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1 Which errors can be corrected with the 9-qubit code?

Cor.: The 9-qubit code corrects any 2 X 2 matrix, or in fact any single-qubit superoperator.

Proof: Let S be a superoperator defined by
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with 32, AT A, = 1.
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where S ® 1®8 (| ¥) (1) |) is a mixture of {Ax|v)} with probabilities (¢ |A2Ak| 1), and EC performs the
procedure Ay|1) +— |4). This follows from the Cor. from last lecture.

2 Error probability with and without decoding

2.1 Classical errors occur

Each qubit is disturbed:

Prob. X error

Y error = Prob. p for any error

ws wis wig

Z error

1—p no error

(1-p)° mno error

correctable errors
9p(1 —p)® 1 error

36p%(1 —p)” 2 errors
) may be uncorrectable

Total prob. of uncorrectable errors = O(p?)



2.2 Every qubit is a little disturbed

Let U®? be the error with U = I + eU’, then we get

U =1 +e(UI®+10U @1 +-- )+ (U U @I°7) + - -

correctable uncorrectable

So the final state is of the form (---)|¥) + O(€?)| ?)
If € is small, this gives a high fidelity to the original state: ~ 1 — O(€?).

3 Necessary and sufficient conditions for error correction

For error correction, we have the two following steps:
1. Identify error
2. Correct / invert error
For these steps, the following conditions are sufficient:
1. E|v), F|%) orthogonal or the same:
(a) (BIETFI) =0 or

(b) E|) = F|4) Vi
& (E-F)9) =0

2. |¥) = E|9)

Mapping must be “unitary” restricted to valid encoded states. Take an orthogonal basis | )

(a) E|i) L E|j),ifi# 3.
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B = [1E]5)]]
& (BBl = (|ETE|j)

Otherwise angles change, as in the figure, and the operation is non-unitary.

Theorem: QECC |1) +— |v) corrects £ spanned by {E,} if and only if there exists (cqp) s. t.
<3|E2Eb|g> = cab(sij-
Proof:

e Sufficiency:
2. ok
1. cqp is Hermitian and so diagonalizable.
Define new coordinates by

ZacaEa =F, s. t.
(J|FIFa| ) = Eeadi
Set Ceq = 0cq €. Then 1. is ok.
e Necessary condition: 2. must always hold.

— (G |BEIBy| 1) = 0if i # j:
Pf: If not, 3 a, b, 4, j s. t.

Ea| 5> l Eb‘ j>
Then there exists no EC mapping
EJi> — |i>
Elj> — [|j>
— (i1|ElBy| i) = cap
Pf: Suppose not, then:

31,7 s. t.
Re(i|ELEy| i) # Re(j |ELEy| )

(G (E} + E})(Eq + Ey)| )
= (|ELE.|7) + (i|E} Eb|7) + 2Re(i | EL Ey|7)
= (GIELEL|]) + (G1E[Ey| J) + 2Re(j | E} Ey| 5)



= Re(i|E]Ey|i) = Re(j|ELEy|j)

which contradicts the assumption. (We have used 2b above.)

Similar for imaginary part.

Def.: If (i|FF.|i) = 0, then 0 is an eigenvalue for c,, and the QECC is called degenerate. If 0 is

not an eigenvalue for ¢y, then the QECC is called nondegenerate.
Def.: The weight wt(E) of an error E is the number of qubits where E is not the identity.

Remark: Consider tensor products of I, X, Y, Z of wt < t. Then
{E!Ey} = tensor products of I, X, Y, Z of wt < 2t

or

(j|P|i) = c¢(P)d;; with wt(P) < 2t
Def: The distance of a QECC is the minimum weight of P s. t. (j|P|i) # ¢(P)d;;.

Remark: A code of distance 2t + 1 corrects ¢ errors.



