The Pauli Operators:

\[X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Theorem: \(|\psi\rangle = |\bar{\psi}\rangle\) is a QECC correcting set \(E\) of errors spanned by \(\{E_a\}\) iff \(\langle \bar{j}|E_a^\dagger E_b|i\rangle = C_{ab}\delta_{ij} \).

[Clarification for lecture 2:]

Lemma: If linear operation \(M : C \rightarrow H\) is reversible by a quantum operation, then

1. \(\langle i|M^\dagger M|j\rangle = 0\) \((\langle i|j\rangle = 0)\)
2. \(\langle i|M^\dagger M|i\rangle = \langle j|M^\dagger M|j\rangle\)

Proof: Quantum operations cannot increase distinguishability

1. \(M|i\rangle \rightarrow |i\rangle, M|j\rangle \rightarrow |j\rangle \Rightarrow \langle i|M^\dagger M|j\rangle = 0\)
2. \(M(|i\rangle + |j\rangle)/\sqrt{2} \rightarrow (|i\rangle + |j\rangle)/\sqrt{2}\). which has inner product \(1/\sqrt{2}\) with \(|i\rangle\) and \(|j\rangle\)

But if \(\langle i|M^\dagger M|i\rangle \neq \langle j|M^\dagger M|j\rangle\) then either \(M(|i\rangle + |j\rangle)/\sqrt{2}\) has inner product \(<1/\sqrt{2}\) with \(M|i\rangle\) or \(M|j\rangle\).

Def: Distance is the minimum weight of a Pauli operator \(E\) such that \(\langle \bar{i}|E|\bar{j}\rangle \neq C(E)\delta_{ij}\).

Distance \(d \Leftrightarrow \text{correct } \lfloor\frac{d-1}{2}\rfloor\) errors

Notation: An \([[n,k,d]]\) QECC encodes \(k\) qubits in \(n\) physical qubits with distance \(d\).

Erasure error: error of unknown type in a known location

Distance \(d\) QECC corrects \(d - 1\) erasure errors
Detection of errors ($\leq t$ errors):
\[
E|\psi\rangle = \alpha_E|\psi\rangle + \beta_E|\bot\rangle,
\]
where $\langle \bot | \phi \rangle = 0 \forall \text{ encoded } |\phi\rangle$.
α_E does not depend on $|\psi\rangle$. Why?
Say $E|\psi\rangle = \alpha_E|\psi\rangle + \beta|\bot\rangle$ and $E|\phi\rangle = \alpha'_E|\phi\rangle + \beta'|\bot\rangle$.
Then $E(|\psi\rangle + |\phi\rangle) = (\alpha_E|\psi\rangle + \alpha'_E|\phi\rangle) + \cdots$, so $\alpha_E = \alpha'_E$ by linearity.

\[
\langle \bot | E \rangle = \alpha_E \delta_{ij} \text{ for } \text{wt } E \leq t \iff d > t
\]
Distance d code detects $d - 1$ errors.

Optional Problem: Suppose a code corrects t general errors, plus r erasure errors and detects s errors. What distance do we need?

Pauli group \mathcal{P} composed of tensor products of I, X, Y, Z with overall phase $\pm 1, \pm i$

\[
XZ = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -iY
\]

\[
X^2 = Y^2 = Z^2 = I
\]

X has eigenvectors $|0\rangle + |1\rangle$, $|0\rangle - |1\rangle$

If $E,F \in \mathcal{P}$ either $EF = FE$ or $EF = -FE$

e.g.: $[X \otimes X, Y \otimes Y] = 0$
\{X \otimes Y \otimes X \otimes Z, I \otimes Y \otimes Z \otimes X \otimes I\} = 0

Pauli group spans $2^n \times 2^n$-dim matrices.

\[
|0\rangle = (|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)
|1\rangle = (|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)
\]

To measure the error syndrome of this code, we measure the following operators:

\[
Z \otimes Z \\
Z \otimes Z
\]

\[
Z \otimes Z \\
Z \otimes Z
\]

\[
X \otimes X \otimes X \otimes X \otimes X \otimes X
X \otimes X \otimes X \otimes X \otimes X \otimes X
\]

Error syndrome bits are eigenvalues of generators of the stabilizer. The correct codewords are eigenvectors of all 8 of these operators with eigenvalue +1.

Def: The stabilizer of a QECC $|\psi\rangle \mapsto |\tilde{\psi}\rangle$ is the set of Pauli operators such that $E|\tilde{\psi}\rangle = |\tilde{\psi}\rangle \forall \text{ encoded } |\tilde{\psi}\rangle$.

2
(1): Stabilizer is a group

\[E, F \in S \Rightarrow EF|\tilde{\psi}\rangle = E|\tilde{\psi}\rangle = |\tilde{\psi}\rangle \Rightarrow EF \in S. \]

(2): Stabilizer is Abelian

\[EF|\tilde{\psi}\rangle = |\tilde{\psi}\rangle, \quad FE|\tilde{\psi}\rangle = |\tilde{\psi}\rangle \]

\[\Rightarrow [E,F]|\tilde{\psi}\rangle = 0 \]

Either \([E,F] = 0\) or \(\{E,F\} = 0\). If \(\{E,F\} = 0\), then \(EF - FE = 2EF\). But \(EF\) is invertible. (Contradiction, since \(EF\) can’t have zero eigenvalues.)

Suppose \(M \in S, E \in \mathcal{P}, \{E, M\} = 0\).

\[M|\tilde{\psi}\rangle = |\tilde{\psi}\rangle. \]
\[M(E|\tilde{\psi}\rangle) = -E(M|\tilde{\psi}\rangle) = -E|\tilde{\psi}\rangle \]

\(E|\tilde{\psi}\rangle\) has eigenvalue \(-1\).

If \([E,M] = 0\):

\[M(E|\tilde{\psi}\rangle) = EM|\tilde{\psi}\rangle = E|\tilde{\psi}\rangle \]

\(E|\tilde{\psi}\rangle\) has eigenvalue \(+1\).

Therefore, if \(E\) commutes with all \(M\) in the stabilizer, \(E|\tilde{\psi}\rangle\) remains a valid codeword, but if \(E\) and \(M\) anticommute, measuring the eigenvalue of \(M\) detects the error \(E\). We get the following theorem:

Thm: Code with stabilizer \(S\) corrects errors \(\{E_a\} \subseteq \mathcal{P}\) iff \(\forall E_a, E_b:\)

(1) \(\exists M\) such that \(\{E_aE_b, M\} = 0\), or

(2) \(E_a^\dagger E_b \in S\)

Note that \(E_a^\dagger E_b|\tilde{\psi}\rangle = |\tilde{\psi}\rangle \iff E_a|\tilde{\psi}\rangle = E_b|\tilde{\psi}\rangle\)

If \(E_a \neq E_b\), we have a degenerate code.