
Solution Set #5

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Problem 1. Fault-tolerance in higher dimensions

a) It is a straightforward calculation to determine what transformation a given gate does on the generalized
Pauli matrices. Then we can analyze how the transversal form of the gate transforms the stabilizer,
just as in the binary case. To determine the encoded operation, we look at the transformation of
X = X ⊗X−1 ⊗ I and Z = Z ⊗ I ⊗ Z−1.

F : |j〉 7→
d−1∑
k=0

ωjk|k〉 (1)

X → FXF † = Z (2)
Z → FZF † = X−1. (3)

Therefore X ⊗X ⊗X 7→ Z ⊗ Z ⊗ Z, which is in the stabilizer, and Z ⊗ Z ⊗ Z 7→ X−1 ⊗X−1 ⊗X−1,
which is also in the stabilizer (which is a group). Therefore, F⊗3 is a valid transversal gate; it maps

X 7→ Z ⊗ Z−1 ⊗ I = Z2 ⊗ I ⊗ Z = Z
−1

(4)

and
Z 7→ X−1 ⊗ I ⊗X = X−2 ⊗X−1 ⊗ I = X. (5)

In both equations, we first multiply by a element of the stabilizer, and then use the fact that d = 3 (so
X and Z have order 3). We find that the logical operation is F−1.

P : |j〉 7→ ωj(j+1)/2|j〉 (6)
X → ZX = ωXZ (7)
Z → Z. (8)

Thus, X ⊗X ⊗X 7→ ZX ⊗ ZX ⊗ ZX, which is in the stabilizer, and Z ⊗ Z ⊗ Z remains unchanged.
Thus, P⊗3 is a valid transversal gate; it maps

X 7→ ZX ⊗X−1Z−1 ⊗ I = ωX(Z ⊗ Z−1 ⊗ I) = ωXZ
−1

. (9)

and
Z 7→ Z. (10)

Since P−1 : X 7→ ω−1XZ−1, we identify the logical operation as Z2P−1 = Z−1P−1.

Sc : |j〉 7→ |cj〉 (11)
X → Xc (12)

Z → Zc−1
. (13)

1

This is only a unitary transformation when c 6= 0, but in this case, X ⊗X ⊗X 7→ Xc ⊗Xc ⊗Xc and
Z ⊗ Z ⊗ Z 7→ Zc−1 ⊗ Zc−1 ⊗ Zc−1

, so S⊗3
c is a valid transversal gate. It maps

X 7→ Xc ⊗X−c ⊗ I = X
c

(14)

and
Z 7→ Zc−1

⊗ I ⊗ Z−c−1
= Z

c−1

, (15)

so the logical operation is Sc.

SUM : |j〉|k〉 7→ |j〉|k + j〉. (16)
X ⊗ I → X ⊗X (17)
I ⊗X → I ⊗X (18)
Z ⊗ I → Z ⊗ I (19)
I ⊗ Z → Z−1 ⊗ Z. (20)

We can see that X⊗X⊗X is mapped to either itself or to two copies of itself, and Z⊗Z⊗Z is mapped
to itself or to the tensor product of its inverse with itself. Therefore, SUM⊗3 is a valid transversal gate.
It maps

X ⊗ I 7→ X ⊗X (21)
I ⊗X 7→ I ⊗X (22)
Z ⊗ I 7→ Z ⊗ I (23)

I ⊗ Z 7→ Z
−1 ⊗ Z. (24)

We thus identify the logical operation as SUM.

b) Since F interchanges X and Z, and P mixes them, these two gates cannot be performed transversally
on a general CSS code.

SUM can be, just as in the qubit case: Xa ⊗ I 7→ Xa ⊗Xa, so any generator consisting of powers of
X gets mapped either to itself or to two copies of itself. Also, as Z−1 is a power of Z, Z generators
get mapped either to themselves or a tensor product of their inverses with themselves.

In the qudit case, Sc is also a valid transversal gate for any CSS code: Any X generator gets mapped
to the cth power of itself, and any Z generator gets mapped to the c−1th power of itself. That is, any
linear transformation on the qudits is a valid transversal gate for a higher-dimensional CSS code.

c) The one-qudit Pauli group consists of products ωaXbZc. Ignoring the power of ω, Clifford group
operations map X 7→ XiZj and Z 7→ XkZl. The images of all other Pauli group elements are then
constrained by the group multiplication law. To preserve the commutation relations, we therefore need
that

α(XiZj , XkZl) = α(X, Z). (25)

Note that
α(XiZj , XkZl) = α(Zj , Xk) + α(Xi, Zl). (26)

Also,
α(Zj , Xk) = jα(Z,Xk) = jkα(Z,X) = jk, (27)

and, similarly,
α(Xi, Zl) = −il, (28)

so α(XiZj , XkZl) = jk − il. A general Clifford group element is therefore an element of the Pauli
group (to choose the phases ωa for the images of X and Z), times an operation with general (i, j, k, l)
satisfying il − jk = 1.

2

Suppose we have available the Pauli operators, F , P , and Sc (for all c 6= 0). Because of the Pauli
operators, we do not need to worry about the phase ωa. We can perform the operation Q = FPF−1,
which maps X 7→ X and Z 7→ X−1Z. PmQn maps X 7→ XZm and Z 7→ X−nZ1−mn (with some
phase).

If i 6= 0, the operation SiP
mQn maps X 7→ XiZmi−1

and Z 7→ X−inZi−1(1−mn). If we choose m = ij,
and n = −i−1k, then X 7→ XiZj and Z 7→ XkZl, where l = i−1(1 + jk), as required by the constraint
il− jk = 1. Given the Pauli operators, F , P , and Sc (for all c 6= 0), we can therefore perform a general
one-qudit Clifford group gate with i 6= 0.

We can also perform all cases where i = 0: Now jk = 1, so in particular j 6= 0. We must map X 7→ Zj

and Z 7→ XkZl. We could do this by first performing X 7→ Xj and Z 7→ Z−kX l (which we already
know is possible), and then performing F .

However, this set of operators is not minimal: We can, for instance, eliminate all but one Sc, keeping
one c such that c generates the multiplicative group for GF(p). (That is, c raised to some power gives
us every non-zero number modulo p.) Such a c always exists.

We cannot eliminate F , since otherwise all operations will leave the subgroup 〈Za〉 of the Pauli group
invariant. We cannot eliminate P , since otherwise all operations will map X to something either of
the form Xa or of the form Zb, and never XaZb.

Note that P rQsPmQn maps

X 7→ X1−msZm+r−mrs (29)
Z 7→ X−s−n+mnsZ1−mn−rs−rn+mnrs (30)

(with some phases). Let us choose mrs = m + r; then

X 7→ X1−ms (31)
Z 7→ X−s−n+mnsZ1−rs. (32)

Choose mns = s + n and X 7→ X1−ms, Z 7→ Z1−rs. Let us let m = 1 and s = 1 − c, with c 6= 0, 1.
We should also choose r = −c−1 and n = 1 − c−1 to give us mrs = m + r and mns = s + n. Then
X 7→ Xc and Z 7→ Zc−1

, so this implements Sc. That is, we can eliminate Sc from the generating set
completely.

We can also eliminate the Pauli operators: F 2 = S−1, so F 2|j〉 = |−j〉. Then

F 2P−1F 2P |j〉 = F 2P−1ωj(j+1)/2|−j〉 = ωj(j+1)/2+j(1−j)/2|j〉 = ωj |j〉 = Z|j〉. (33)

Thus, with only F and P , we can generate Z, and we can get X−1 via X−1 = FZF−1, and thus the
whole Pauli group. Therefore, F and P generate the single-qudit Clifford group.

Problem 2. Quantum MDS Codes
There are three errata in this problem: First, α should generate the multiplicative group of GF(p), so

that all the points α, α2, . . . , αp−2 are distinct. Second, in part a, you should show that Cp,µ corrects p−µ−1
erasure errors, not µ erasure errors. Third, in part e, the MDS code should be linear.

a) The classical codewords of Cp,µ consist of all the polynomials of degree µ evaluated at all the points of
GF(p). However, a general polynomial of degree µ is completely determined by its value at µ+1 distinct
points. Therefore, given only that many registers of the code, we can reconstruct the polynomial and
thus the full codeword. That is, we can correct for the erasure of p− (µ + 1) registers. The code thus
has distance at least p−µ. It has µ+1 encoded bits, corresponding to the coefficients of all polynomials
of degree µ. By the classical Singleton bound, d ≤ n−k +1 = p−µ. Therefore, the distance is exactly
µ, and the code is a [p, µ + 1, p− µ]p code.

3

b) Let us calculate the inner product of the vector (αjr) with the vector (αjs), where in both cases
j = 0, . . . , p− 2:

p−2∑
j=0

αrjαsj =
p−2∑
j=0

(αr+s)j . (34)

Suppose r + s ≤ p− 2. Then αr+s is a nonidentity element of GF(p), and we can evaluate the above
geometric sum as

(αr+s)(p−1) − 1
αr+s − 1

= 0, (35)

since αp−1 = 1. That is, the two vectors are orthogonal. Also, note that the vector (αjs) is orthogonal
to the all-1s vector by the same argument:

p−2∑
j=0

αsj =
(αs)(p−1) − 1

αr+s − 1
= 0. (36)

The p-component all-1s vector is orthogonal to itself. Therefore, the dual of Cp,µ contains Cp,ν when-
ever µ + ν ≤ p− 2, in particular for ν = p− µ− 2. The dual code to Cp,µ encodes p− µ− 1 bits, and
Cp,p−µ−2 encodes p− µ− 1 bits; therefore (Cp,µ)⊥ = Cp,p−µ−2.

c) The CSS construction uses two codes C1 and C2, and we take both of them in this case to be Cp,µ.
The construction requires that C⊥

1 ⊆ C2, which in this case requires that p − µ − 2 ≤ µ, meaning
µ ≥ (p − 2)/2. We form the stabilizer of the code by converting the parity check matrix of Cp,µ into
generators of the stabilizer: First we replace each entry a with Xa, and then we replace each entry a
with Za. The duality condition guarantees that these operators generate an Abelian group.

The stabilizer has 2(p − µ − 1) generators, so the quantum code encodes k = 2µ + 2 − p qudits. It
corrects up to p−µ− 1 X erasures and up to p−µ− 1 Z erasures, so its distance is at least p−µ. By
the quantum Singleton bound, the distance d of a QECC is bounded above by 2d ≤ n−k+2 = 2p−2µ,
so the distance is exactly p− µ. The code is a [[p, 2µ + 2− p, p− µ]]p QECC.

d) The dual code C⊥ of a [n, k, n−k+1] code C has parameters [n, n−k, d′]; we wish to show d′ ≥ k+1, in
which case the classical Singleton bound will show that it is exactly k +1, proving the result. To prove
that d′ ≥ k + 1, let us suppose we have a set of k columns of the parity check matrix for C⊥, which is
the generator matrix of C. Since C can correct for the erasure of n − k registers, the data in these k
columns is sufficient to reconstruct the codeword, and there are k different independent codewords we
could reconstruct. Therefore, the rank of the k-column submatrix must be at least k, which means it
is exactly k, and the k columns are linearly independent. This is true for any k columns, so d′ ≥ k +1.

e) Let me first confess that this problem is harder than I had really intended. (I should have given you a
pair of MDS codes one contained in the other.) However, it is still solvable, provided the distance of
the MDS code is not 1 or n. I should also have specified that the MDS code was linear, as otherwise the
CSS construction is not defined. If the distance is 1, then the dual has distance n, and if the distance
is n, the code is clearly equivalent to a repetition code. We have various options to turn a repetition
code into a CSS code, but the most straightforward is to use Shor’s construction to concatenate the
code with a Fourier-transformed version of itself to get a [[n2, 1, n]] code.

One trivial construction we can make is to take C1 to be the MDS code and C2 = C⊥
1 . The CSS

construction then gives us a [[n, 0, dQ]]p quantum code, with dQ = min(n − k + 1, k + 1) ≥ 2. Recall
from problem set 1 that a stabilizer code encoding 0 qubits must be nondegenerate by definition,
and we should make the same requirement for qudits. However, the CSS construction does give us a
nondegenerate code.

One might reasonably object that this is not a sensible QECC, and that we should try to find one
that actually encodes some qudits. However, we can directly create one from the [[n, 0, dQ]]p code Q
by discarding a register, as described below.

4

The code Q is nondegenerate and has distance at least 2. Therefore, it detects all errors XiZj on
the last qudit, so the stabilizer must contain elements M1 and M2 which act as XaZb and Xa′Zb′ for
some nonzero (a, b), (a′, b′) such that if a = ca′, then b 6= cb′. Consequently, not both a and a′ are 0
and not both b and b′ are 0. Assume without loss of generality a′ 6= 0. Then N1 = Ma′

1 M−a
2 acts as

Za′b−ab′ = Zr on the last qudit, and we know that b 6= ab′/a′, so r 6= 0. Similarly, N2 = M b′

1 M−b
2 acts

as Xab′−a′b = Xs on the last qudit, with s 6= 0. Then Nr−1

1 is in the stabilizer and acts as X on the
last qudit, and Ns−1

2 is in the stabilizer and acts as Z on the last qudit. We can choose generators for
the stabilizer of Q starting with N1 and N2, and ensure that all the other generators act as the identity
on the nth register by multiplying generators that don’t have this property by appropriate powers of
N1 and N2.

Now let us discard the last register, and with it the generators N1 and N2. The remaining generators
act as the identity on the last register, so they remain unchanged, and in particular, they still commute,
and therefore generate a stabilizer on n− 1 qudits. There are n− 2 generators, and therefore the code
encodes (n− 1)− (n− 2) = 1 qudit. The code has experienced effectively 1 erasure, and thus can still
correct dQ − 2 more, so its distance is at least dQ − 1: we have a [[n− 1, 1, dQ − 1]]p code.

An equivalent construction can be obtained by puncturing the classical code: Take the code C1 to be
all codewords of the original classical MDS code without the last register. The parameters of C1 are
[n − 1, k, n − k]p: we have the same number of encoded registers, and have experienced one erasure,
so the distance has decreased by 1. This is still an MDS code. The code C⊥

2 ⊂ C1 is the set of all
codewords of C1 for which the original MDS code had a 0 in the last register. The distance of this code
must be at least as large as the distance of the original MDS code, as the final register is predetermined,
so we can still correct the same number of erasures. The code C⊥

2 encodes k − 1 registers, as we have
effectively added one parity check (parity of the last register alone) to the original code’s parity check
matrix. Therefore, the parameters of C⊥

2 are [n − 1, k − 1, n − k + 1]p, which is also MDS, and by
part d, the parameters of C2 are [n− 1, n− k, k]p. Therefore, with the CSS construction, we have an
[[n− 1, 1, d̃Q]]p QECC, with d̃Q = min(n− k, k).

Problem 3. Threshold with Local Gates
For part a, I was considering the distance D to be the distance from the data block to the most distant

ancilla, which actually means the distance to a level L ancilla should be (2D)L/2. This is taken into
account in part b, but there are other problems, so the recursion relation in part b should actually read
PL = 4C(2D)2LP 2

L−1.

a) We arrange our ancillas so that the ancillas needed for level 1 error correction are immediately adjacent
to the data block; we can do this keeping all of them within a distance D by assumption. The level
2 ancillas, needed for level 2 error correction, must be further away. Furthermore, those ancillas are
themselves encoded with one level of the QECC, so they require their own level 1 ancillas. We surround
each level 2 ancilla with an identical collection of level 1 ancillas, which can therefore all be placed
within a distance D of the level 2 ancilla. We can imagine that each level 2 ancilla and its associated
level 1 ancillas form big indivisible block, and we arrange these blocks just as we did the level 1 ancillas.
Similarly, each level 3 ancilla needs a collection of level 2 ancillas, each of which has its own collection
of level 1 ancillas. We consider the complete collection as an even bigger indivisible block and continue
moving up levels in this way. In 3 dimensions, we would get a layout something like what is shown in
figure 1, for instance.

The upshot is that the block associated with a level 2 ancilla has size D, and that when we arrange
these blocks, we should therefore scale all distances by 2D, as this is the minimum distance between
the centers of these blocks. The assortment of level 2 blocks, when put together, would therefore all be
within a distance 2D2 of the data block. When we put together the collections of level 2 ancillas, we
should therefore scale by 4D2, so the size of a level 3 collection is 4D3. In general, a level L collection
consists of a bunch of level L − 1 collections, each of size (2D)L−1/2; therefore the level L collection
has size (2D)L/2.

5

a)

��
���

���
��

��
���

���
��

qubit 1

�
�����

��
���

���
��

qubit 2

��
����

��
���

���
��

qubit 3

b)

d 2 2 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d 2 2 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d 2 2 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d 2 2 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d 2 2 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1: a) The logical qubits of the computer lie on separate planes. b) Each plane has the data on one
line, adjacent to ancillas at various levels. The letter d represents a data qubit, 1 is a qubit from a level 1
ancilla, 2 is from a level 2 ancilla, and so on.

b) At level L all distances are scaled by (2D)L. In order to perform a gate at level L, we must move
the level L block this distance, do the gate, and then move the block back to where it started, a total
distance of 2(2D)L. This increases the effective error rate per gate by this factor, so the effective error
rate PL−1 for a nearest-neighbor gate at level L−1 becomes 2(2D)LPL−1. In the absence of geometry,
the recursion relation is PL = CP 2

L−1; taking into account the effects of distance, it should therefore
be PL = C[2(2D)LPL−1]2.

c) Assume we have the recursion relation PL = ABLP 2
L−1. Then

PL = ABL(ABL−1)2P 4
L−2 (37)

= ABLA2B2(L−1)A4B4(L−2)P 8
L−3 (38)

=

(
L−1∏
i=0

A2i

B2i(L−i)

)
P 2L

0 . (39)

Now,
L−1∏
i=0

A2i

= A
∑L−1

i=0 2i

= A2L−1, (40)

6

and

logB

L−1∏
i=0

B2i(L−i) =
L−1∑
i=0

2i(L− i) (41)

= L(2L − 1)−
L−1∑
i=0

i2i (42)

= L(2L − 1)−
L−1∑
i=0

i−1∑
j=0

2i (43)

= L(2L − 1)−
L−2∑
j=0

L−1∑
i=j+1

2i (44)

= L(2L − 1)−
L−2∑
j=0

(2L − 2j+1) (45)

= L(2L − 1)− (L− 1)2L + 2(2L−1 − 1) (46)
= 2L+1 − L− 2. (47)

Thus,

PL = A2L

B2L+1−LP 2L

0 /AB2 (48)

≤ (AB2P0)2
L

/AB2. (49)

We thus find a threshold Pc = 1/(AB2). If P0 < Pc, then PL → 0 as L →∞.

d) The problem is that the SWAP gate is a two-qubit gate, and therefore an error on a single SWAP gate
can cause errors on two qubits. If we are not careful, we may well interact two qubits in a single block
of the code, causing an uncorrectable error with only a single gate error.

In two or more dimensions, we can solve this problem by arranging things so that there is room to
move computational qubits out of the way to let them pass each other. A possible arrangement is
shown in figure 2. That way, the SWAP gate never acts on two useful qubits at the same time — at
least one of them is always a filler qubit whose value does not matter. Since the SWAP gate does not
propagate errors (it swaps them along with the data), we don’t have to worry about errors leaking
from the filler qubits into the data qubits.

e) On a truly one-dimensional lattice, we can’t move qubits out of the way, so the solution from the
last problem won’t help. We could manage in a lattice with next-to-nearest neighbor interactions by
alternating filler qubits with regular qubits, or with nearest-neighbor interactions in a system consisting
of two adjacent lines of qubits, or even a line with periodic single-qubit alcoves off to the side.

However, if none of these geometries is available, we do still have a threshold: The SWAP gate does
not propagate errors, so the worst thing it can do is cause two errors with one bad gate. Therefore,
if we concatenate using a code that corrects two errors rather than one, we can still correct for the
failure of a single SWAP gate. The basic logic of parts a-c holds unchanged — qubits or blocks have to
move a distance D to interact with their ancillas; moving a distance D increases the error rate linearly
with the distance, so the recursion relation has an exponential factor in the level. The only difference
is that we have a code that ideally should correct two errors, but we still have a recursion relation in
P 2

L−1 since two gate errors could cause a problem if at least one is in a SWAP gate.

7

a)

x x x x xo o o o

x x x x xo o o o

x x x x xo o o o

o o o o o

o o o o o b)

x x x x xo o o o

x x x x xo o o o

x x x x xo o o o

o o o o oc c c c

o o o o oc c c c

c)

x

x

o

o

A o

o

o

c

c

?

?

6

6

-

-

�

�

- o

o

c

c

A o

o

o

x

x

?

?

?

?

6

6

6

6

-

c

c

o

o

A

o

o

o

x

x

?

?

6

6

-

-

�

�

-

x

x

c

c

A

o

o

o

o

o

-

-

�

�

Figure 2: a) Computational qubits (x) arranged on a square lattice, interspersed by auxiliary qubits (o). b)
adds cul-de-sacs (c) for moving qubits out of the way. c) Moving a data qubit (A) two positions.

Problem 4. Ancilla Purification for Toffoli Gates

a)

(X ⊗ C-Z)|Ψ000〉 =
∑
ijk

(−1)ijk+jk|i⊕ 1, j, k〉 (50)

=
∑
i′jk

(−1)(i
′⊕1)jk+jk|i′jk〉 (51)

=
∑
i′jk

(−1)i′jk|i′jk〉 (52)

= |Ψ000〉. (53)

The state |Ψ000〉 is cyclic, so as it is a +1-eigenstate of M1 = X ⊗ C-Z, it is also an eigenstate of its
cyclic permutations M2 and M3. Note that the three operators M1, M2, and M3 commute.
Since Z ⊗ I and I ⊗ Z both commute with C-Z, and X anticommutes with Z, |Ψabc〉 has eigenvalue
(−1)a for M1, (−1)b for M2 (which has X on the second qubit) and (−1)c for M3 (which has X on
the third qubit). There are 8 states |Ψabc〉 and they all have different eigenvalues for the set of three
commuting operators M1, M2, M3, and therefore are all orthogonal to each other. They therefore form
a basis for the 8-dimensional Hilbert space of 3 qubits.

b) We can write a general pure state by expanding it in the basis |Ψabc〉:

|φ〉 〈φ| =
∑

abca′b′c′

qabcq
∗
a′b′c′ |Ψabc〉 〈Ψa′b′c′ |. (54)

Then∑
rst

Mr
1 Ms

2M t
3|φ〉 〈φ|Mr

1 Ms
2M t

3 =
∑

abca′b′c′rst

qabcq
∗
a′b′c′M

r
1 Ms

2M t
3|Ψabc〉 〈Ψa′b′c′ |Mr

1 Ms
2M t

3 (55)

=
∑

abca′b′c′rst

qabcq
∗
a′b′c′(−1)ra+sb+tc+ra′+sb′+tc′ |Ψabc〉 〈Ψa′b′c′ |(56)

=
∑

abca′b′c′

qabcq
∗
a′b′c′δaa′δbb′δcc′ |Ψabc〉 〈Ψa′b′c′ | (57)

=
∑
abc

|qabc|2|Ψabc〉 〈Ψabc|. (58)

8

This sort of operation — averaging over some operations to make a more symmetric density matrix —
is frequently known as a “twirl”.

c) After the CNOTs, we have the state∑
ijki′j′k′

(−1)ijk+i′j′k′+ia+jb+kc+i′a′+j′b′+k′c′ |ijk〉|i⊕ i′, j ⊕ j′, k ⊕ k′〉. (59)

If we measure the fifth qubit, getting the result j̃ = j ⊕ j′, and perform the appropriate conditional
operation, we have the state∑

ijki′k′

(−1)ijk+i′(j⊕j̃)k′+j̃(ik)+ia+jb+kc+i′a′+(j⊕j̃)b′+k′c′ |i, j ⊕ j̃, k〉|i⊕ i′, j̃, k ⊕ k′〉. (60)

Then we measure the sixth qubit, getting the result k̃ = k⊕k′ and perform the appropriate conditional
operation. We now have the state∑

ijki′

(−1)ijk+i′(j⊕j̃)(k⊕k̃)+j̃(ik)+k̃i(j⊕j̃)+ia+jb+kc+i′a′+(j⊕j̃)b′+(k⊕k̃)c′ |i, j ⊕ j̃, k ⊕ k̃, i⊕ i′〉, (61)

where we have dropped the last two qubits. If we change the summed variables i′, j, and k to i′′ = i⊕i′,
j′′ = j ⊕ j̃ and k′′ = k ⊕ k̃, we can write the state as∑

ij′′k′′i′′

(−1)i′′j′′k′′+ia+(j′′⊕j̃)b+(k′′⊕k̃)c+(i⊕i′′)a′+j′′b′+k′′c′ |i, j′′, k′′, i′′〉. (62)

We can discard the overall phase (−1)j̃b+k̃c from this expression, giving us∑
ij′′k′′i′′

(−1)i(a+a′)+i′′j′′k′′+j′′(b+b′)+k′′(c+c′)+i′′a′ |i〉|j′′, k′′, i′′〉 =
∑

i

(−1)i(a+a′)|i〉|Ψb+b′, c+c′, a′〉. (63)

When we perform the Hadamard on the first qubit and measure it, we get a ⊕ a′, as we wanted to
show.

d) We keep the state if a ⊕ a′ = 0, which happens if both a coordinates are errors or if neither is. The
probability of having a⊕a′ = 0 is thus (1−pa)2+p2

a and the probability of having an a error conditioned
on having a⊕ a′ is p2

a/[(1− pa)2 + p2
a].

The probability of having a b error, regardless of whether or not we keep the state, is the probability
of having exactly one b error among the first two states: 2pb(1 − pb). Since the a and b errors are
uncorrelated, the probability of having a b error remains 2pb(1−pb) even after we condition on keeping
the state. Similarly, the probability of having a c error conditioned on keeping the state is 2pc(1− pc).

Thus, taking into account the cyclic shift between a, b, and c, we have the new probabilities

(p′a, p′b, p
′
c) = (2pb(1− pb), 2pc(1− pc), p2

a/[(1− pa)2 + p2
a]. (64)

e) The error probabilities for b and c nearly double after a purification step, but the error probability for
a decreases as the square. Therefore, let us perform the purification step three times, giving us the
chance to decrease all three probabilities.

We can simply the calculations by noting that (1 − pa)2 + p2
a has minimum value 1/2 (achieved at

pa = 1/2), so
(p′a, p′b, p

′
c) ≤ (2pb, 2pc, 2p2

a). (65)

After we perform two steps, we have error probabilities

(p′′a, p′′b , p′′c) ≤ (4pc, 4p2
a, 8p2

b), (66)

9

and after three steps of purification, we have error probabilities

(p′′′a , p′′′b , p′′′c) ≤ (8p2
a, 16p2

b , 32p2
c). (67)

If pa < 1/8, pb < 1/16, and pc < 1/32, the error probabilities have all decreased. By repeating this
cycle many times, we can drive the error probabilities to arbitrarily low values, meaning that an initial
error rate of 1/32 is a threshold for purification.

We can do better in two ways: First by noting that the threshold is well below 1/2, so that we have a
much better bound on (1−pa)2+p2

a. Indeed, in the above argument, we never have an error probability
greater than 1/8, so (1− pa)2 + p2

a ≥ 25/32 = 1/1.28. Of course, this would mean that the c error rate
does increase above 1/8 before it is decreased again, so we have to be more careful. 1/5 is a better
bound to use: This gives us (1− pa)2 + p2

a ≥ 17/25 > 2/3. We then have probabilities after three steps
of recursion

(p′′′a , p′′′b , p′′′c) ≤ (6p2
a, 12p2

b , 24p2
c), (68)

giving a threshold value of 1/24.

Second, we can note that even if the three error rates start off equal in value, after this recursion, they
rapidly become unequal. It is worth our while to rearrange the qubits in the state so that we are always
reducing the error rate for the error type that has the largest current error rate. For instance, if we
start out with all error rates equal to 1/16, we can still decrease them indefinitely: (1/16, 1/16, 1/16) →
(1/8, 1/8, 1/128) → (1/4, 1/128, 1/32) → (1/64, 1/16, 1/8) → (1/8, 1/32, 1/32) → (1/16, 1/16, 1/32) →
(1/8, 1/16, 1/128) → (1/8, 1/64, 1/32) → (1/32, 1/16, 1/32) → (1/16, 1/16, 1/128) → (1/8, 1/64, 1/128) →
(1/32, 1/64, 1/32) and so on. The threshold is therefore definitely above 1/16.

Indeed, it turns out that you can increase the threshold substantially above this by purifying other
states. Single-qubit states are preferred, as there is only one error rate to purify there, but the
procedures are more complicated. See quant-ph/0403025 by Bravyi and Kitaev for details.

f) If we have a base error rate of pg per gate or measurement, we get additional terms in the recursion
relation. We will want to perform a new twirl (as per part b) after each purification step in order to
retain a mixture of |Ψabc〉 states, as opposed to a superposition which might be created by the errors.
There is also some trouble because the errors can cause the a, b, and c error rates to become correlated.
(E.g., a measurement error causes us to perform the wrong operation on multiple qubits.)

However, the basic conclusion still holds: The revised recursion relations are

(p′a, p′b, p
′
c) ≤ (2pb + 11pg, 2pc + 11pg, 2p2

a + 11pg). (69)

(We have 11 gates and measurements in the circuit, and if one goes wrong, we allow it to cause any
set of errors.) Given low enough error rates, the squaring will still beat the doubling; however, rather
than shrink asymptotically to zero, the error rates will have some limiting value due to the constant
influx of new gate errors.

10

