Quantum Error Correction / CO639

Prepared by Annika Niehage Edited by Daniel Gottesman lecture: 2004-01-08

1 Which errors can be corrected with the 9-qubit code?

Cor.: The 9-qubit code corrects any 2×2 matrix, or in fact any single-qubit superoperator.

Proof: Let S be a superoperator defined by

$$S: \rho \mapsto \sum_{k} A_k \rho A_k^{\dagger}$$

with $\sum_{k} A_{k}^{\dagger} A_{k} = \mathbb{I}$.

$$S \otimes \mathbb{I}^{\otimes 8} (|\overline{\psi}\rangle\langle\overline{\psi}|) = \sum_{k} A_k |\overline{\psi}\rangle\langle\overline{\psi}|A_k^{\dagger}$$
 $|\overline{\psi}\rangle\langle\overline{\psi}|$

where $S \otimes \mathbb{I}^{\otimes 8}(|\overline{\psi}\rangle\langle\overline{\psi}|)$ is a mixture of $\{A_k|\overline{\psi}\rangle\}$ with probabilities $\langle\overline{\psi}|A_k^{\dagger}A_k|\overline{\psi}\rangle$, and EC performs the procedure $A_k|\overline{\psi}\rangle \mapsto |\overline{\psi}\rangle$. This follows from the Cor. from last lecture.

2 Error probability with and without decoding

2.1 Classical errors occur

Each qubit is disturbed:

Total prob. of uncorrectable errors = $O(p^2)$

2.2 Every qubit is a little disturbed

Let $U^{\otimes 9}$ be the error with $U = \mathbb{I} + \epsilon U'$, then we get

$$U^{\otimes 9} = (\mathbb{I}^{\otimes 9} + \epsilon \underbrace{(U' \otimes \mathbb{I}^{\otimes 8} + \mathbb{I} \otimes U' \otimes \mathbb{I}^{\otimes 7} + \cdots)}_{\text{correctable}} + \epsilon^2 \underbrace{(U' \otimes U' \otimes \mathbb{I}^{\otimes 7}) + \cdots}_{\text{uncorrectable}}$$

So the final state is of the form $(\cdot\cdot\cdot)|\,\overline{\psi}\rangle + O(\epsilon^2)|\,?\rangle$

If ϵ is small, this gives a high fidelity to the original state: $\sim 1 - O(\epsilon^2)$.

3 Necessary and sufficient conditions for error correction

For error correction, we have the two following steps:

- 1. Identify error
- 2. Correct / invert error

For these steps, the following conditions are sufficient:

- 1. $E|\overline{\psi}\rangle$, $F|\overline{\psi}\rangle$ orthogonal or the same:
 - (a) $\langle \overline{\psi} | E^{\dagger} F | \overline{\psi} \rangle = 0$ or
 - (b) $E|\overline{\psi}\rangle = F|\overline{\psi}\rangle \,\forall \overline{\psi}$ $\Leftrightarrow (E - F)|\overline{\psi}\rangle = 0$
- 2. $|\overline{\psi}\rangle \mapsto E|\overline{\psi}\rangle$

Mapping must be "unitary" restricted to valid encoded states. Take an orthogonal basis $|\bar{i}\rangle$

- (a) $E|\bar{i}\rangle \perp E|\bar{j}\rangle$, if $i \neq j$. $\Leftrightarrow \langle \bar{i} | E^{\dagger}E|\bar{j}\rangle = 0$
- (b)

BAD!

$$\begin{split} ||E|\,\bar{i}\rangle|| &= ||E|\,\bar{j}\rangle|| \\ \Leftrightarrow &\; \langle\bar{i}\,|E^\dagger E|\,\bar{i}\rangle = \langle\bar{j}\,|E^\dagger E|\,\bar{j}\rangle \end{split}$$

Otherwise angles change, as in the figure, and the operation is non-unitary.

Theorem: QECC $|\psi\rangle \mapsto |\overline{\psi}\rangle$ corrects \mathcal{E} spanned by $\{E_a\}$ if and only if there exists (c_{ab}) s. t.

$$\langle \bar{j} | E_a^{\dagger} E_b | \bar{i} \rangle = c_{ab} \delta_{ij}.$$

Proof:

- Sufficiency:
 - 2. ok
 - 1. c_{ab} is Hermitian and so diagonalizable.

Define new coordinates by

$$\sum_{a} \alpha_{ca} E_a = F_c \text{ s. t.}$$

$$\langle \bar{j} | F_c^{\dagger} F_d | \bar{i} \rangle = \tilde{c}_{cd} \delta_{ij}$$

Set $\tilde{c}_{cd} = \delta_{cd} \ \tilde{c}_c$. Then 1. is ok.

• Necessary condition: 2. must always hold.

$$- \langle \overline{j} | E_a^{\dagger} E_b | \overline{i} \rangle = 0 \text{ if } i \neq j:$$
Pf: If not, $\exists a, b, i, j \text{ s. t.}$

$$E_a|\bar{i}\rangle \not\perp E_b|\bar{j}\rangle$$

Then there exists no EC mapping

$$E_a|\bar{i}> \mapsto |\bar{i}>$$

$$E_b|\,\overline{j}> \quad \mapsto \quad |\,\overline{j}>$$

$$- \langle \bar{i} | E_a^{\dagger} E_b | \bar{i} \rangle = c_{ab}$$

Pf: Suppose not, then:

 $\exists i, j \text{ s. t.}$

$$Re\langle \overline{i} | E_a^{\dagger} E_b | \overline{i} \rangle \neq Re\langle \overline{j} | E_a^{\dagger} E_b | \overline{j} \rangle$$

$$\begin{split} \langle \overline{i} \, | (E_a^\dagger + E_b^\dagger) (E_a + E_b) | \, \overline{i} \rangle \\ &= \quad \langle \overline{i} \, | E_a^\dagger E_a | \, \overline{i} \rangle + \langle \overline{i} \, | E_b^\dagger E_b | \, \overline{i} \rangle + 2 Re \langle \overline{i} \, | E_a^\dagger E_b | \, \overline{i} \rangle \\ &= \quad \langle \overline{j} \, | E_a^\dagger E_a | \, \overline{j} \rangle + \langle \overline{j} \, | E_b^\dagger E_b | \, \overline{j} \rangle + 2 Re \langle \overline{j} \, | E_a^\dagger E_b | \, \overline{j} \rangle \end{split}$$

$$\Longrightarrow Re\langle \overline{i} | E_a^{\dagger} E_b | \overline{i} \rangle = Re\langle \overline{j} | E_a^{\dagger} E_b | \overline{j} \rangle$$

which contradicts the assumption. (We have used 2b above.) Similar for imaginary part.

Def.: If $\langle \bar{i} | F_c^{\dagger} F_c | \bar{i} \rangle = 0$, then 0 is an eigenvalue for c_{ab} and the QECC is called **degenerate**. If 0 is not an eigenvalue for c_{ab} , then the QECC is called **nondegenerate**.

Def.: The weight wt(E) of an error E is the number of qubits where E is not the identity.

Remark: Consider tensor products of \mathbb{I} , X, Y, Z of $wt \leq t$. Then

$$\{E_a^{\dagger}E_b\} = \text{tensor products of } \mathbb{I}, X, Y, Z \text{ of } wt \leq 2t$$

or

$$\langle \overline{j} | P | \overline{i} \rangle = c(P) \delta_{ij} \text{ with } wt(P) \leq 2t$$

Def: The **distance** of a QECC is the minimum weight of P s. t. $\langle \bar{j} | P | \bar{i} \rangle \neq c(P) \delta_{ij}$.

Remark: A code of distance 2t + 1 corrects t errors.