
Problem Set #3

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., Feb. 24

Problem 1. Clifford Group Manipulations

a) Calculate the action of the two-qubit controlled-Z gate and the controlled-Y gate on the four generators
of the two-qubit Pauli group (X ⊗ I, I ⊗X, Z ⊗ I, and I ⊗ Z). Are either of these two gates in the
Clifford group? The controlled-U operation is a two-qubit gate that performs the unitary operation U
on the second qubit iff the first qubit is a |1〉. Note that the CNOT is a controlled-X gate.

b) Compute the action of the following gate network on the six X and Z operators for three qubits.
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c) Write down the unitary matrix corresponding to the gate network from part b).

d) Suppose the second and third qubits for the circuit from part b) are constrained to always start in an
EPR pair (stabilizer generated by X ⊗X, Z ⊗Z). Can you simplify the action of the gate network on
X, Z? (There is now only one of each.)

Problem 2. Generating the Clifford Group
In class, I claimed that the Clifford group is generated by the Hadamard transform H, the π/4 phase

gate P = diag(1, i), and the CNOT gate acting on arbitrary pairs of qubits. In this problem you will prove
this fact, and along the way give another proof that all linear operations which preserve the symplectic inner
product correspond to Clifford group operations.

a) Suppose we have a general Clifford group operation U mapping Xi 7→ Xi and Zi 7→ Zi. Show that
for any n-bit binary vectors ~s and ~t, there exists a Clifford group operation mapping Xi 7→ (−1)siXi,
Zi 7→ (−1)tiZi. Based on this result, for the rest of the problem, we will ignore the signs of Pauli
operators when determining whether a Clifford group operation exists and how to perform it.

b) For the one-qubit Pauli group, consider all 6 permutations of the 3 nonidentity Pauli operators, and
show that all of them can be realized as products of H (which maps X 7→ Z and Z 7→ X) and P
(which maps X 7→ Y and Z 7→ Z).

c) Use Clifford group arguments (i.e., following the transformations of Pauli operators) to show that the
SWAP gate which interchanges two qubits can be realized as a sequence of 3 CNOT gates. Also, if
you found that either or both of the two gates from problem 1a is or are in the Clifford group, show
how to produce it or them from H, P , and CNOT.
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d) Suppose P and Q are n-qubit Pauli operations and {P,Q} = 0. Show that there exists a series of
SWAP gates and single-qubit Clifford group operations which maps P 7→ X ⊗ P ′ and Q 7→ Z ⊗ Q′.
Based on the previous two parts, we know this transformation can be done using just H, P , and CNOT.

e) Suppose we are given an arbitrary transformation Xi 7→ Xi and Zi 7→ Zi that satisfies the correct
commutation relations. Based on the last part, we assume that X1 = X ⊗P ′ and Z1 = Z ⊗Q′. Show
that there exists a series of H, P , and CNOT operations that maps X1 7→ X ⊗ P ′ and Z1 7→ Z ⊗Q′.
(We make no requirement at this stage on the transformation induced on the other Xis or Zis.)

f) Call the Clifford group operation you produced in the previous part U1. Then U†1 maps X ⊗ P ′ 7→ X1

and Z ⊗ Q′ 7→ Z1. Show that U†1 maps Xi 7→ I ⊗ Ri and Zi 7→ I ⊗ Si (i = 2, . . . , n), and that U1

therefore maps I ⊗ Ri 7→ Xi and I ⊗ Si 7→ Zi. (I being the identity on 1 qubit and Ri and Si Pauli
operators on n− 1 qubits.)

g) Show that with Ri and Si defined as per the last part, [Ri, Rj ] = [Si, Sj ] = [Ri, Sj ] = 0 when i 6= j,
and {Ri, Si} = 0. We can therefore consider the transformation on n− 1 qubits mapping Xi 7→ Ri+1,
Zi 7→ Si+1. Show that if there exists a Clifford group operation V2 implementing this transformation,
then U1(I ⊗ V2) performs the transformation Xi 7→ Xi and Zi 7→ Zi (i = 1, . . . , n).

h) Show by induction that V2 can be realized as the product of H, P , and CNOT, and that therefore any
Clifford group gate can be. What is the asymptotic number of gates used to realize an n-qubit Clifford
group operation? (Ignore constants; only the O(f(n)) answer is required.)

i) Use the above construction to give an encoding circuit for the 5-qubit code. Note that you can consider
this as a special case of the above construction by writing down a Clifford group operation that maps
Zi (i = 1, . . . , 4) to the four generators of the stabilizer of the 5-qubit code. X5 7→ X for the code,
and Z5 7→ Z. The images of Xi (i = 1, . . . , 4) are arbitrary, so long as they satisfy the appropriate
commutation relations. This will produce a circuit that, when it acts on the input |0000〉⊗|ψ〉 produces
|ψ〉, the encoded |ψ〉 state. Clearly this encoding circuit is not unique.

Problem 3. Using the Quantum MacWilliams Identity
Recall that, for a QECC with projector Π on the coding subspace (TrΠ = 2k), we define

Ad =
1

22k

∑
Ed

Tr(EdΠ)Tr(E†dΠ) (1)

Bd =
1
2k

∑
Ed

Tr(EdΠE
†
dΠ), (2)

where the sums are taken over Pauli operators Ed of weight d. The quantum MacWilliams identity gives a
relationship between A(z) =

∑
dAdz

d and B(z) =
∑

dBdz
d.

a) Show that, for a general QECC, Bd ≥ Ad ≥ 0, and that A0 = B0 = 1. (Hint: Use the Cauchy-Schwarz
inequality.)

b) Show that if a QECC has distance d, then Ac = Bc for c < d. (We showed this in class only for
stabilizer codes.)

c) The quantum Singleton bound allows a [[3, 1, 2]] QECC. Write down the quantum MacWilliams identity
for a QECC encoding 1 qubit in 3 qubits. Parts a and b put additional constraints on the Acs and
Bcs. Show that there is a single solution to all of these constraints, and find it. It turns out, however,
that there is no [[3, 1, 2]] QECC, and we shall see this in the next problem. (Note: I am being sloppy
with notation here; really a [[3, 1, 2]] code would have to be a stabilizer code. I instead want you in
this part and the last part of the next problem to show that there is no distance 2 QECC encoding 1
qubit in 3 qubits. The correct notation for such a code would be ((3, 2, 2)).).

2



Problem 4. The Quantum Shadow Enumerator
For a stabilizer code S, let Seven be the set of M ∈ S with even weight and let Sodd be the set of M ∈ S

with odd weight. Then define the shadow Sh(S) to be the set of Pauli operators E such that E commutes
with all elements of Seven and E anticommutes with all elements of Sodd.

a) Let Y ⊗n = Y ⊗ · · · ⊗ Y be the Pauli operator Y acting on all n qubits. We can define the shadow
enumerator for a general QECC to be Sh(z) =

∑
d Shdz

d, with

Shd =
1
2k

∑
Ed

Tr(EdΠE
†
dY

⊗nΠ∗Y ⊗n), (3)

where Π∗ is the complex conjugate of the projector Π. Show Shd ≥ 0 for a general QECC. Show that
for a stabilizer code, Shd is the number of elements of weight d in the shadow Sh(S).

b) Note that of the one-qubit Pauli operators, only Y has complex entries in its matrix, and that therefore
a tensor product of Pauli operators is real iff it contains an even number of Y s. We say a stabilizer
code is real iff all elements of the stabilizer are real (which implies that the projection on the code
space is real too). Show that S is real iff Y ⊗n ∈ Sh(S).

c) For a general QECC,

Sh(z) =
1

2n−k
(1 + 3z)nA

(
z − 1
1 + 3z

)
. (4)

(We will not show this.) Note that this differs from the quantum MacWilliams identity only in the
appearance of z − 1 as the numerator of the argument of A instead of 1 − z. Show that Shn >
0, and so the shadow of a stabilizer code always contains an element of maximum weight. (Hint:
limz→∞ Sh(z)/zn = Shn.)

d) Show that if a single-qubit Clifford gate U acts on one qubit of a stabilizer code S to give the code
U(S), then U(Sh(S)) = Sh(U(S)). Using this result and parts b and c, show that every stabilizer code
is equivalent to a real code. What if U is a multiple-qubit operation, such as CNOT?

e) Write down the consequences of eq. (4) for a [[3, 1]] QECC, and consider the constraints imposed by
Shd ≥ 0. Combine these constraints with the result of problem 3c and show that no [[3, 1, 2]] QECC
exists.
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