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Steane Method (for CSS codes)

Figure 1: Note: the cat state |0〉 + |1〉 ≡ |0〉 + |1〉.

|0〉+ |1〉 =
∑

u∈C1/C⊥
2

∑
v∈C⊥

2

|u + v〉 =
∑
u∈C1

|u〉

u ∈ C1, C⊥
2 ⊆ C1.

E.g. 1 encoded block: measure all qubits. |u〉 →
∑

w∈C⊥
2
|u+w〉. Get u+w

for random w ∈ C⊥
2 . Logical codewords ⇔ u ∈ C1/C⊥

2

⇒ Measurement identifies bit flip error and encoded state (in Z basis).
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Figure 2: Note: |0〉 ≡ |0〉.

In the figures, each line represents n qubits encoded via CSS code. If there

are no errors, we just get a random codeword from C1. If there are bit flip

errors in the data, they propagate forward along the CNOTs to the ancilla,

and after measurement we get a random codeword of C1 with an error in the

appropriate location. Phase errors propagate backwards along the CNOTs

in the second figure, and performing the Hadamard gives us a superposition

of codewords from C2, with bit flip errors in the locations of the phase errors

from the data block.

- Repeat measurement

- Verify ancillas (to make sure we don’t have multiple bit flip errors). In

the ancilla for phase errors, bit flip errors will propagate into the data. In

the ancilla for bit flip errors, the Hadamard transform turns initial bit flip

errors into phase errors, which can also propagate into the data.

Ancilla Purification

Tells us:

1.) Individual bit flip errors.

2.) Encoded bit flip errors.

Either discard bad ancillas or correct.
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Figure 3: Note: |0〉 ≡ |0〉.

Measurements

How does stabilizer, X,Z change under measurement?

Measure N ∈ P

1.) N ∈ S ⇒ nothing happens.

2.) N ∈ N(S) \ S ⇒ measures logical Pauli in N(S) \ S.

3.) N /∈ N(S) ⇒ ∃M1 ∈ S, {M1, S} = 0.

New stabilizer S′:

±N ∈ S′. (+N if measure +1, −N if measure −1)

M1 /∈ S′

Generators M2, . . . ,Mr ∈ S

[Mi, N ] = 0 ⇒ Mi ∈ S′

{Mi, N} = 0 ⇒ M1Mi commutes with N ⇒ M1Mi ∈ S′

X, Z etc.: M1X = X ⇒ choose coset representatives that commute with

N .

r generators of S′, ±N, (Mi OR M1Mi).

n− r X’s, n− r Z’s.

Map −N to +N :

Perform M1 on state, commutes with M1 and X,Z, but anticommutes

with N , so changes the sign of N without altering anything else in the new

stabilizer.
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Figure 4: Example: Teleportation

IXX Measure XXI IXX Measure ZZI ±ZZI

IZZ ±XXI XXI

X: XII −→ XII −→ XXX ≡ IIX

Z: ZII Here M1 = IZZ ZZZ Here M1 = IXX ZZZ ≡ IIZ

Table 1: Analysis of teleportation

Look at M1: what do we have to do to M1N (E.g. ±XXI) to take it to

+ (i.e. −N → +N)? Do IZZ but only need to look at the 3rd qubit: Z.

Similarly for ±ZZI: IXX OR just X.

Suppose we can do a CNOT gate but want a P gate:

CNOT → P gate and Pauli measurements. (P : X → Y, Z → Z)

Figure 5: |ψ′〉 = P †|ψ〉.

Using this sort of analysis of measurement, we can extend Knill’s theorem:

We have an efficient classical simulation of circuits involving Clifford group

operations and also Pauli measurements and classical processing.
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IY CNOT ZY Measure IZ ±IZ

X: XI → XX −→ Y Z ≡ Y I

Z: ZI ZI Here M1 = ZY ZI

Table 2: Analysis of P gate construction
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