
Solution Set #8

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. Fault-Tolerance With SWAPs Within a Code Block

a) Basically, we want each fault during the gadget to count as two errors. Thus, EC property 1 becomes
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Similarly, we get a new gate property 1
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and gate property 2
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Our old gadgets, modified to use nearest-neighbor gates everywhere, with SWAP gates to move qubits
around, do not satisfy the old definition of fault tolerance, since a single failed SWAP gate can cause
two errors, but do satisfy these revised properties.

b) We have much the same proof as before. Now, we allow r1 faults in the first EC step, r2 faults in
the gate gadget, and r3 faults in the second EC step, but r1 + r2 + r3 ≤ 1 even though t = 2. Thus,
2(r1 + r2 + r3) ≤ t.
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c) Again a single fault can cause two errors in neighboring locations, just as with SWAP gates. That
is, each fault can accomplish something that could only be done with two faults in the original model
from the lectures. Our FT gadgets therefore no longer satisfy the old conditions, but do still satisfy
the conditions from part a, since they result from replacing each fault during a gadget with two faults.

Now let us consider the behavior of a SWAP gate under level reduction. A FT SWAP gate consists of
a number of physical SWAP gates, and (depending how exactly we implement it), two failed physical
SWAP gates (or one failed SWAP gate and one other fault during one of the EC steps in the SWAP
extended rectangle) can cause a logical SWAP gate to fail. Thus, after level reduction, the error rate
for a physical SWAP gate decreases to O(p2), just like any other gate.

However, note that this only is malignant (in the sense of causing correctness to fail) if one of the
faulty SWAPs is between physical qubits in the same block of the code. This is because SWAP does
not propagate errors, and we are using a code with t = 2, meaning we need 3 errors per block to cause
a logical error. Thus, if there are only two faults, we should (in an optimal analysis) replace a bad
SWAP extended rectangle with two faults by a SWAP gate which only causes an error on one of the
two qubits involved. In order for both qubits to have errors after level reduction, we need a SWAP
extended rectangle with three faults. That is, under level reduction, we get a SWAP gate with two
very different kinds of errors. We get errors on only a single qubit involved in the SWAP gate at a rate
O(p2), and we have errors on both of the two qubits involved in the SWAP gate at O(p3). This is in
contrast to a CNOT gate or other two-qubit gate, which propagate errors from block to block, and for
which level reduction can therefore leave errors on both qubits involved in the gate with probability
O(p2).

Correlated two-qubit errors experience a similar effect. Two faults, one of which is a correlated two-
qubit fault within a block, can cause an error on a single block of the code. To get simultaneous errors
on two adjacent blocks, we need three physical faults: a two-qubit fault in each block, plus another
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two-qubit fault causing one physical error in each block. (Another possibility is three two-qubit faults,
each of which introduces one error per block.) Since the two-qubit errors are only on adjacent qubits,
this arrangement can only happen when the two blocks are physically adjacent. One difference from
the SWAP gate case is in the constant factors: since the SWAP gate involves moving all the qubits of
one block past all the qubits of the other block, there are many more opportunities for a faulty SWAP
gate interacting qubits from both blocks, whereas in the case of correlated two-qubit errors, only at
the border of the two blocks is there a possibility of having a single two-qubit fault cause one physical
error per block.

The upshot is that when there is a source of correlated two-qubit errors at error rate p, the probability
of a correlated two-qubit error between adjacent qubits after level reduction is only O(p3). There
are also one-qubit errors occurring after level reduction with probability O(p2), and the physical two-
qubit errors contribute to that. This is similar to the situation with SWAP gates, which are bad with
probability O(p2), but only have errors on both qubits with probability O(p3). If we want to define a
good error model for concatenated SWAP gates, we should separate out these two types of SWAP gate
errors, which requires adding an additional type of error to our original model (bad SWAP gates with
error on only one qubit), whereas our model of correlated two-qubit errors was already in addition to
a direct source of single-qubit storage errors.

Problem #2. Pseudothresholds for Fault-Tolerance

a) The largest single-bit operation is the NOT gate (performed transversally), and the NOT extended
rectangles contains 3 NOT gates plus two EC steps, for a total of 39 single-bit operations, 24 CNOTs,
and 6 Toffoli gates, so

p1(single) =
(

39
2

)
p0(single)2 + 39 · 24p0(single)p0(CNOT) +

(
24
2

)
p0(CNOT)2 (1)

+ 39 · 6p0(single)p0(Tof) + 24 · 6p0(CNOT)p0(Tof) +
(

6
2

)
p0(Tof)2 (2)

= 741p0(single)2 + 936p0(single)p0(CNOT) + 276p0(CNOT)2 (3)

+ 234p0(single)p0(Tof) + 144p0(CNOT)p0(Tof) + 15p0(Tof)2. (4)

The CNOT rectangle has 3 CNOTs and 4 EC steps, for a total of 72 single-bit operations, 51 CNOTs,
and 12 Toffoli gates, giving

p1(CNOT) =
(

72
2

)
p0(single)2 + 72 · 51p0(single)p0(CNOT) +

(
51
2

)
p0(CNOT)2 (5)

+ 72 · 12p0(single)p0(Tof) + 51 · 12p0(CNOT)p0(Tof) +
(

12
2

)
p0(Tof)2 (6)

= 2556p0(single)2 + 3672p0(single)p0(CNOT) + 1275p0(CNOT)2 (7)

+ 864p0(single)p0(Tof) + 612p0(CNOT)p0(Tof) + 66p0(Tof)2. (8)

The Toffoli rectangle has 3 Toffolis and 6 EC steps, for a total of 108 single-bit operations, 72 CNOTs,
and 21 Toffoli gates, giving us

p1(Tof) =
(

108
2

)
p0(single)2 + 108 · 72p0(single)p0(CNOT) +

(
72
2

)
p0(CNOT)2 (9)

+ 108 · 21p0(single)p0(Tof) + 72 · 21p0(CNOT)p0(Tof) +
(

21
2

)
p0(Tof)2 (10)

= 5778p0(single)2 + 7776p0(single)p0(CNOT) + 2556p0(CNOT)2 (11)

+ 2268p0(single)p0(Tof) + 1512p0(CNOT)p0(Tof) + 210p0(Tof)2. (12)
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b) Under this assumption, the recursion relations from part a simplify to

p1(single) =5418p2 (13)

p1(CNOT) =21858p2 (14)

p1(Tof) =49320p2. (15)

We then find p1(single) ≤ p0(single) = p when p = 1/5418, p1(CNOT) ≤ p0(CNOT) = 2p when
p = 1/10929, and p1(Tof) ≤ p0(Tof) = 3p when p = 1/16440. That is, we find

pT (1, single) =1/5418 ≈ 1.85× 10−4 (16)

pT (1,CNOT) =2/10929 ≈ 1.83× 10−4 (17)

pT (1,Tof) =3/16440 ≈ 1.82× 10−4. (18)

c) The equations from part a can be used for each additional level of concatenation to give the formulas
that determine pj(single), pj(CNOT), and pj(Tof) from the values at level j − 1. In particular, under
the given set of assumptions, we find that

p2(single) ≈5.19× 1011p4 (19)

p2(CNOT) ≈2.17× 1012p4 (20)

p2(Tof) ≈5.06× 1012p4 (21)

We then find pseudothresholds

pT (2, single) ≈1/(5.19× 1011)1/3 ≈ 1.2× 10−4 (22)

pT (2,CNOT) ≈2(2/2.17× 1012)1/3 ≈ 2.0× 10−4 (23)

pT (2,Tof) ≈3(3/5.06× 1012)1/3 ≈ 2.5× 10−4 (24)

It is worth noting that while the single-bit operations have the lowest pseudothresholds, that pseu-
dothreshold corresponds to the largest value of p, while the Toffoli gate pseudothreshold corresponds
to the smallest value of p.

d) For any given starting point (p0(single), p0(CNOT), p0(Tof)) on or off the 1 : 2 : 3 ray, we could iterate
the map from part a many times. If at any level, all three error rates decrease when another level of
concatenation is added, then we know they will continue to decrease, indicating that the starting point
was inside the threshold surface. That will therefore be our criterion here.

For both parts b and c, the most restrictive pseudothreshold is for the Toffoli gate, in the sense that
it corresponds to the lowest value of p, so when we are below the Toffoli gate pseudothreshold (along
the 1 : 2 : 3 ray), we are certainly below the threshold surface. From part b, we find that we are below
the threshold surface if p ≤ 6.0× 10−5, whereas from part c, we find that we are below the threshold
surface if p ≤ 8.4× 10−5. Both are lower bounds, but the second is clearly tighter, so we use it finding
that (8.4× 10−5, 1.6× 10−4, 2.5× 10−4) is below the threshold surface and therefore provides a lower
bound on the point of intersection.

It is worth noting that after one level, we have left the starting ray, and have a different ratio of
p1(single) : p1(CNOT) : p1(Tof). At level 2, the ratio p2(single) : p2(CNOT) : p2(Tof) is similar to
the level 1 value because at level 1, the error rates are dominated by the failures during the error
corrections, so the error rates at level 1 or higher simply reflect the number of error correction steps
in each type of extended rectangle, with a small correction for the transversal gate.
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