, b)] s.t. π∗

∈ argmax
π

Est,at∼π

[
T∑

t=0

(
n∑

i=1

wiri(st, at)

)

+ b(st, at)

]
∀r

Given the bilevel structure, we can think of the problem as a
game between a leader and a follower.
• The leader knows only the joint distribution f =

∏
i fi

from which the set of reward functions are drawn, and
chooses weights wi and boosts b(s, a).

• For any draw of ri and the weights and boosts, the fol-
lower acts optimally (“best responds”) in the MDP ac-
cording to the AMA objective.

To clarify (and to contrast with many models of mechanism
design where the agents making reports are treated as fol-
lowers): the leader and follower are only “notional”. In real-
ity, there is only one mechanism designer. We nevertheless
speak in terms of a “leader” and “follower” because in or-
der for strategyproofness to be attained, some component of
the system must successfully maximize affine social welfare,
which is a goal distinct from the true goal of the mechanism
designer.

In general, the problem above—bilevel optimization, with
stochasticity in the leader’s objective—is quite difficult. In-
deed, the case of revenue-maximisation in one-round auc-
tions with multiple goods, which is a very special case of our

3We constrain the policy to be in the set of best responses, be-
cause there is a null set of possible r where π∗ is not unique. How-
ever, because it is a null set, the choice of π∗ does not influence the
expected value in the outer problem so that it is well-defined.

much more general problem, remains essentially unsolved
beyond a few very simple special cases (Yao 2017). There-
fore finding a globally optimal solution to the above problem
is too much to hope for, but we show that derivatives exist for
important expected loss functions, which enables us to use
gradient-based optimization techniques to find local optima.

We then consider three complementary methods for op-
timizing the AMA parameters: random grid search, zeroth-
order methods to approximate the derivatives, and differen-
tiation through a smoothed LP.

Existence of derivatives
So far, we have not made any assumptions about the
loss function. A very natural desideratum would be that
L(π∗(w, b, r), w, b) is differentiable, so that we can per-
form stochastic gradient descent. However, in general this
is not true. This is due to the fact that π∗(w, b, r) is in
general not even continuous in w, b—since the optimal pol-
icy on an MDP is always going to be deterministic—and
therefore neither is L. However, if L has a certain shape,
which is the case for the loss functions we consider in
this work, we can prove that the relaxed condition that
Er[L(π∗(w, b, r), w, b)] is differentiable.

Theorem 4.1. Let L be a loss function for the problem in
Equation (1) and assume it can be decomposed as follows

L(π∗(w, b, r), w, b) = asw(w, b, r)+
K∑

k=1

akgk(π
∗(w, b, r), r)

where it holds for all k that gk = O(∥r∥∞). As-
sume further that the support of r is compact or f
decays sufficicently quickly such that E[∥r∥∞] exists.
Then Er[L(π∗(w, b, r), w, b)] is differentiable almost every-
where.

Proof Idea. The full proof is in Appendix B. It consists of
two parts. First we show that asw is Lipschitz continuous
in w, b. This essentially follows because it is the maximum
over a set of functions which are linear in w, b. For gk we
argue that for any w, b, the set of rewards for which two al-
ternative policies give the same affine social welfare, lie on
a hyperplane. Changing the weights and boosts may change
the optimal policy, and therefore may result in differing so-
cial welfare for some subset of the rewards. We would like
to bound the probablility mass of the set of rewards where
this can happen. Indeed, the rewards where the optimal pol-
icy may change, all lie in between the aforementioned hy-
perplanes. The distance between the hyperplanes depends
on the change in w and b, so the mass can be bounded—
assuming the probability density decays sufficiently fast—
which results in a local Lipschitz constant. Differentiability
follows from Rademacher’s theorem and holds equivalently
for the sum of these terms because of the linearity of the
expectation and derivative.

In Section 5 we will study two loss functions in particu-
lar: revenue and makespan. The revenue of a dynamic AMA



mechanism is given by

rev(w, b, r) =
n∑

i=1

pi(w, b, r)

= −
n∑

i=1

(
1

wi
asw(w, b, r)) + sw(π∗(w,b,r))(r)

+

n∑
i=1

1

wi
asw(−i)(w, b, r)

Here sw, the non-transformed social welfare, is just asw
when weights are all 1 and boosts are all 0, i.e. sw(π) =

Eπ

[∑T
t=0

∑n
i=1 ri(st, at)

]
.

It is easy to verify that revenue fulfills all assumptions of
Theorem 4.1.
Lemma 4.2. The expected revenue is differentiable almost
everywhere.

Proof. Revenue is a essentially a sum of the three terms
asw, sw and asw(−i). The first asw is directly as stated in
the assumptions of Theorem 4.1. For asw(−i) the proof ex-
tends canonically as it equivalently is the maximal affine so-
cial welfare, albeit for a smaller set of agents. Last but not
least sw(π∗(w,b,r))(r) is a function of only (π∗(w, b, r)) and
r, for which it holds that

sw(π∗(w,b,r))(r) = Eπ

[
T∑

t=0

(
n∑

i=1

wiri(st, at)

)
+ b(st, at)

]
≤ Tn∥r∥∞

thereby concluding the proof.

Once we have introduced the task scheduling problem we
will analogously show that makespan also satisfies the as-
sumptions of Theorem 4.1.

Linear Programming Formulation
We now describe the linear-programming formulation for
an MDP, which can be either infinite horizon or episodic
with states partially ordered by time (that is, the time step is
encoded in the state) (Altman 1999). In particular, we sup-
pose the follower solves the following LP to find the opti-
mal state-action occupancy measure νπ∗(w,b,r),4 which de-
termines the revenue (or whichever loss function is chosen):

max
∑

s∈S,a∈A

(∑
i

wiri(s, a) + b(s, a)

)
ν(s, a) s.t.

∑
a∈A

ν(s, a) =
∑
s′,a′

P (s|s′, a′)ν(s′, a′) + µ0(s) ∀s ∈ S

ν(s, a) ≥ 0 ∀s ∈ S, a ∈ A
(2)

where µ0 denotes the initial state distribution.

4This corresponds to the optimal policy by π∗(a|s) =
νπ∗(w,b,r)(s,a)∑
a νπ∗(w,b,r)(s,a)

.

Note that if L were itself differentiable, we could
take the gradient inside the expectation and apply the
implicit function theorem to get ∇w,bEr [L (π∗, w, b)] =
Er [∇2L (π∗, w, b) +∇w,bπ

∗(w, b, r)∇1L (π∗, w, b)].
Then we could estimate the gradient of the expected value
from a sum of gradients for different sampled r. Indeed as
we show in Appendix C, for revenue we can even compute
the partial derivatives of L with respect to w, b analytically.
However, because L is not differentiable (since π∗ is not),
the Dominated Convergence Theorem does not hold and
we cannot in fact exchange gradient and expected value.
Instead we propose two alternatives to compute the gradient
of the expected value. First using zeroth-order estimates and
second introducing regularization, which makes the optimal
policy in the inner problem unique L differentiable and thus
actually allows us to estimate the gradient from samples.
The pseudocode of our approach is given by Algorithm 1.

Zeroth-order methods For bilevel problems, Sow, Ji, and
Liang (2022) present a zeroth-order approach, which we
adapt to our own setting. The key observation of their ap-
proach is that the derivative of the leader’s objective is the
sum of two partial derivatives. One of these, the derivative
of the leader’s objective with respect to their own solution,
is usually easy to evaluate. The other requires differentiating
through the follower’s best-response map and inverting a Ja-
cobian, which is challenging—and this second portion can
be separately estimated using zeroth-order perturbations.

Zeroth-order methods, due to the use of random perturba-
tions, also implicitly smooth the function (Duchi, Bartlett,
and Wainwright 2012), so that when using them there is no
further need for regularization to ensure that derivatives can
be estimated. 5

Regularized linear program As an alternative method,
we propose regularizing our problem to get a smooth sur-
rogate of the derivative. We add a small entropy regular-
izer to the follower’s objective. 6 The result is now a con-
vex program (see 13 in the appendix): When the objective is
strongly convex, the solution map ν∗r : (w, b) 7→ νπ∗(w,b,r)

is smooth. Therefore, derivatives of revenue can now be esti-
mated from the gradients at sampled type profiles, calculated
using reverse-mode automatic differentiation (Agrawal et al.
2020, 2019).

Adding a small amount of regularisation does not change
the follower’s problem significantly. As has been shown by
Weed (2018), the distance between the solutions to the reg-
ularized and unregularized inner problem decays exponen-
tially fast in the regularisation constant α, for sufficiently
small α.

Under certain assumptions we claim this convergence
translates to the outer problem, so that choosing a small α
ensures the objective is not disturbed too much.

5They have been proposed in certain related (static) set-
tings (Bichler et al. 2021; Martin and Sandholm 2023) to cope with
similar problems related to nonexistence of derivatives.

6A technique equivalent to such regularization has also been
used to deal with a similar issue in first-order computation of equi-
libria of non-truthful static auctions (Kohring, Pieroth, and Bichler
2023).



Algorithm 1: Gradient-based Dynamic Mechanism Design
Input: MDP M, number of agents n, loss L, number of
initialisations m

1: Initialize: w ∈ Rn, b ∈ R|S|×|A|

2: (wi, bi)1≤i≤m← grid search(M,L)
{Multiple starting points to avoid local minima}

3: for num_iterations do
4: for i = 1 to m do
5: (wi, bi) ← (wi, bi) + γ gradientstep(M, wi, bi)

{Zeroth or first order gradient estimate}
6: end for
7: end for
8: return argmini∈{1,...,m} E[L(wi, bi)]

Theorem 4.3 (Pointwise convergence of regularised loss).
Assume that L(w, b, r) can be represented as an inner prod-
uct between a vector q in R|S|×|R| and the state-action
occupancy measure ν, such that ∥q∥∞ ≤ O(∥r∥∞). Let
Lα(w, b, r) denote the loss achieved with the optimal pol-
icy πα(w, b, r) for the regularised problem (see equation 13
in Appendix E). Assume further that E[∥r∥∞] exists, then

lim
α→0

E [Lα(w, b, r)] = E [L(w, b, r)]

The proof of the Theorem can be found in Appendix D.
Given that both affine social welfare and social welfare can
be represented as an inner product of ν, Theorem 4.3 implies
the convergence of regularised revenue. Similarly, we will
later show the same holds for makespan.

Corollary 4.4. Let revα(w, b) denote the revenue achieved
with the optimal policy πα(w, b, r). Assume that E[∥r∥∞]
exists, then

lim
α→0

revα(w, b) = rev(w, b)

5 Experiments
Methods
We optimize AMAs in dynamic mechanism design settings
on tabular MDPs. We compare three different mechanism
design settings with different reward distributions. Our op-
timization methods consist of a naı̈ve grid search baseline,
and two gradient-based methods (using either zero-order or
regularized gradient estimates).

Implementation Details
Grid search As a methodological benchmark, we imple-
ment a naı̈ve grid search algorithm. We sample 10000 dif-
ferent weights and boosts from a Sobol sequence (Sobol’
1967). To assess the expected performance of each draw, we
solve the associated dual linear program (LP), as detailed in
Equation (2), for 2000 randomly sampled reward profiles.

Zeroth-order methods We estimate derivatives using 20
perturbations, sampled from a Gaussian distribution with
standard deviation 0.05 per estimate on 20 sampled type pro-
files. We use a learning rate of 0.1.

Table 1: Results for optimizing auction revenue in a se-
quential sales setting (n agents, m sales) with symmetric
uniformly-distributed types. Standard errors were < 0.007.
Runtime was < 31 hours for grid search, < 0.2 hours for
zeroth-order and < 1.1 hours for first order.

n m VCG Grid 0-order reg. LP Best imp.

2 2 0.0000 0.4902 0.4939 0.4893 N/A
3 2 0.4999 0.6079 0.6777 0.6755 35.56%
4 2 0.8000 0.7977 0.8783 0.8328 9.79%
5 2 0.9996 1.0050 1.0078 0.9967 0.83%
2 3 0.0000 0.4715 0.3825 0.4168 N/A
3 3 0.0000 0.6107 0.6446 0.7240 N/A
4 3 0.6007 0.7323 0.8875 0.9104 51.54%
5 3 0.9988 0.7142 1.0631 1.0743 7.56%

Regularized LP. We compute derivatives with respect to
social welfare using the regularized LP, with smoothing pa-
rameter 10−2 except where mentioned. We solve the reg-
ularized program using MOSEK (ApS 2023) and use the
DiffOpt package within JuMP (Lubin et al. 2023) to differ-
entiate. For the affine social welfare terms in the expected
revenue we use the partial derivatives given in Appendix C.
For each stochastic gradient step, we sample 20 type profiles
and optimize with learning rate 10−2.

In all cases, when evaluating the objective, we sample
10000 type profiles and do not use regularization. Thus at
evaluation time, the LP solution is exactly correct, ensuring
strategyproofness. Computational details and hyperparame-
ters are described in appendix F.

Environments and Results
Sequential Sales We begin with a simple setting in which
identical items are sold sequentially to unit-demand bidders.
The states consist of a record of who has received the item;
the allowed actions are to sell the item to some bidder, or to
no one. The welfare-maximizing mechanism thus involves
giving the items to the highest bidder, but by altering the
boosts, revenue can be increased by sometimes withholding
the item. We consider a distribution of type profiles drawn
uniformly from [0, 1], with results in Table 1.

We observe that optimizing the boosts can consistently
improve performance compared to VCG, especially when
there are no tight supply constraints. Intuitively, if there is
a large supply of goods, VCG revenue should be low, as
agents do not cause much externality on other agents. By
setting boosts to effectively withhold goods (like a reserve
price), revenue can be increased. We also consider a distri-
bution where agent i’s type is uniformly distributed on [0, i].
In this setting, we also allow the bidder weights to vary, with
results in Table 2. Again, we observe improved performance
by optimizing the AMA parameters.

In both settings, the gradient-based approaches generally
outperform the random grid search both in terms of re-
sults and runtime, in particular for the larger settings, which
makes sense considering the high number of dimensions.



Table 2: Results for optimizing auction revenue in a se-
quential sales setting (n agents, m sales) with asymmetric
uniformly-distributed types. Standard errors were < 0.004.
Runtime was < 32 hours for grid search, < 0.2 hours for
zeroth-order and < 1.1 hours for first order.

n m VCG Grid 0-order reg. LP Best imp.

2 2 0.0000 0.3327 0.3302 0.3665 N/A
3 2 0.2348 0.3217 0.4123 0.4116 75.55%
4 2 0.3089 0.3328 0.4021 0.4508 45.95%
5 2 0.3350 0.3355 0.4348 0.4645 38.65%
2 3 0.0000 0.3208 0.2544 0.3202 N/A
3 3 0.0000 0.3304 0.3556 0.4354 N/A
4 3 0.2276 0.3431 0.4263 0.4751 108.77%
5 3 0.3193 0.2713 0.3770 0.4976 55.85%

Table 3: Results for minimizing makespan in the dy-
namic truthful task scheduling setting (n agents, m sales)
with symmetric uniformly-distributed types. Standard errors
were < 0.02. Runtime was < 16 hours for grid search, < 0.1
hours for zeroth-order and < 4.1 hours for first order. AMA
outperforms VCG because the makespan is smaller.

n m VCG Grid 0-order reg. LP Best imp.

2 4 1.0336 1.0326 0.9132 0.9288 -11.65%
2 5 1.0116 1.0142 0.8820 0.9286 -12.81%
3 4 0.6111 0.6196 0.5967 0.6184 -2.36%
3 5 0.5662 0.5632 0.5429 0.5538 -4.12%

Table 4: Results for minimizing makespan in the dynamic
truthful task scheduling setting (n agents, m sales) with
asymmetric uniformly-distributed types. Standard errors
were < 0.03. Runtime was < 17 hours for grid search, < 0.1
hours for zeroth-order and < 4 hours for first order. AMA
outperforms VCG because the makespan is smaller.

n m VCG Grid 0-order reg. LP Best imp.

2 4 1.8312 1.8260 1.5978 1.6121 -12.75%
2 5 1.9651 1.9837 1.6347 1.6886 -16.81%
3 4 1.4299 1.4426 1.3242 1.3243 -7.39%
3 5 1.4644 1.4729 1.3256 1.3629 -9.48%

Dynamic truthful task scheduling The next setting we
consider is a dynamic version of the classic truthful task
scheduling problem (Nisan and Ronen 2001). In the static
problem, workers report the time it takes them to complete
certain tasks. A mechanism then has to assign the tasks and
give payments7 to incentivize truthful reports with the goal
of minimizing the makespan of all jobs. We formulate a dy-
namic version of the truthful task scheduling problem. There
are n workers and T tasks. Each round, one of the tasks ar-
rives and has to be assigned. Each worker has a cost vec-
tor θi = (ti,1, . . . , ti,T ) distributed according to some prior
fi, which consists of the times they take to finish each task.
Each round τ the mechanism designer takes an allocative ac-
tion xτ ∈ {0, 1}n, s.t.

∑n
i=1 xτ,i = 1. At time τ , this causes

agent i to receive reward ri,τ = −xτ,iti,τ .
The objective of the leader is to minimise total

makespan. For this define t̃i as the time i has already
worked on its jobs, when the last task has been as-
signed in round T . The leader’s loss is then given by
maxi∈{1,...,n}

((∑T
τ=1 xτ,iti,τ

)
− t̃i

)
.

In order to justify using our approach for minimizing
makespan, we need to show that Theorems 4.1 and 4.3 ap-
ply. To see that makespan fulfills the assumption of Theorem
4.1, notice that it is a function of only t (which is −r) and
π∗(w, b, r) and that the total makespan is always bound by
T∥r∥∞. Therefore we can conclude that it is differentiable
almost everywhere. Further notice that the makespan of a
single agent (i.e. without the max operator in front) fulfills
the assumptions of Theorem 4.3. Let the maximum differ-
ence across all agent-specific makespans between the un-
regularised and regularised optimal policy be ϵ, then the dif-
ference in the total makespan can be at most 2ϵ. But ϵ → 0
according to Theorem 4.3 which shows the makespan under
the regularized optimal policies will converge to the correct
makespan as α→ 0.

As a benchmark, we consider a dynamic VCG mecha-
nism that chooses the solution, which minimizes the total
work done by the agents—an objective which is not the
same as minimizing makespan. (It can been shown, how-
ever, that VCG is an n-approximation of the optimal static
mechanism (Nisan and Ronen 2001).)

For a participant-symmetric valuation distribution (uni-
form on [0, 3]), results are in Table 3. Across all environ-
ments, we see an improvement in makespan for the opti-
mized AMAs over the VCG mechanism. We also consider
an asymmetric distribution with disutilities distributed on
[0, 3i] for bidder i, with results in Table 4. Across all envi-
ronments, we see a significant improvement in makespan for
the best AMAs. In both settings, gradient-based approaches
outperform the naı̈ve grid search both in terms of results and
runtime, as was observed in the sequential auction environ-
ments.

Navigating a grid with multiple tasks One of the most
canonical environments in RL is the gridworld, where

7This in contrast to the auction environment where the mecha-
nism could charge payments, because here agents suffer costs for
which they need to be compensated.



Table 5: Results for maximising revenue in the gridworld
environment (n agents, m ×m grid). Standard errors were
< 0.05. Runtime was < 30 hours for grid search, < 0.1
hours for zeroth-order and < 0.1 hours for first order

n m VCG Grid 0-order reg. LP Best imp.

2 3 0.7547 1.0607 1.3486 1.5464 104.90%
3 3 1.2812 1.4348 1.5575 1.9251 50.25%
4 3 1.8683 1.8729 1.8853 2.3009 23.15%
5 3 2.3563 2.3689 1.9951 2.5989 10.30%
2 4 1.0402 1.0446 1.4935 1.6134 55.11%
3 4 1.4898 1.4904 1.6821 2.0171 35.40%
4 4 1.8610 1.8757 1.9427 2.3413 25.81%
5 4 2.2472 2.2133 2.0256 2.5911 15.30%

an agent deterministically navigates a two-dimensional
grid with rewards for reaching certain states (Sutton
2018). We consider the following variant: the mecha-
nism moves (”up”,”down”,”left”,”right”) in a grid with
n agents observing the trajectories. It starts in state s0.
Each agent i draws a goal state si ∈ S \ {s0} and
a reward ri ∼ U(0, 1), which they receive when the
mechanism reaches si. Given (w, b), the mechanism
finds a policy to maximize affine social welfare π∗ ∈
argmaxπ Eπ [

∑∞
t=0 γ

t (
∑n

i=1 wiri(st, at) + b(st, at))]
where γ is the discount factor to account for the infinite time
horizon. One can interpret this environment as an auctioneer
navigating an environment with different replenishing
goods which agents wish to collect. The agents now bid to
influence trajectories, and the auctioneer tries to maximize
revenue. The results are in Table 5 and show that we can
increase revenue by at least 10% in every setting considered.
Moreover, the gradient-based approaches are once more
much faster and achieve better results than grid search. We
further observed that the optimized boosts correspond to a
preference of the mechanism for staying close to s0. This
can be interpreted roughly as a reserve price.

Overall, we conclude that searching in the class of dy-
namic AMAs produces performant mechanisms in a variety
of settings, which consistently outperform dynamic VCG.
On a methodological level, a naı̈ve grid search can perform
well in settings with small dimensionality, but cannot scale
up and takes a magnitude more runtime compared to our
gradient-based approaches, which perform well across all
settings. The best choice between zeroth-order and regular-
ized LP depends on the mechanism design setting.

6 Conclusion
In this paper, we have proposed an approach for automated
dynamic mechanism design. In contrast to earlier work,
this formulation allows for a wide array of possible objec-
tives (not just maximising social welfare) and works with-
out strong restrictions on the type space. In principle, it cap-
tures essentially all problems of static mechanism design as
a special case. By focusing on the class of AMAs, we can
frame the problem as stochastic bilevel optimization, where
the mechanism designer acting in the outer problem chooses

parameters to maximize their objective in expectation over
possible rewards and the inner problem consists of optimally
solving the MDP.

For the most prominent objective in mechanism design—
expected revenue—we have further proven differentiability,
which allows for gradient-based optimisation approaches to
converge to locally optimal mechanisms. Because we re-
strict to the class of AMAs, all these mechanisms are guar-
anteed to be exactly IC and IR. To solve the bilevel prob-
lem, we have presented randomized grid search, as well as a
zeroth and first order gradient-based algorithm to find well-
performing mechanisms, which can beat the benchmark dy-
namic VCG mechanism across a broad range of environ-
ments we consider. The gradient-based methods we propose
also consistently outperform naı̈ve grid search, which suf-
fers from the curse of dimensionality.

The method we have presented is appropriate for any
problem that can be formulated as controlling an MDP in the
face of possibly untruthful preferences. This covers a wide
range of interesting scenarios. In particular, the use of affine
maximizers and the bilevel problem formulation are appli-
cable to a broader range of settings, including those beyond
the reach of tabular methods. Future work could apply deep
RL for both the leader and follower, enabling scaling to sig-
nificantly larger and more complicated problems, or apply
our techniques to novel mechanism design settings.
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A Affine maximizers are incentive compatible
Theorem A.1. For any choice of fixed weights and boosts, affine maximizers are incentive compatible.

Proof. (Following the standard structure for truthfulness of VCG in the static case.) Consider player i with true reward function
ri and reported rewards r̃i, where other players have rewards r−i. Recall that the payments charged for each agent can be
written as

pi(r) =
1

wi

asw(−i)(w, b, r)−

Eπ∗(w,b,r)

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


=

1

wi

(
asw(−i)(w, b, r)− asw(w, b, r) +

T∑
t=0

wiEπ∗(w,b,r)[ri(st, at)]

)

where r = (ri, r−i). The true expected utility at the time they report, as a function of their true reward function and a possible
misreport r̃i, is

Ui(ri, r̂i) = Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

ri(st, at)−
1

wi

asw(−i)(w, b, r)−

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


where the expectation is over the randomness in the MDP (note that it does not need to be over the randomness in opponent
types – IC should hold in dominant strategies considering the opponents).

In choosing a misreport r̃i, player i thus faces a maximization problem:

argmax
r̃i

Ui(ri, r̃i) = argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

[
T∑

t=0

ri(st, at)−
1

wi

(
asw(−i)(w, b, r)

−

(
T∑

t=0

(∑
j ̸=i

wjrj(st, at)

)
+ b(st, at)

))]

= argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

ri(st, at) +
1

wi

 T∑
t=0

∑
j ̸=i

wjrj(st, at) + b(st, at)

− c

= argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

wiri(st, at) +

T∑
t=0

∑
j ̸=i

wjrj(st, at) + b(st, at)



where c is a constant. This is exactly the objective that the mechanism attempts to maximize if the bidder reports truthfully, so
the best choice they can make is to do so.

IR and IC guarantees
In mechanism design, there is often a distinction between:

• Ex post – properties that hold after all types have been reported and decisions have been made

• Ex interim – properties that hold after a bidder has observed their own type, but before seeing other types.

• Ex ante – properties that hold before types have been observed.

As far as the prior distribution of agent types is concerned, all our guarantees are ex post – i.e. we ensure dominant-strategy
incentive compatibility and ex-post IR.

In our problem, we have an additional source of randomness, the inherent randomness in the MDP itself. We thus refer to “in
expectation” to refer to properties that hold when averaging over the randomness in the MDP, but ex post in the types.

Given the above choices of terminology, and given a correct policy and value estimate, our chosen mechanism and payment
rules can guarantee in-expectation incentive compatibility and individual rationality.



B Proof of Theorem 4.1
First, let us note that by Rademacher’s theorem differentiability almost everywhere follows from local Lipschitz continuity of a
function. Moreover, the expected value and derivative are linear operators. Together this implies we only need to show that the
expected values of asw and gk are locally Lipschitz continuous.

In this proof, we identify boosts and agents’ rewards with vectors in R|S|×|A| and weights with vectors in Rn
+. Moreover, we

will assume that f is a continuous density function, according to which r is distributed and that it is sufficiently well-behaved,
such that Er[∥r∥∞] exists.

Affine social welfare is Locally Lipschitz continuous
Here we only show continuity in w, since the proof for b works analogous. Fix r ∈ R|S|×|A|×n and let w, ŵ ∈ Rn

+, s.t.
∃! j : wj ̸= ŵj . We need to show that ∃Kr, s.t.

(3)

|

(
n∑

i=1

T∑
t=0

wiEst,at∼π[ri(st, at)]

)
+

T∑
t=0

Est,at∼π[b(st, at)]−

 n∑
i=1,i̸=j

T∑
t=0

wiEst,at∼π̂[ri(st, at)]


−

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)]−
T∑

t=0

Est,at∼π̂[b(st, at)]|≤ Kr|wj − ŵj |

where π = π∗(w, b, r) and π̂ = π∗(ŵ, b, r). To perform our proof we need the following inequalities:
By optimality of π

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≥
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

(4)

By optimality of π̂
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≤
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

(5)

By assumption on w, ŵj

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

−

 n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]


≤ |wj − ŵj |

T∑
t=0

Est,at∼π[rj(st, at)]

(6)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

−

 n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]


≤ |wj − ŵj |

T∑
t=0

Est,at∼π̂[rj(st, at)]

(7)



Now we have all the ingredients to show local Lipschitz continuity wrt to wi. Let Kr = ∥r∥∞T ≥
max(

∑T
t=0 Est,at∼π̂[rj(st, at)],

∑T
t=0 Est,at∼π[rj(st, at)]). Then we have

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)] +Kr|wj − ŵj |

≥
Eq.(4)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)] +Kr|wj − ŵj |

≥
Eq.(7)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

≥
Eq.(5)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≥
Eq.(6)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]−Kr|wj − ŵj |

To conclude this proof, we note

Er[asw(w, b, r)− asw(ŵ, b, r)] ≤ TEr[∥r∥∞]|wj − ŵj |
where Er∼f [∥r∥∞] is finite by assumption.

gk is locally Lipschitz continuous
Unlike for asw, we cannot argue that gk is Lipschitz continuous. Indeed changing the weights and boosts only slightly can cause
a completely different policy to become optimal, leading to a discontinuous jump or drop in π∗(w, b, r) and thus in general also
in gk. However, as we will show, when taking the expected value, these discontinuities get smoothed out, guaranteeing local
Lipschitz continuity and thereby differentiability almost surely.

We will restrict to proving local Lipschitz continuity of Er [gk(π
∗(w, b, r), r)] with respect to b, as the proof with respect to

w works similar.
In the proofs below we identify the reported reward functions of all agents with vectors r ∈ Rd, where d = |S|×|A|×n.
Our first observation is that all vectors r for which two policies π1, π2 give the same affine social welfare lie on a hyperplane.

Indeed, let νi denote the induced state-action occupancy measure of policy πi. Then∑
s,a

ν1(s, a)(wiri(s, a) + b(s, a)) =
∑
s,a

ν2(s, a)(wiri(s, a) + b(s, a))

is equivalent to ∑
s,a,i

(ν1(s, a)− ν2(s, a))wiri(s, a) =
∑
s,a

(ν2(s, a)− ν1(s, a))(b(s, a))

Let ν1 = (w1ν1(s1, a1), w2ν1(s1, a1), . . . , wnν1(s1, a1), w1ν1(s2, a1), . . . , wnν1(s|S|, a|A|). Then the above is equivalent to
the following hyperplane:

H12(w, b) = {r : (ν1 − ν2)
Tr =

∑
s,a

(ν2(s, a)− ν1(s, a))(b(s, a))}

Let b, b̃ ∈ R|S|×|A|, s.t. ∃! (s′, a′) : b(s′, a′) ̸= b̃(s′, a′). b̃ gives us another hyperplane of equivalence between π1, π2

H12(w, b̃) = {r : (ν1 − ν2)
Tr =

∑
s,a

(ν2(s, a)− ν1(s, a))(b̃(s, a))}

Note thatH12(w, b̃) andH12(w, b) are parallel with a distance |(ν2(s
′,a′)−ν1(s

′,a′))(b(s′,a′)−b̃(s′,a′))|
∥(ν1−ν2)∥

.
Moreover, for any given parameters (w, b) there are only |Π|2 planes of equivalence, where |Π| is the number of deterministic

policies.
When we change b(s′, a′) to b̃(s′, a′), then there can be rewards r, for which π∗(w, b̃, r) ̸= π∗(w, b, r). For these rewards it

follows that in general gk(π∗(w, b̃, r), r) is different from gk(π
∗(w, b, r), r). Using the hyperplanes defined above, we know

the set of all r, where gk(π
∗(w, b̃, r), r) ̸= gk(π

∗(w, b, r), r) is contained in the set



U(w, b, b̃) =
⋃

πj ,πi∈Π

U(w, b, b̃)ij

where

U(w, b, b̃)ij = {r :|(νi − νj)
Tr −

∑
s,a

(νj(s, a)− νi(s, a))(b(s, a))|≤

|(νj(s′, a′)− νi(s
′, a′))(b̃(s′, a′)− b(s′, a′))|}

are the polytopes induced by the hyperplanesHij(w, b̃) andHij(w, b).
With this in mind let us make a first naive analysis of the difference of the change in expectation of gk, when changing b.

|Er[gk(π
∗(w, b̃, r), r)]− Er[gk(π

∗(w, b, r), r)]| (8)

≤ Er[|gk(π∗(w, b̃, r), r)− gk(π
∗(w, b, r), r)|] (9)

≤ C

∫
U(w,b,b̃)

∥r∥∞f(r)dr (10)

≤ C
∑

πi,πj∈|Π|

∫
U(w,b,b̃)ij

∥r∥∞f(r)dr (11)

(12)

for some constant C (since gk = O(∥r∥∞)).
We want to show that the above can be bounded by L|b(s′, a′) − b̃(s′, a′)| for some L. For this we need to get a better

understanding of
∫
U(w,b,b̃)ij

∥r∥∞f(r)dr.
For the sake of simplicity, we assume now the probability density f has compact support on Rd, i.e. there exists a K such

that ∀r : ∥r∥2 ≥ K =⇒ f(r) = 0.8 Since the hyperplanes Hij(w, b̃) and Hij(w, b) have dimension d − 1 and are parallel

with distance |(ν2(s
′,a′)−ν1(s

′,a′))(b(s′,a′)−b̃(s′,a′))|
∥(ν1−ν2)∥

, we can bound the integral by multiplying an upper bound of the volume of

U(w, b, b̃)ij with the maximum possible value of ∥r∥∞f(r) .

∫
U(w,b,b̃)ij

∥r∥∞f(r)dr ≤ (2K)d−1 |(ν2(s′, a′)− ν1(s
′, a′))(b(s′, a′)− b̃(s′, a′))|
∥(ν1 − ν2)∥

Kmax
r

f(r)

=L|(b(s′, a′)− b̃(s′, a′))|

for L = (2K)d |(ν2(s
′,a′)−ν1(s

′,a′))|
∥(ν1−ν2)∥ maxr f(r), which proves Lipschitz continuity and thereby differentiability almost surely.

C Gradients of affine social welfare
As outlined in Section 4, if we can take the derivative inside the expected value, the implicit function theorem yields:

∇w,bEr [L (π∗, w, b)] = Er [∇2L (π∗, w, b) +∇w,bπ
∗(w, b, r)∇1L (π∗, w, b)]

Here we show that we can analytically compute the partial derivatives with respect to w, b (keeping a policy π fixed) of asw, sw
(and thus also for revenue), as well as for makespan, which is important given that we can use these to accelerate the gradient
computation for our second approach where we take the gradient through the regularised LP. We note that for asw(w, b, r) the
gradients can be computed in a straight-forward manner.9 For this, rewrite asw using the state-action occupancy measure νπ . 10

asw(π,w, b, r) =
∑
s,a

νπ(s, a)(

n∑
i=1

wiri(s, a) + b(s, a))

8This assumption is not necessary. As long as f decays sufficiently quickly for large r, the proof still goes through with some minor
adjustments. However, we make the assumption here for streamlining our exposition and highlighting the parts of our proof, which are
non-standard.

9The analysis holds equivalently for asw−i(w, b, r)
10In general finite horizon MDPs this would be defined as νπ(s, a) =

∑T
t=1 Pπ(st = s, at = a). In our experiments we always assume

the states contain the current timestep such that this simplifies to νπ(s, a) = Pπ(st = s, at = a). Note that the same analysis equivalently
holds for asw(−i)



In this form taking the partial derivative is straightforward. We get the following

∇w,basw(w, b, r) = ∇w,b

∑
s,a

νπ(s, a)(

n∑
i=1

wiri(s, a) + b(s, a))

∇wi
asw(w, b, r) =

∑
s,a

νπ(s, a)ri(s, a) = Eπ[

T∑
t=0

ri(s, a)]

∇b(s,a)asw(w, b, r) = νπ(s, a)

Boosting a state increases asw in relation to how often the state is visited under the optimal policy. This is easy to compute. In
fact, νπ is the solution to the linear programming formulation of the MDP. Similarly increasing the weight of an agent changes
asw in proportion to the expected sum of rewards the agent gets.

For sw and makespan the analysis is even simpler, since the partial derivative with respect to w, b, keeping a policy fixed is
just 0. As both only depend on these parameters indirectly through the policy.

D Proof of Theorem 4.3
Proof. Fix w, b, r and denote by Lα(w, b, r), L(w, b, r) the optimal regularised and unregularised loss for this specific choice
of variables. We first show

lim
α→0

Lα(w, b, r) = L(w, b, r)

Let ν∗, να be the corresponding state-action measures to π∗, πα—the optimal policies for the unregularised and regularised
LP. Using Corollary 9 of Weed (2018), for sufficiently small α, we get:

|L(w, b, r)− Lα(w, b, r)|

=

∣∣∣∣∣∑
s,a

(ν∗(s, a)− να(s, a)) (q)

∣∣∣∣∣
= |⟨ν∗ − να, q⟩|
≤ ∥ν∗ − να∥1∥q∥∞

≤ 2R1 exp

(
−∆(r)

αR1
+

R1 +RH

R1

)
(C∥r∥∞)

where C is some constant, R1 is the l1 radius of all feasible solutions, RH is the entropic radius, and ∆ the suboptimality
gap (Weed 2018). This shows pointwise convergence of Lα(w, b, r). Note further that for any policy π and any w, b,Lπ(w, b, r)
can be bounded by (C∥r∥∞) for some C, which by assumption is integrable. It follows by the Domianted Convergence
Theorem that

∀w, b : lim
α→0

E [Lα(w, b, r)] = E [L(w, b, r)]

E Linear Program of regularized MDP
Below we give the regularized form of the MDP linear program – it is now a convex (exponential cone) program.

max
∑

s∈S,a∈A

(∑
i

wiri(s, a) + b(s, a)

)
ν(s, a)+

α
∑

s∈S,a∈A

ν(s, a) log ν(s, a) s.t.

∑
a∈A

ν(s, a) =
∑
s′,a′

P (s|s′, a′)ν(s′, a′) + µ0(s) ∀s ∈ S

ν(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(13)



F Computational Details and Hyperparameters
The grid search experiments and all experiments in the gridworld environment were run concurrently on a server with 256 cores
and 250GB of RAM, while restricting the number of threads in MOSEK to 4. Other experiments were run on cluster nodes
with 4 cores and 1GB or 2GB of RAM per core, except that the task scheduling regularized LP jobs with 3 agents were run
with 16 cores and 64GB memory. During development we experimented with up to 1000 sampled valuation profiles, up to 2000
perturbations, learning rates ranging from 0.001 to 0.1, and regularization strengths up to 0.1; we quickly settled on the chosen
hyperparameters and did not do a more exhaustive search due to computational constraints. For distributions where the bidder
valuations are symmetric, we optimize only boosts, fixing the weights to 1.


