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1 Distance 2 Codes:

e Generators of the stabilizer for 4 qubits: XXXX, Zzzz
[[4,2,2]]

e Generators of the stabilizer for 2n qubits: XXX..X, ZZZ..Z
[[2n, 2n — 2, 2]]

e Generators of the stabilizer for 2n+1 qubits: XXX..XXI, ZZZ...ZZZ, Ill...IXX
[[2n+1,n — 3,2]] (Three generators are required since the stabilizer needs to be
abelian.)

2 Classical Linear Codes:

Codewordsv € C are binary vectors. Linear code:+ w € C whenv,w € C (for a
code over a finite field", also ifa € F,v € C = av € C)

2.1 Generator matrix

Codewords are linear combinations of rows of a generator matrix. (Exampte f08]
classical code) :

1111000 1
1100110 0
G:1010101 1:(0101101)
11 1 1 11 1 0



2.2 Parity Check Matrix:

GHT = 0 sothatifG is ak x n matrix, thenH isn — k x n. In the previous case, we
can show that one possible parity matrix is

111 10
H=]111 0 0 1
1 01 01

S = O

0
0
1

H annihilates valid codewords Hv = 0. H(v + e) in general gives us the error
syndrome of the vectar.

Let b; be thei!” row of H. Sinceh;v = 0,hjv = 0 = (h; + hj)v = 0 thenH
generates the “dual cod€’*.

2.3 Distance (classical case):

¢ Definition of Hamming distance: The Hamming distance betwegrandw is
the # of bits on whictv andw differ.

o Definition of Distance: The distance of an error-correcting code C is the mini-
mum Hamming distance between any two vectors in C.

¢ Distance d code can corredid — 1)/2] errors.

¢ Distance of C = minimum weight of any € C' = minimum # of columns of H
that are linearly dependent.

2.4 Hamming Codes (example):

Hamming codes have rows in their parity check matri¥/, and the columns are all
possible nonzero-bit vectors (there arg” — 1 of them). Thus, any two columns of
H are distinct, but there are sets of three that are linearly dependent. Thus, Hamming
codes have distan@ A Hamming code has parameté2s — 1,n — r, 3].

Considern = 2 and look at the matrix

1 1 0
H_<1 ! l)é(;_u 1)

(G gives the repetition code.)

If v € C ande € C* thenv + e has the same error syndromeeagHv = 0). In

the previous parity check matrix, replace 1 by Z and 0 by | to obtain ZZl and ZIZ. The
stabilizer generated by these operator will correct the same number of bit flip errors as
the classical code should have corrected.

If we replace 1 by X instead of Z then we obtain XXI and XIX. The stabilizer gener-
ated by these operators will correct the same number of phase flip errors as the classical
code should have corrected.



3 CSS (Calderbank-Shor-Steane) Codes:

e Consider 2 classical linear codes; = [n, k1,d;] andCs = [n, k2, da]
In the parity check matrix fo€’; replace 1 by Z and 0 by I. In the parity check
matrix for C, replace 1 by X and 0 by I. If the new operators commute, we get
a quantum CSS codén, ky + k2 — n, d]] where d= min{y, ds) (if the code is
non-degenerate).

e Example: 7-qubit code. FromC; = Cy = [7,4, 3] we can gef[7, 1, 3]] with
a stabilizer generated by 2ZZZI, ZZ112ZI, Z1ZI1Z1Z, XXXXIII, XXIIXXI and
XIXIXIX.

However, the stabilizer is an abelian group if and onlyfifHY = 0 whereH;
is the parity check matrix of’;, which generates the codg". This imply that
Cs- C €y (which is equivalent ta’j- C C»).

e We get a family of Hamming codes, = C, = [2" — 1,2" — 1 — r, 3] that give
CSScode§2" — 1,2" — 1 — 2r, 3]]

4 Question for next class:

Why does the 9-qubit code have distance 3, but the classical code given by the stabilizer
generated by XXXXXXIII and IIIXXXXXX as only distance 2?
Short answer: Since the 9-qubit code is degenerate. Since ZZIlll is in the stabilizer,
it implies that the errors ZIIII and 1ZHII (which have the same syndrome) can be
corrected by the same operation. Many other errors are also degenerate and that make
the distance of the code more than 2.

Moral: The distance of a CSS code could be greater thandmidy).



