
10

Build It, Break It, Fix It: Contesting Secure Development

JAMES PARKER, MICHAEL HICKS, ANDREW RUEF, MICHELLE L. MAZUREK,

DAVE LEVIN, and DANIEL VOTIPKA, University of Maryland, USA

PIOTR MARDZIEL, Carnegie Mellon University Silicon Valley, USA

KELSEY R. FULTON, University of Maryland, USA

Typical security contests focus on breaking or mitigating the impact of buggy systems. We present the Build-
it, Break-it, Fix-it (BIBIFI) contest, which aims to assess the ability to securely build software, not just break it.
In BIBIFI, teams build specified software with the goal of maximizing correctness, performance, and security.
The latter is tested when teams attempt to break other teams’ submissions. Winners are chosen from among
the best builders and the best breakers. BIBIFI was designed to be open-ended—teams can use any language,
tool, process, and so on, that they like. As such, contest outcomes shed light on factors that correlate with
successfully building secure software and breaking insecure software. We ran three contests involving a total
of 156 teams and three different programming problems. Quantitative analysis from these contests found that
the most efficient build-it submissions used C/C++, but submissions coded in a statically type safe language
were 11× less likely to have a security flaw than C/C++ submissions. Break-it teams that were also successful
build-it teams were significantly better at finding security bugs.
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1 INTRODUCTION

Cybersecurity contests [3, 8, 30, 46, 53] are popular proving grounds for cybersecurity talent. Ex-
isting contests largely focus on breaking (e.g., exploiting vulnerabilities or misconfigurations) and
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mitigation (e.g., rapid patching or reconfiguration). They do not, however, test contestants’ ability
to build (i.e., design and implement) systems that are secure in the first place. Typical program-
ming contests [1, 7, 9] do focus on design and implementation, but generally ignore security. This
state of affairs is unfortunate, because experts have long advocated that achieving security in a
computer system requires treating security as a first-order design goal [58] and is not something
that can be added after the fact. As such, we should not assume that good breakers will necessarily
be good builders [41] or that top coders can produce secure systems.

This article presents Build-it, Break-it, Fix-it (BIBIFI), a new security contest focused on build-

ing secure systems. A BIBIFI contest has three phases. The first phase, Build-it, asks small develop-
ment teams to build software according to a provided specification including security goals. The
software is scored for being correct, efficient, and featureful. The second phase, Break-it, asks teams
to find defects in other teams’ build-it submissions. Reported defects, proved via test cases vetted
by an oracle implementation, benefit a break-it team’s score and penalize the build-it team’s score;
more points are assigned to security-relevant problems. (A team’s break-it and build-it scores are
independent, with prizes for top scorers in each category.) The final phase, Fix-it, asks builders to
fix bugs and thereby get points back if distinct break-it test cases identify the same defect.

BIBIFI’s design aims to minimize the manual effort of running a contest, helping it scale. BIBIFI’s
structure and scoring system also aim to encourage meaningful outcomes, e.g., to ensure that top-
scoring build-it teams really produce secure and efficient software. For example, break-it teams
may submit a limited number of bug reports per build-it submission, and will lose points during
fix-it for test cases that expose the same underlying defect or a defect also identified by other
teams. As such, they are encouraged to look for bugs broadly (in many submissions) and deeply
(to uncover hard-to-find bugs).

In addition to providing a novel educational experience, BIBIFI presents an opportunity to study
the building and breaking process scientifically. In particular, BIBIFI contests may serve as a quasi-
controlled experiment that correlates participation data with final outcome. By examining artifacts
and participant surveys, we can study how the choice of build-it programming language, team size
and experience, code size, testing technique, and so on, are associated with a team’s (non)success
in the build-it or break-it phases. To the extent that contest problems are realistic and contest
participants represent the professional developer community, the results of this study may provide
useful empirical evidence for practices that help or harm real-world security. Indeed, the contest
environment could be used to incubate ideas to improve development security, with the best ideas
making their way to practice.

This article studies the outcomes of three BIBIFI contests that we held during 2015 and 2016,
involving three different programming problems. The first contest asked participants to build a
secure, append-only log for adding and querying events generated by a hypothetical art gallery
security system. Attackers with direct access to the log, but lacking an “authentication token,”
should not be able to steal or corrupt the data it contains. The second contest asked participants
to build a pair of secure, communicating programs, one representing an ATM and the other repre-
senting a bank. Attackers acting as a man in the middle (MITM) should neither be able to steal
information (e.g., bank account names or balances) nor corrupt it (e.g., stealing from or adding
money to accounts).1 The third contest required participants to build a access-controlled, multiuser

data server that protects the data of users. Users are authenticated via password checking, and
access control with delegation restricts how data is read and modified. All contests drew partici-
pants from a MOOC (Massive Online Open Courseware) course on cybersecurity. MOOC partici-
pants had an average of 10 years of programming experience and had just completed a four-course

1Such attacks are realistic in practice, as detailed in a 2018 analysis of actual ATMs [63].
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sequence including courses on secure software and cryptography. The second and third contests
also involved graduate and undergraduate students with less experience and training. The first
contest had 156 MOOC participants (comprising 68 teams). The second contest was composed of
122 MOOC participants (comprising 41 teams) and 23 student participants (comprising 7 teams).
The last contest had 68 MOOC participants (comprising 25 teams) and 37 student participants
(comprising 15 teams).

BIBIFI’s design permitted it to scale reasonably well. For example, one full-time person and
two part-time judges ran the first contest in its entirety. This contest involved over one hundred
participants who submitted more than 20,000 test cases. And yet, organizer effort was limited to
judging that the few hundred submitted fixes addressed only a single conceptual defect; other
work was handled automatically or by the participants themselves.

Rigorous quantitative analysis of the contests revealed several interesting, statistically signif-
icant effects. Considering build-it scores: Writing code in C/C++ increased build-it scores ini-
tially but also increased chances of a security bug being found later; C/C++ programs were 11×
more likely to have a reported security bug than programs written in a statically type-safe lan-
guage. Considering break-it scores: Larger teams found more bugs during the break-it phase, and
teams that also qualified during the build-it phase found more security bugs than those that did
not. Other trends emerged, but did not reach significance. Build-it teams with more developers
tended to produce more secure implementations. More programming experience was helpful for
breakers.

We manually examined both build-it and break-it artifacts. Successful build-it teams typically
employed third-party libraries—e.g., SSL, NaCL, and BouncyCastle—to implement cryptographic
operations and/or communications, which provided primitives such as randomness, nonces, and
so on. Unsuccessful teams typically failed to employ cryptography, implemented it incorrectly,
used insufficient randomness, or failed to use authentication. Break-it teams found clever ways to
exploit security problems; some MITM implementations were quite sophisticated.

This article extends a previously published conference paper [56] to include data from an ad-
ditional contest run, as well as more details about our overall experience. Since publishing that
paper, we have made the BIBIFI code and infrastructure publicly available so that others may run
their own competitions. We, and those at other universities, including Universität Paderborn, Uni-
versity of Pennsylvania, Texas A&M University, and Carnegie Mellon University, have already
used the BIBIFI infrastructure to run contests in a classroom setting. More information, data, and
opportunities to participate are available at https://builditbreakit.org and the BIBIFI codebase is at
https://github.com/plum-umd/bibifi-code.

In summary, this article makes two main contributions. First, it presents BIBIFI, a security con-
test that encourages building, not just breaking. Second, it presents a detailed description of three
BIBIFI contests along with success and failure stories as well as a quantitative analysis of the re-
sults. The article is organized as follows. We present the design of BIBIFI in Section 2 and describe
specifics of the contests we ran in Section 3. We present success and failure stories of contestants
in Section 4 and a quantitative analysis of the data we collected in Section 5. We review related
work in Section 6 and conclude in Section 7.

2 BUILD-IT, BREAK-IT, FIX-IT

This section describes the goals, design, and implementation of the BIBIFI competition. At the
highest level, our aim is to create an environment that closely reflects real-world development
goals and constraints, and to encourage build-it teams to write the most secure code they can,
and break-it teams to perform the most thorough, creative analysis of others’ code they can. We
achieve this through a careful design of how the competition is run and how various acts are scored
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(or penalized). We also aim to minimize the manual work required of the organizers—to allow the
contest to scale—by employing automation and proper participant incentives.

2.1 Competition Phases

We begin by describing the high-level mechanics of a BIBIFI competition. BIBIFI may be admin-
istered online, rather than on-site, so teams may be geographically distributed. The contest com-
prises three phases, each of which lasts about two weeks for the contests we describe in this
article.

BIBIFI begins with the build-it phase. Registered contestants aim to implement the target soft-
ware system according to a published specification created by the contest organizers. A suitable
target is one that can be completed by good programmers in a short time (just about two weeks,
for the contests we ran), is easily benchmarked for performance, and has an interesting attack
surface. The software should have specific security goals—e.g., protecting private information or
communications—which could be compromised by poor design and/or implementation. The soft-
ware should also not be too similar to existing software to ensure that contestants do the coding
themselves (while still taking advantage of high-quality libraries and frameworks to the extent
possible). The software must build and run on a standard Linux VM made available prior to the
start of the contest. Teams must develop using Git [5]; with each push, the contest infrastructure
downloads the submission, builds it, tests it (for correctness and performance), and updates the
scoreboard. Section 3 describes the three target problems we developed: (1) an append-only log
(aka, Secure Log), (2) a pair of communicating programs that simulate a bank and ATM (aka, ATM),
and (3) a multi-user data server with custom access control policies (aka, Multiuser DB).

The next phase is the break-it phase. Break-it teams can download, build, and inspect all qual-
ifying build-it submissions, including source code; to qualify, the submission must build properly,
pass all correctness tests, and not be purposely obfuscated (accusations of obfuscation are man-
ually judged by the contest organizers). We randomize each break-it team’s view of the build-it
teams’ submissions, but organize them by meta-data, such as programming language used. (Ran-
domization aims to encourage equal scrutiny of submissions by discouraging break-it teams from
investigating projects in the same order.) When they think they have found a defect, breakers sub-
mit a test case that exposes the defect and an explanation of the issue. We impose an upper bound
on the number of test cases a break-it team can submit against a single build-it submission, to en-
courage teams to look at many submissions. BIBIFI’s infrastructure automatically judges whether
a submitted test case truly reveals a defect. For example, for a correctness bug, it will run the test
against a reference implementation (“the oracle”) and the targeted submission, and only if the test
passes on the former but fails on the latter will it be accepted. Teams can also earn points by report-
ing bugs in the oracle, i.e., where its behavior contradicts the written specification; these reports
are judged by the organizers. More points are awarded to clear security problems, which may be
demonstrated using alternative test formats. The auto-judgment approaches we developed for the
three different contest problems are described in Section 3.

The final phase is the fix-it phase. Build-it teams are provided with the bug reports and test
cases implicating their submission. They may fix flaws these test cases identify; if a single fix
corrects more than one failing test case, the test cases are “morally the same,” and thus points
are only deducted for one of them. The organizers determine, based on information provided by
the build-it teams and other assessment, whether a submitted fix is “atomic” in the sense that it
corrects only one conceptual flaw; if not, the fix is rejected.

Once the final phase concludes, prizes are awarded to the builders and breakers with the best
scores, as determined by the scoring system described next.
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2.2 Competition Scoring

BIBIFI’s scoring system aims to encourage the contest’s basic goals, which are that the winners of
the build-it phase truly produced the highest quality software, and that the winners of the break-it
phase performed the most thorough, effective analysis of others’ code. The scoring rules, and the
fact that scores are published in real time while the contest takes place, create incentives for good
behavior (and disincentives for bad behavior).

2.2.1 Build-it Scores. To reflect real-world development concerns, the winning build-it team
would ideally develop software that is correct, secure, featureful, and efficient. While security is
of primary interest to our contest, developers in practice must balance other aspects of quality
against security [12, 66], creating trade-offs that cannot be ignored if we wish to motivate realistic
developer decision-making.

As such, each build-it team’s score is the sum of the ship score2 and the resilience score. The ship
score is composed of points gained for correctness tests and performance tests. Each mandatory
correctness test is worth M points, for some constant M , while each optional correctness test
is worth M/2 points. Each performance test has a numeric measure depending on the specific
nature of the programming project—e.g., latency, space consumed, files left unprocessed—where
lower measures are better. A test’s worth isM · (worst −v )/(worst − best), wherev is the measured
result, best is the measure for the best-performing submission, and worst is the worst performing.
As such, each performance test’s value ranges from 0 to M . As scores are published in real time,
teams can see whether they are scoring better than other participants. Their relative standing may
motivate them to improve their implementation to improve its score before the build-it phase ends.

The resilience score is determined after the break-it and fix-it phases, at which point the set
of unique defects against a submission is known. For each unique bug found against a team’s
submission we subtract P points from its resilience score; as such, the best possible resilience score
is 0. For correctness bugs, we set P to M/2; for crashes that violate memory safety, we set P to M ;
and for exploits and other security property failures, we set P to 2M . (We discuss the rationale for
these choices below.) Once again, real-time scoring helps incentivize fixing, to get points back.

2.2.2 Break-it Scores. Our primary goal with break-it teams is to encourage them to find as
many defects as possible in the submitted software, as this would give greater confidence in our
assessment that one build-it team’s software is of higher quality than another’s. While we are
particularly interested in obvious security defects, correctness defects are also important, as they
can have non-obvious security implications.

A break-it team’s score is the summed value of all defects they have found, using the above
P valuations. This score is shown in real time during the break-it phase, incentivizing teams to
improve their standing. After the fix-it phase, this score is reduced. In particular, if a break-it team
submitted multiple test cases against a project that identify the same defect, the duplicates are
discounted. Moreover, each of the N break-it teams’ scores that identified the same defect are
adjusted to receive P/N points for that defect, splitting the P points among them.

Through a combination of requiring concrete test cases and scoring, BIBIFI encourages break-
it teams to follow the spirit of the competition. First, by requiring them to provide test cases as
evidence of a defect or vulnerability, we ensure they are providing useful bug reports. By providing
4× more points for security-relevant bugs than for correctness bugs, we nudge break-it teams to
look for these sorts of flaws and to not just focus on correctness issues. (But a different ratio
might work better; see below.) Because break-it teams are limited to a fixed number of test cases
per submission, they are discouraged from submitting many tests they suspect are “morally the

2The name is meant to evoke a quality measure at the time software is shipped.
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Table 1. Example Scoring Results for a Three-team Contest with One Optional Test

and One Performance Test (M = 50)

Team
Correctness

Tests
Optional

Test
Performance

Test Runtime (s)
Ship
Score

Bugs
Against

Resilience
Score

Bugs
Reported

Break
Score

Team 1 Pass Fail 4 300 S1 200 S2 100

Team 2 Pass Pass 5 315 C1 290 S1 50

Team 3 Pass Fail 9 250 S2 150 S1, C1 75

Bugs S1 and S2 are security vulnerabilities; bug C is a correctness bug.

same”; as they could lose points for them during the fix-it phase, they are better off submitting
tests demonstrating different bugs. Limiting per-submission test cases also encourages examining
many submissions. Finally, because points for defects found by other teams are shared, break-it
teams are encouraged to look for hard-to-find bugs, rather than just low-hanging fruit.

Scoring example. Table 1 presents an example scoreboard for a three-team contest. For simplicity,
there is only one optional test and one performance test. We set M to be 50 points.

Consider the ship score. All teams receive 250 points for passing all correctness tests. Team
2 receives 25 additional points for implementing the optional test. Team 1 receives 50 additional
points for having the fastest performance test; team 2 gets 40 points for being relatively 20% slower;
and team 3 receives no performance points, since their implementation is slowest. Now consider
resilience score. This is a team’s ship score minus points lost for each unique bug against its imple-
mentation. Each team has one bug against it, where bugs S1 and S2 are security vulnerabilities (100
points), while bug C1 is a correctness bug (25 points). Finally, a team’s break score is the number
of points it receives for discovering bugs, split between teams that discover the same bug. Teams
2 and 3 split the 100 points for discovering exploit S1 against team 1.

2.2.3 Discouraging Collusion. BIBIFI contestants may form teams however they wish, and they
may participate remotely. This encourages wider participation, but it also opens the possibility of
collusion between teams, as there cannot be a judge overseeing their communication and coordi-
nation. There are three broad possibilities for collusion, each of which BIBIFI’s scoring discourages.

First, two break-it teams could consider sharing bugs they find with one another. By scaling the
points each finder of a particular bug obtains, we remove incentive for them to both submit the
same bugs, as they would risk diluting how many points they both obtain.

The second class of collusion is between a build-it team and a break-it team, but neither have
incentive to assist one another. The zero-sum nature of the scoring between breakers and builders
places them at odds with one another; revealing a bug to a break-it team hurts the builder, and not
reporting a bug hurts the breaker.

Finally, two build-it teams could collude, for instance by sharing code with one another. It might
be in their interests to do this in the event that the competition offers prizes to two or more build-it
teams, since collusion could obtain more than one prize-position. We use judging and automated
tools (and feedback from break-it teams) to detect if two teams share the same code (and disqualify
them), but it is not clear how to detect whether two teams provided out-of-band feedback to one
another prior to submitting code (e.g., by holding their own informal “break-it” and “fix-it” stages).
We view this as a minor threat to validity; at the surface, such assistance appears unfair, but it is
not clear that it is contrary to the goals of the contest, that is, to developing secure code.

2.3 Discussion

The contest’s design also aims to enable scalability by reducing work on contest organizers. In our
experience, BIBIFI’s design succeeds at what it sets out to achieve, but has limitations.
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Minimizing manual effort. Once the contest begins, manual effort by the organizers is limited
by design. All bug reports submitted during the break-it phase are automatically judged by the
oracle; organizers only need to vet any bug reports against the oracle itself. Organizers may also
need to judge accusations by breakers of code obfuscation by builders. Finally, organizers must
judge whether submitted fixes address a single defect; this is the most time consuming task. It is
necessary, because we cannot automatically determine whether multiple bug reports against one
team map to the same software defect; techniques for automatic testcase deduplication are still a
matter of research (see Section 6). As such, we incentivize build-it teams to demonstrate overlap
through fixes, which organizers manually confirm address only a single defect, not several.

Previewing some of the results presented later, we can confirm that the design works reason-
ably well. For example, as detailed in Table 6, 68 teams submitted 24,796 test cases for the Secure
Log contest. The oracle auto-rejected 15,314 of these, and build-it teams addressed 2,252 of those
remaining with 375 fixes, a 6× reduction. Most confirmations that a fix addresses a single bug took
1-2 minutes. Only 30 of these fixes were rejected. No accusations of code obfuscation were made
by break-it teams, and few bug reports were submitted against the oracle. All told, the Secure Log
contest was successfully managed by one full-time person, with two others helping with judging.

Limitations. While we believe BIBIFI’s structural and scoring incentives are properly designed,
we should emphasize several limitations.

First, there is no guarantee that all implementation defects will be found. Break-it teams may
lack the time or skill to find problems in all submissions, and not all submissions may receive
equal scrutiny. Break-it teams may also act contrary to incentives and focus on easy-to-find and/or
duplicated bugs, rather than the harder and/or unique ones. In addition, certain vulnerabilities, like
insufficient randomness in key generation, may take more effort to exploit, so breakers may skip
such vulnerabilities. Finally, break-it teams may find defects that the BIBIFI infrastructure cannot
automatically validate, meaning those defects will go unreported. However, with a large enough
pool of break-it teams, and sufficiently general defect validations automation, we still anticipate
good coverage both in breadth and depth.

Second, builders may fail to fix bugs in a manner that is in their best interests. For example, in
not wanting to have a fix rejected as addressing more than one conceptual defect, teams may use
several specific fixes when a more general fix would have been allowed. Additionally, teams that
are out of contention for prizes may simply not participate in the fix-it phase.3 We observed these
behaviors in our contests. Both actions decrease a team’s resilience score (and correspondingly
increase breakers’ scores). For our most recent contest, we attempted to create an incentive to fix
bugs by offering prizes to participants that scale with their final score, rather than offering prizes
only to winners. Unfortunately, this change in prize structure did not increase fix-it participation.
We discuss fix-it behavior in more depth in Section 5.5.

Finally, there are several design points in a problem’s definition and testing code that may skew
results. For example, too few correctness tests may leave too many correctness bugs to be found
during break-it, distracting break-it teams’ attention from security issues. Too many correctness
tests may leave too few bugs, meaning teams are differentiated insufficiently by general bug-
finding ability. Scoring prioritizes security problems 4 to 1 over correctness problems, but it is
hard to say what ratio makes the most sense when trying to maximize real-world outcomes; both
higher and lower ratios could be argued. How security bugs are classified will also affect behavior;
two of our contests had strong limits on the number of possible security bugs per project, while

3Hiding scores during the contest might help mitigate this, but would harm incentives during break-it to go after submis-
sions with no bugs reported against them.
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Fig. 1. Overview of BIBIFI’s implementation.

the third’s definition was far more (in fact, too) liberal, as discussed in Section 5.6. Finally, per-
formance tests may fail to expose important design tradeoffs (e.g., space vs. time), affecting the
ways that teams approach maximizing their ship scores. For the contests we report in this article,
we are fairly comfortable with these design points. In particular, our pilot contest [57] prioritized
security bugs 2 to 1 and had fewer interesting performance tests, and outcomes were better when
we increased the ratio.

2.4 Implementation

Figure 1 provides an overview of the BIBIFI implementation. It consists of a web frontend, provid-
ing the interface to both participants and organizers, and a backend for testing builds and breaks.
Key goals of the infrastructure are security—we do not want participants to succeed by hacking
BIBIFI itself—and scalability.

Web frontend. Contestants sign up for the contest through our web application frontend, and
fill out a survey when doing so, to gather demographic data potentially relevant to the contest
outcome (e.g., programming experience and security training). During the contest, the web appli-
cation tests build-it submissions and break-it bug reports, keeps the current scores updated, and
provides a workbench for the judges for considering whether or not a submitted fix covers one
bug or not.

To secure the web application against unscrupulous participants, we implemented it in ∼11,500
lines of Haskell using the Yesod [10] web framework backed by a PostgreSQL [55] database.
Haskell’s strong type system defends against use-after-free, buffer overrun, and other memory
safety-based attacks. The use of Yesod adds further automatic protection against various attacks
like CSRF, XSS, and SQL injection. As one further layer of defense, the web application incorporates
the information flow control framework LWeb, which is derived from LIO [61], to protect against
inadvertent information leaks and privilege escalations. LWeb dynamically guarantees that users
can only access their own information, as established by a mechanized proof of correctness (in
Liquid Haskell [51]).

Testing backend. The backend infrastructure is used for testing during the build-it phase for
correctness and performance, and during the break-it phase to assess potential vulnerabilities. It
consists of ∼5,500 lines of Haskell code (and a little Python).

To automate testing, we require contestants to specify a URL to a Git [5] repository (hosted on
either Gitlab, Github, or Bitbucket) and shared with a designated bibifi username, read-only. The
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backend “listens” to each contestant repository for pushes, upon which it downloads and archives
each commit. Testing is then handled by a scheduler that spins up a (Docker or Amazon EC2)
virtual machine that builds and tests each submission. We require that teams’ code builds and
runs, without any network access, in an Ubuntu Linux VM that we share in advance. Teams can
request that we install additional open-source packages not present on the VM. The use of VMs
supports both scalability (Amazon EC2 instances are dynamically provisioned) and security—using
fresh VM instances prevents a team from affecting the results of future tests, or of tests on other
teams’ submissions.

All qualifying build-it submissions may be downloaded by break-it teams at the start of the
break-it phase. As break-it teams identify bugs, they prepare a (JSON-based) file specifying the
buggy submission along with a sequence of commands with expected outputs that demonstrate
the bug. Break-it teams commit and push this file (to their Git repository). The backend uses the
file to set up a test of the implicated submission to see if it indeed is a bug.

The code that tests build and break submissions differs for each contest problem. To increase
modularity, we have created a problem API so that testing code run on the VM can easily be
swapped out for different contest problems. Contest organizers can create their own problems by
conforming to this API. The infrastructure will set up the VM and provide submission information
to the problem’s testing software via JSON. The problem’s software runs the submission and out-
puts the result as JSON, which the infrastructure records and uses to update scores accordingly.
Details are available in the documentation of the contest repository.

3 CONTEST PROBLEMS

This section presents the three programming problems we have developed for BIBIFI contests.
These three problems were used during open competitions in 2015 and 2016, and in our own and
others’ undergraduate security courses since then. We discuss each problem and its specific notions
of security defect, as well as how breaks exploiting such defects are automatically judged.

3.1 Secure Log

The Secure Log problem was motivated as support for an art gallery security system. Contestants
write two programs. The first, logappend, appends events to the log; these events indicate when
employees and visitors enter and exit gallery rooms. The second, logread, queries the log about
past events. To qualify, submissions must implement two basic queries (involving the current state
of the gallery and the movements of particular individuals), but they could implement two more for
extra points (involving time spent in the museum, and intersections among different individuals’
histories). An empty log is created by logappend with a given authentication token, and later calls
to logappend and logread on the same log must use that token or the requests will be denied.

Here is a basic example of invocations to logappend. The first command creates a log file called
logfile, because one does not yet exist, and protects it with the authentication token secret. In
addition, it records that Fred entered the art gallery. Subsequent executions of logappend record
the events of Jill entering the gallery and both guests entering room 1.

1 $ ./logappend -K secret -A -G Fred logfile
2 $ ./logappend -K secret -A -G Jill logfile
3 $ ./logappend -K secret -A -G Fred -R 1 logfile
4 $ ./logappend -K secret -A -G Jill -R 1 logfile

Here is an example of logread, using the logfile just created. It queries who is in the gallery and
what rooms they are currently in.
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1 $ ./logread -K secret -S logfile
2 Fred
3 Jill
4 1: Fred, Jill

The problem states that an attacker is allowed direct access to the logfile, and yet integrity and
privacy must be maintained. A canonical way of implementing the log is therefore to treat the
authentication token as a symmetric key for authenticated encryption, e.g., using a combination
of AES and HMAC. There are several tempting shortcuts that we anticipated build-it teams would
take (and that break-it teams would exploit). For instance, one may be tempted to encrypt and
sign individual log records as opposed to the entire log, thereby making logappend faster. But this
could permit integrity breaks that duplicate or reorder log records. Teams may also be tempted to
implement their own encryption rather than use existing libraries, or to simply sidestep encryption
altogether. Section 4 reports several cases we observed.

A submission’s performance is measured in terms of time to perform a particular sequence
of operations, and space consumed by the resulting log. Correctness (and crash) bug reports are
defined as sequences of logread and/or logappend operations with expected outputs (vetted by
the oracle). Security is defined by privacy and integrity: any attempt to learn something about the
log’s contents, or to change them, without the using logread and logappend and the proper token
should be disallowed. How violations of these properties are specified and tested is described next.

Privacy breaks. When providing a build-it submission to the break-it teams, we also included a
set of log files that were generated using a sequence of invocations of that submission’s logappend
program. We generated different logs for different build-it submissions, using a distinct command
sequence and authentication token for each. All logs were distributed to break-it teams without
the authentication token; some were distributed without revealing the sequence of commands (the
“transcript”) that generated them. For these, a break-it team could submit a test case involving a call
to logread (with the authentication token omitted) that queries the file. The BIBIFI infrastructure
would run the query on the specified file with the authentication token, and if the output matched
that specified by the breaker, then a privacy violation is confirmed. For example, before the break-
it round, the infrastructure would run a bunch of randomly generated commands against a given
team’s implementation.

1 $ ./logappend -K secret -A -G Fred logfile
2 $ ./logappend -K secret -A -G Fred -R 816706605 logfile

Breakers are only given the logfile and not the secret token or the transcript of the commands
(for privacy breaks). A breaker would demonstrate a privacy violation by submitting the following
string, which matches the invocation of ./logread -K secret -S logfile.

1 Fred
2 816706605: Fred

The system knows the breaker has successfully broken privacy, since the breaker is able to present
confidential information without knowing the secret token. In practice, the transcript of commands
is significantly longer and a random secret is used.

Integrity breaks. For about half of the generated log files, we also provided the transcript of the
logappend operations used to generate the file. A team could submit a test case specifying the
name of the log file, the contents of a corrupted version of that file, and a logread query over it
(without the authentication token). For both the specified log file and the corrupted one, the BIBIFI
infrastructure would run the query using the correct authentication token. An integrity violation
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is detected if the query command produces a non-error answer for the corrupted log that differs
from the correct answer (which can be confirmed against the transcript using the oracle).

This approach to determining privacy and integrity breaks has the benefit and drawback that it
does not reveal the source of the issue, only that there is (at least) one, and that it is exploitable. As
such, we only count up to one integrity break and one privacy break against the score of each build-
it submission, even if there are multiple defects that could be exploited to produce privacy/integrity
violations (since we could not automatically tell them apart).

3.2 ATM

The ATM problem asks builders to construct two communicating programs: atm acts as an ATM
client, allowing customers to set up an account, and deposit and withdraw money; bank is a server
that tracks client bank balances and processes their requests, received via TCP/IP. atm and bank
should only permit a customer with a correct card file to learn or modify the balance of their
account, and only in an appropriate way (e.g., they may not withdraw more money than they
have). In addition, atm and bank should only communicate if they can authenticate each other.
They can use an auth file for this purpose; it will be shared between the two via a trusted channel
unavailable to the attacker.4 Since the atm is communicating with bank over the network, a “man
in the middle” (MITM) could observe and modify exchanged messages, or insert new messages.
The MITM could try to compromise security despite not having access to auth or card files. Such
compromise scenarios are realistic, even in 2018 [63].

Here is an example run of the bank and atm programs.

1 $ ./bank -s bank.auth &

This invocation starts the bank server, which creates the file bank.auth. This file will be used by
the atm client to authenticate the bank. The atm is started as follows:

1 $ ./atm -s bank.auth -c bob.card -a bob -n 1000.00
2 {"account":"bob","initial_balance":1000}

The client initiates creation of a new account for user bob with an initial balance of $1,000. It also
creates a file bob.card that is used to authenticate bob (this is basically Bob’s PIN) from here on.
A receipt of the transaction from the server is printed as JSON. The atm client can now use bob’s
card to perform further actions on his account. For example, this command withdraws $63.10 from
bob’s account:

1 $ ./atm -s bank.auth -c bob.card -a bob -w 63.10
2 {"account":"bob","withdraw":63.1}

A canonical way of implementing the atm and bank programs would be to use public key-
based authenticated and encrypted communications. The auth file is used as the bank’s public
key to ensure that key negotiation initiated by the atm is with the bank and not a MITM. When
creating an account, the card file should be a suitably large random number, so that the MITM is
unable to feasibly predict it. It is also necessary to protect against replay attacks by using nonces or
similar mechanisms. As with Secure Log, a wise approach would be use a library like OpenSSL to
implement these features. Both good and bad implementations are discussed further in Section 4.

Build-it submissions’ performance is measured as the time to complete a series of bench-
marks involving various atm/bank interactions.5 Correctness (and crash) bug reports are defined as

4In a real deployment, this might be done by “burning” the auth file into the ATM’s ROM prior to installing it.
5The transcript of interactions is always serial, so there was no motivation to support parallelism for higher throughput.
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Fig. 2. MITM replay attack.

sequences of atm commands where the targeted submission produces different outputs than the
oracle (or crashes). Security defects are specified as follows.

Integrity breaks. Integrity violations are demonstrated using a custom MITM program that acts
as a proxy: It listens on a specified IP address and TCP port, and accepts a connection from
the atm while connecting to the bank. We provided a Python-based proxy as a starter MITM;
it forwards communications between the endpoints after establishing the connection. A breaker’s
MITM would modify this baseline behavior, observing and/or modifying messages sent between
atm and bank, and perhaps dropping messages or initiating its own.

To demonstrate an integrity violation, the MITM will send requests to a command server. It can
tell the server to run inputs on the atm and it can ask for the card file for any account whose
creation it initiated. Eventually the MITM will declare the test complete. At this point, the same
set of atm commands is run using the oracle’s atm and bank without the MITM. This means that
any messages that the MITM sends directly to the target submission’s atm or bank will not be
replayed/sent to the oracle. If the oracle and target both complete the command list without error,
but they differ on the outputs of one or more commands, or on the balances of accounts at the
bank whose card files were not revealed to the MITM during the test, then there is evidence of an
integrity violation.

As an example (based on a real attack we observed), consider a submission that uses determinis-
tic encryption without nonces in messages. The MITM could direct the command server to deposit
money from an account, and then replay the message it observes. When run on the vulnerable sub-
mission, this would credit the account twice. But when run on the oracle without the MITM, no
message is replayed, leading to differing final account balances. A correct submission would reject
the replayed message, which would invalidate the break. This example is illustrated in Figure 2.

Privacy breaks. Privacy violations are also demonstrated using a MITM. In this case, at the start
of a test the command server will generate two random values, amount and account name. If by
the end of the test no errors have occurred and the attacker can prove it knows the actual value
of either secret (by sending a command that specifies it), then the break is considered successful.
Before demonstrating knowledge of the secret, the MITM can send commands to the and server
with a symbolic reference to amount and account name; the server will fill in the actual secrets
before forwarding these messages. The command server does not automatically create a secret
account or an account with a secret balance; it is up to the breaker to do that (referencing the
secrets symbolically when doing so).

As an example, suppose the target does not encrypt exchanged messages. Then a privacy attack
might be for the MITM to direct the command server to create an account whose balance contains
the secret amount. Then the MITM can observe an unencrypted message sent from atm to bank;
this message will contain the actual amount filled in by the command server. The MITM can then
send its guess to the command server showing that it knows the amount.
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Fig. 3. Grammar for the Multiuser DB command language as BNF. Here, x and y represent arbitrary vari-

ables; p and q represent arbitrary principals; and s represents an arbitrary string. Commands submitted to

the server should match the non-terminal <prog>.

As with the Secure Log problem, we cannot tell whether an integrity or privacy test is exploiting
the same underlying weakness in a submission, so we only accept one violation of each category
against each submission.

Timeouts and denial of service. One difficulty with our use of a breaker-provided MITM is that
we cannot reliably detect bugs in atm or bank implementations that would result in infinite loops,
missed messages, or corrupted messages. This is because such bugs can be simulated by the MITM
by dropping or corrupting messages it receives. Since the builders are free to implement any pro-
tocol they like, our auto-testing infrastructure cannot tell if a protocol error or timeout is due to
a bug in the target or due to misbehavior of the MITM. As such, we conservatively disallow any
MITM test run that results in the target atm or bank hanging (timing out) or returning with a
protocol error (e.g., due to a corrupted packet). This means that flaws in builder implementations
might exist but evidence of those bugs might not be realizable in our testing system.

3.3 Multiuser DB

The Multiuser DB problem requires builders to implement a server that maintains a multi-user
key-value store, where users’ data is protected by customizable access control policies. The data
server accepts queries written in a text-based command language delivered over TCP/IP (we as-
sume the communication channel is trusted, for simplicity). Each program begins by indicating
the querying user, authenticated with a password. It then runs a sequence of commands to read
and write data stored by the server, where data values can be strings, lists, or records. The full
grammar of the command language is shown in Figure 3 where the start symbol (corresponding
to a client command) is <prog>. Accesses to data may be denied if the authenticated user lacks
the necessary permission. A user can delegate permissions, like reading and writing variables, to
other principals. If running the command program results in a security violations or error, then all
of its effects will be rolled back.

Here is an example run of the data server. To start, the server is launched and listens on TCP
port 1024.

1 $ ./server 1024 &
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Next, the client submits the following program.

1 as principal admin password "admin" do
2 create principal alice "alices_password"
3 set msg = "Hi Alice. Good luck!"
4 set delegation msg admin read -> alice
5 return "success"
6 ***

The program starts by declaring it is running on behalf of principlal admin, whose password is
"admin". If authentication is successful, then the program creates a new principal alice, creates a
new variable msg containing a string, and delegates read permission on the variable to Alice. The
server sends back a transcript of the successful commands to the client, in JSON format:

1 {"status":"CREATE_PRINCIPAL"}
2 {"status":"SET"}
3 {"status":"SET_DELEGATION"}
4 {"status":"RETURNING","output":"success"}

Next, suppose Alice sends the following program, which simply logs in and reads the msg variable:

1 as principal alice password "alices_password" do
2 return msg
3 ***

The server response indicates the result:

1 {"status":"RETURNING","output":"Hi Alice. Good luck!"}

The data server is implemented by writing a parser to read the input command programs. The
server needs a store to keep the value of each variable as well as an access control list that tracks
the permissions for the variables. It also needs to keep track of delegated permissions, which can
form chains; e.g., Alice could delegate read permission to all of her variables to Bob, who could
then delegate permission to read one of those variables to Charlie. If when executing the program a
security violation or other error occurs (e.g., reading a variable that does not exist), then the server
needs to roll back its state to what it was prior to processing the input program. All responses back
to the client are encoded as JSON.

Scoring. A data server’s performance is measured in elapsed runtime to process sequences of
programs. Correctness (and crash) violations are demonstrated by providing a sequence of com-
mand programs where the data server’s output differs from that of the oracle (or the implemen-
tation crashes). Security violations can be to data privacy, integrity, or availability, by comparing
the behavior of the target against that of an oracle implementation.

Privacy breaks. A privacy violation occurs when the oracle would deny a request to read a vari-
able, but the target implementation allows it. Consider the following example where a variable,
secret, is created, but Bob is not allowed to read it.

1 as principal admin password "admin" do
2 create principal bob "bobs_password"
3 set secret = "Super secret"
4 return "success"
5 ***
6
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7 {"status":"CREATE_PRINCIPAL"}
8 {"status":"SET"}
9 {"status":"RETURNING","output":"success"}

Now Bob attempts to read the secret variable with the following query.

1 as principal bob password "bobs_password" do
2 return secret
3 ***

Bob does not have permission to read secret, so the oracle returns {"status": "DENIED"}. If
the implementation returns the secret contents of {"status": "RETURNING","output": "Super
secret"}, then we know a confidentiality violation has occurred.

Integrity breaks. Integrity violations are demonstrated in a similar manner, but occur when un-
privileged users modify variables they do not have permission to write to. With the example above,
the variable secret, is created, but Bob is not allowed to write to it. Now Bob attempts to write to
secret with the following query.

1 as principal bob password "bobs_password" do
2 set secret = "Bob’s grade is an A!"
3 return "success"
4 ***

Bob does not have write permission on secret, so the oracle returns {"status":"DENIED"}. If
the implementation returns the following, then an integrity violation has been demonstrated.

1 {"status":"SET"}
2 {"status":"RETURNING","output":"success"}

Availability breaks. Unlike the ATM problem, we are able to assess availability violations for
Multiuser DB (since we are not using a MITM). In this case, a security violation is possible when the
server implementation is unable to process legal command programs. This is demonstrated when
the target incorrectly denies a program by reporting an error, but the oracle successfully executes
the program. Availability security violations also happen when the server implementation fails to
respond to an input program within a fixed period of time.

Unlike the other two problems, the Multiuser DB problem does not place a limit on the number of
security breaks submitted. In addition, the overall bug submission limit is reduced to 5, as opposed
to 10 for the other two problems. Recall that for Secure Log and ATM, a break constitutes direct
evidence that a vulnerability has been exploited, but not which vulnerability, if more than one is
present. As such, if a build-it team were to fix a vulnerability during the fix-it phase, doing so would
not shed light on which breaks derived from that vulnerability, vs. others. The contest thus limits
break-it teams to one break each for confidentiality and integrity, per target team. (See Section 3.1
and Section 3.2.) For Multiuser DB, a security vulnerability is associated with a test run, so a fix of
that vulnerability will unify all breaks that exploit that vulnerability, just as correctness fixes do.
That means we need not impose a limit on them. The consequences of this design are discussed in
Section 5.

4 BUILD-IT SUBMISSIONS: SUCCESSES AND FAILURES

After running a BIBIFI contest, we have all of the code written by the build-it teams, and the bug
reports submitted by the break-it teams. Looking at these artifacts, we can get a sense of what
build-it teams did right, and what they did wrong. This section presents a sample of failure and
success stories, while Section 5 presents a broader statistical analysis that suggests overall trends.
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A companion paper [69] provides a more detailed review of the types of vulnerabilities based on
an extensive, in-depth qualitative analysis of submitted code.

4.1 Failure Stories

The failure modes for build-it submissions are distributed along a spectrum ranging from “failed to
provide any security at all” to “vulnerable to extremely subtle timing attacks.” This is interesting,
because a similar dynamic is observed in the software marketplace today.

Secure Log. Many implementations of the Secure Log problem failed to use encryption or authen-
tication codes, presumably because the builders did not appreciate the need for them. Exploiting
these design flaws was trivial for break-it teams. Sometimes log data was written as plain text,
other times log data was serialized using the Java object serialization protocol.

One break-it team discovered a privacy flaw that they could exploit with at most fifty probes.
The target submission truncated the authentication token (i.e., the key) so that it was vulnerable
to a brute force attack.

Some failures were common across Secure Log implementations: if an implementation used
encryption, it might not use authentication. If it used authentication, then it would authenticate
records stored in the file individually, not globally. The implementations would also relate the
ordering of entries in the file to the ordering of events in time, allowing for an integrity attack that
changes history by re-ordering entries in the file.

There were five crashes due to memory errors, and they all occurred in C/C++ submissions. We
examined two of the crashes and confirmed that they were exploitable. The first was a null pointer
dereference, and the other was a buffer overflow from the use of strcpy.

ATM. The ATM problem allows for interactive attacks (not possible for the log), and the attacks
became cleverer as implementations used cryptographic constructions incorrectly. One implemen-
tation used cryptography, but implemented RC4 from scratch and did not add any randomness to
the key or the cipher stream. An attacker observed that the ciphertext of messages was distin-
guishable and largely unchanged from transaction to transaction, and was able to flip bits in a
message to change the withdrawn amount.

Another implementation used encryption with authentication, but did not use randomness;
as such error messages were always distinguishable from success messages. An attack was con-
structed against this implementation where the attack leaked the bank balance by observing dif-
ferent withdrawal attempts, distinguishing the successful from failed transactions, and performing
a binary search to identify the bank balance given a series of withdraw attempts.

Some failures were common across ATM problem implementations. Many implementations kept
the key fixed across the lifetime of the bank and atm programs and did not use a nonce in the
messages. This allowed attackers to replay messages freely between the bank and the atm, violating
integrity via unauthorized withdrawals. Several implementations used encryption but without
authentication. (This sort of mistake has been observed in real-world ATMs, as has, amazingly,
a complete lack of encryption use [63].) These implementations used a library such as OpenSSL,
the Java cryptographic framework, or the Python pycrypto library to have access to a symmetric
cipher such as AES, but either did not use these libraries at a level where authentication was
provided in addition to encryption, or they did not enable authentication.

Multiuser DB. The Multiuser DB problem asks participants to consider a complex logical se-
curity problem. In this scenario, the specification was much more complicated. All but one team
developed a system of home-grown access control checks. This led to a variety of failures when
participants were unable to cover all possible security edge cases.
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In some instances, vulnerabilities were introduced, because they did not properly implement
the specification. Some participants hardcoded passwords making them easily guessable by an
attacker. Other participants did not include checks for the delegation command to ensure that the
principal had the right to delegate along with the right they were trying to delegate.

Other participants failed to consider the security implications of their design decisions when the
specification did not provide explicit instructions. For example, many of the participants did not
check the delegation chain back to its root. Therefore, once a principal received an access right,
they maintained this right even if it no longer belonged to the principal that delegated it to them.

There were two crashes targeting Multiuser DB implementations. Both were against C/C++
submissions. We inspected one crash and determined it was caused by code in the parser that
dereferenced and executed an invalid (non-null) pointer.

Finally, other teams simply made errors when implementing the access control logic. In some
cases, these mistakes introduced faulty logic into the access control checks. One team made a
mistake in their control flow logic such that if a principal had no delegated rights, the access
control checks were skipped—because a lookup error would have occurred. In other cases, these
mistakes led to uncaught runtime errors that allowed the attacker to kill the server, making it
unavailable to other users.

4.2 Success Stories

In contrast to the broken submissions, successful submissions followed understood best practices.
For example, submissions made heavy use of existing high-level cryptographic libraries with few
“knobs” that allow for incorrect usage [18]. Similarly, successful submissions limited the size and
location of security-critical code [50].

ATM and Secure Log. One implementation of the ATM problem, written in Python, made use
of the SSL PKI infrastructure. The implementation used generated SSL private keys to establish
a root of trust that authenticated the atm program to the bank program. Both the atm and bank
required that the connection be signed with the certificate generated at runtime. Both the bank
and the atm implemented their communication protocol as plain text then wrapped in HTTPS. To
find bugs in this system, other contestants would need to break the security of OpenSSL.

Another implementation, written in Java, used the NaCl library. This library intentionally pro-
vides a very high level API to “box” and “unbox” secret values, freeing the user from dangerous
choices. As above, to break this system, other contestants would need to break NaCl first.

A Java-based implementation of the Secure Log problem used the BouncyCastle library’s high-
level API to construct a valid encrypt-then-MAC scheme over the entire log file. BouncyCastle
allowed them to easily authenticate the whole log file, protecting them from integrity attacks that
swapped the order of encrypted binary data in the log.

Multiuser DB. The most successful solutions for the Multiuser DB problem were localized access
control logic checks to a single function with a general interface, rather repeating checking code
for each command that needed it. Doing so reduced the likelihood of a mistake. One of the most
successful teams used a fairly complex graphical representation of access control rules, but by
limiting the number of places this graph was manipulated they could efficiently and correctly
check access rights without introducing vulnerabilities.

5 QUANTITATIVE ANALYSIS

This section quantitatively analyzes data we gathered from our 2015 and 2016 contests.6 We con-
sider participants’ performance in each contest phase, identifying factors that contribute to high

6We also ran a contest during Fall’14 [57] but exclude its data due to differences in how it was administered.
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scores after the build-it round, resistance to breaking by other teams, and strong performance as
breakers.

We find that on average, teams that program using statically typed languages are 11× less likely
to have security bugs identified in their code compared to those using C and C++. Success in break-
ing, and particularly in identifying security bugs in other teams’ code, is correlated with having
more team members, as well as with participating successfully in the build-it phase (and therefore
having given thought to how to secure an implementation). The use of advanced techniques like
fuzzing and static analysis was dropped from the final model, indicating that their effect was not
statistically significant. We note that such tools tend to focus on bugs, like memory errors and
taint/code injection attacks, that were rare in our contests (per Section 4). Overall, integrity bugs
were far more common than privacy bugs or crashes. The contests that used the ATM problem and
the Multiuser DB problem were associated with more security bugs than the Secure Log contest.

5.1 Data Collection

For each team, we collected a variety of observed and self-reported data. When signing up for
the contest, teams reported standard demographics and features such as coding experience and
programming language familiarity. After the contest, each team member optionally completed a
survey about their performance. In addition, we extracted information about lines of code written,
number of commits, and so on, from teams’ Git repositories.

Participant data was anonymized and stored in a manner approved by our institution’s human-
subjects review board. Participants consented to have data related to their activities collected,
anonymized, stored, and analyzed. A few participants did not consent to research involvement, so
their personal data was not used in the data analysis.

5.2 Analysis Approach

To examine factors that correlated with success in building and breaking, we apply regression
analysis. Each regression model attempts to explain some outcome variable using one or more
measured factors. For most outcomes, such as participants’ scores, we can use ordinary linear
regression, which estimates how many points a given factor contributes to (or takes away from)
a team’s score. To analyze binary outcomes, such as whether or not a security bug was found, we
apply logistic regression, which estimates how each factor impacts the likelihood of an outcome.

We consider many variables that could potentially impact teams’ results. To avoid over-fitting,
we select as potential factors those variables that we believe are of most interest, within acceptable
limits for power and effect size. As we will detail later, we use the same factors as the analysis in our
earlier conference paper [56], plus one more, which identifies participation in the added contest
(Multiuser DB). The impact of the added data on the analysis, compared to the analysis in the
earlier paper, is considered in Section 5.8. We test models with all possible combinations of our
chosen potential factors and select the model with the minimum Akaike Information Criterion
(AIC) [21]. The final models are presented.

Each model is presented as a table with each factor as well as the p-value for that factor. Signifi-
cant p-values (<0.05) are marked with an asterisk. Linear models include the coefficient relative to
the baseline factor and the 95% confidence interval. Logistic models also include the exponential
coefficient and the 95% confidence interval for the exponential coefficient. The exponential coef-
ficient indicates how many times more likely the measured result occurs relative to the baseline
factor.

We describe the results of each model below. This was not a completely controlled experiment
(e.g., we do not use random assignment), so our models demonstrate correlation rather than causa-
tion. Our observed effects may involve confounds, and many factors used as independent variables
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Table 2. Contestants, by Self-reported Country

Contest USA India Russia Brazil Other

Spring 2015 30 7 12 12 120
Fall 2015 64 14 12 20 110
Fall 2016 44 13 4 12 103

in our data are correlated with each other. This analysis also assumes that the factors we examine
have linear effect on participants’ scores (or on likelihood of binary outcomes); while this may not
be the case in reality, it is a common simplification for considering the effects of many factors. We
also note that some of the data we analyze is self-reported, so may not be entirely precise (e.g.,
some participants exaggerating about which programming languages they know); however, minor
deviations, distributed across the population, act like noise and have little impact on the regression
outcomes.

5.3 Contestants

We consider three contests offered at different times:
Secure Log: We held one contest using the Secure Log problem (Section 3.1) during May–June

2015 as the capstone to a Cybersecurity MOOC sequence.7 Before completing in the capstone,
participants passed courses on software security, cryptography, usable security, and hardware
security.

ATM: During Oct.–Nov. 2015, we offered the ATM problem (Section 3.2) as two contests simulta-
neously, one as a MOOC capstone, and the other open to U.S.-based graduate and undergraduate
students. We merged the contests after the build-it phase, due to low participation in the open
contest. MOOC and open participants were ranked independently to determine grades and prizes.

Multiuser DB: In Sep.–Oct. 2016, we ran one constest offering the Multiuser DB problem
(Section 3.3) open to both MOOC capstone participants as well as graduate and undergraduate
students.

The U.S. was the most represented country in our contestant pool, but was not the majority.
There was also representation from developed countries with a reputation both for high technol-
ogy and hacking acumen. Details of the most popular countries of origin can be found in Table 2,
and additional information about contestant demographics is presented in Table 3. In total, 156
teams participated in either the build-it or break-it phases, most of which participated in both.

5.4 Ship Scores

We first consider factors correlating with a team’s ship score, which assesses their submission’s
quality before it is attacked by the other teams (Section 2.1). This data set contains all 130 teams
from the Secure Log, ATM, and Multiuser DB contests that qualified after the build-it phase. The
contests have nearly the same number of correctness and performance tests, but different num-
bers of participants. We set the constant multiplier M to be 50 for the contests, which effectively
normalizes the scores (see Section 2.2).

Model setup. To ensure enough statistical power to find meaningful relationships, our modeling
was designed for a prospective effect size roughly equivalent to Cohen’s medium effect heuris-
tic, f 2 = 0.15 [25]. An effect of this size corresponds to a coefficient of determination R2 = 0.13,
suggesting we could find an effect if our model can explain at least 13% of the variance in the

7https://www.coursera.org/specializations/cyber-security.
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Table 3. Demographics of Contestants from Qualifying Teams

Contest Spring 15 Fall 15 Fall 16

Problem Secure Log ATM Multiuser DB
# Contestants 156 145 105
% Male 91% 91% 84%
% Female 5% 8% 4%
Age (mean/min/max) 34.8/20/61 32.2/17/69 29.9/18/55
% with CS degrees 35% 35% 39%
Years programming 9.6/0/30 9.4/0/37 9.0/0/36
# Build-it teams 61 40 29
Build-it team size 2.2/1/5 3.1/1/6 2.5/1/8
# Break-it teams (that also built) 65 (58) 43 (35) 33 (22)
Break-it team size 2.4/1/5 3.1/1/6 2.6/1/8
# PLs known per team 6.8/1/22 9.1/1/20 7.8/1/17
% MOOC 100% 84% 65%

Some participants declined to specify gender.

Table 4. Factors and Baselines for Build-it Models

Factor Description Baseline

Contest Secure Log, ATM, or Multiuser DB contest. Secure Log
# Team members A team’s size. —
Knowledge of C The fraction of team members who know C or C++. —
# Languages known Number of programming languages team members know. —
Coding experience Average years of programming experience. —
Language category C/C++, statically typed, or dynamically typed language. C/C++
Lines of code Lines of code count for the team’s final submission. —
MOOC If the team was participating in the MOOC capstone. non-MOOC

outcome variable. We report the observed coefficient of determination for the final model with the
regression results below.

As mentioned above, we reuse the factors chosen for the analysis in our earlier paper [56]. Their
number was guided by a power analysis of the contest data we had at the time, which involved the
N = 101 build-it teams that participated in Secure Log and ATM. With an assumed power of 0.75,
the power analysis suggested we limit the covariate factors used in our model to nine degrees of
freedom, which yields a prospective f 2 = 0.154. With the addition of Multiuser DB data, we add
one more factor, which is choice of Multiuser DB as an option for which contest the submission
belongs to. This adds a 10th degree of freedom, as well as 29 additional teams for a totalN = 130. At
0.75 power, this yields a prospective f 2 = 0.122, which is better than in the earlier paper’s analysis.

We selected the factors listed in Table 4. Knowledge of C is included as a proxy for comfort with
low-level implementation details, a skill often viewed as a prerequisite for successful secure build-
ing or breaking. # Languages known is how many unique programming languages team members
collectively claim to know (see the second to last row of Table 3). For example, on a two-member
team where member A claims to know C++, Java, and Perl and member B claims to know Java, Perl,
Python, and Ruby, the language count would be 5. Language category is the “primary” language
category we manually identified in each team’s submission. Languages were categorized as either
C/C++, statically typed (e.g., Java, Go, but not C/C++), or dynamically typed (e.g., Perl, Python).
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Fig. 4. The number of build-it submissions in each contest, organized by primary programming language

used. The languages are grouped by category.

Table 5. Final Linear Regression Model of Teams’ Ship Scores, Indicating

How Many Points Each Selected Factor Adds to the Total Score

Factor Coef. CI p-value

Secure Log — — —
ATM −47.708 [−110.34, 14.92] 0.138
Multiuser DB −163.901 [−234.2, −93.6] <0.001*

C/C++ — — —
Statically typed −112.912 [−192.07, −33.75] 0.006*

Dynamically typed −133.057 [−215.26, −50.86] 0.002*

# Languages known 6.272 [−0.06, 12.6] 0.054
Lines of code −0.023 [−0.05, 0.01] 0.118

R
2 = 0.232.

Precise category allocations, and total submissions for each language, segregated by contest, are
given in Figure 4.

Results. The final model (Table 5) with R2 = 0.232 captures almost 1
4 of the variance. We find

this number encouraging given how relatively uncontrolled the environment is and how many
contributing, but unmeasured, factors there could be. Our regression results indicate that ship score
is strongly correlated with language choice. Teams that programmed in C or C++ performed on
average 133 and 112 points better than those who programmed in dynamically typed or statically
typed languages, respectively. Figure 5 illustrates that while teams in many language categories
performed well in this phase, only teams that did not use C or C++ scored poorly.

The high scores for C/C++ teams could be due to better scores on performance tests and/or
due to implementing optional features. We confirmed the main cause is the former. Every C/C++
team for the Secure Log contest implemented all optional features, while six teams in the other
categories implemented only six of ten and one team implemented none; the ATM contest offered
no optional features; for the Multiuser DB contest, four C/C++ teams implemented all optional
features while one C/C++ team implemented five of nine. We artificially increased the scores of
all teams as if they had implemented all optional features and reran the regression model. In the
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Fig. 5. Each team’s ship score, compared to the lines of code in its implementation and organized by language

category and contest. Using C/C++ correlates with a higher ship score.

resulting model, the difference in coefficients between C/C++ and the other language categories
dropped only slightly. This indicates that the majority of improvement in C/C++ ship score comes
from performance.

The number of languages known by a team is not quite statistically significant, but the con-
fidence interval in the model suggests that each programming language known increases ship
scores by between 0 and 12 points. Intuitively, this makes sense, since contestants that know more
languages have more programming experience and have been exposed to different paradigms.

Lines of code is also not statistically significant, but the model hints that each additional line of
code in a team’s submission is associated with a minor drop in ship score. Based on our qualitative
observations (see Section 4), we hypothesize this may relate to more reuse of code from libraries,
which frequently are not counted in a team’s LOC (most libraries were installed directly on the
VM, not in the submission itself). We also found that, as further noted above, submissions that
used libraries with more sophisticated, lower-level interfaces tended to have more code and more
mistakes; i.e., more steps took place in the application (more code) but some steps were missed
or carried out incorrectly (less secure/correct). Figure 5 shows that LOC is (as expected) associ-
ated with the category of language being used. While LOC varied widely within each language
type, dynamic submissions were generally shortest, followed by static submissions and then those
written in C/C++ (which has the largest minimum size).8

5.5 Resilience

Now, we turn to measures of a build-it submission’s quality, starting with resilience. Resilience is
a non-positive score that derives from break-it teams’ bug reports, which are accompanied by test

8Our earlier model for the Secure Log and ATM contests found that lines of code was actually statistically significant. We
discuss this further in Section 5.8.
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Fig. 6. Final resilience scores, ordered by team, and plotted for each contest problem. Build-it teams who did

not bother to fix bugs generally had lower scores.

Table 6. Break-it Teams in Each Contest Submitted Bug Reports, Which Were

Judged by the Automated Oracle

Secure Log ATM Multiuser DB

Bug reports submitted 24,796 3,701 3,749
Bug reports accepted 9,482 2,482 2,046
Fixes submitted 375 166 320
Bug reports addressed by fixes 2,252 966 926

Build-it teams then submitted fixes, each of which could potentially address multiple bug
reports.

cases that prove the presence of defects. The overall build-it score is the sum of ship score, just
discussed, and resilience. Builders may increase the resilience component during the fix-it phase,
as fixes prevent double-counting bug reports that identify the same defect (see Section 2.1).

Unfortunately, upon studying the data, we found that a large percentage of build-it teams opted
not to fix any bugs reported against their code, forgoing the scoring advantage of doing so. We can
see this in Figure 6, which graphs the resilience scores (Y-axis) of all teams, ordered by score, for
the three contests. The circles in the plot indicate teams that fixed at least one bug, whereas the
triangles indicate teams that fixed no bugs. We can see that, overwhelmingly, the teams with the
lower resilience scores did not fix any bugs. Table 6 digs a little further into the situation. It shows
that of the bug reports deemed acceptable by the oracle (the second row), submitted fixes (row
3) addressed only 23% of those from the Secure Log contest, 38% of those from the ATM contest,
and 45% of those from the Multiuser DB contest (row 4 divided by row 2). It turns out that when
counting only “active” fixers who fixed at least one bug, these averages were 56.9%, 72.5%, and
64.6%, respectively.

Incentivizing fixing. This situation is disappointing, as we cannot treat resilience score as a good
measure of code quality (when added to ship score). After the first two contests, we hypothesized
that participants were not sufficiently incentivized to fix bugs, for two reasons. First, teams that
were sufficiently far from the lead may have chosen to fix no bugs, because winning was unlikely.
Second, for MOOC students, once a minimum score is achieved they were assured to pass; it may
be that fixing (many) bugs was unnecessary for attaining this minimum score.
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Table 7. Final Logistic Model Measuring Log-likelihood of the Discovery of a

Security Bug in a Team’s Submission

Factor Coef. Exp(coef) Exp CI p-value

Secure Log — — — —
ATM 4.639 103.415 [18, 594.11] <0.001*

Multiuser DB 3.462 31.892 [7.06, 144.07] <0.001*

C/C++ — — — —
Statically typed −2.422 0.089 [0.02, 0.51] 0.006*

Dynamically typed −0.99 0.372 [0.07, 2.12] 0.266
# Team members −0.35 0.705 [0.5, 1] 0.051
Knowledge of C −1.44 0.237 [0.05, 1.09] 0.064
Lines of code 0.001 1.001 [1, 1] 0.090

Nagelkerke R
2 = 0.619.

We attempted to more strongly incentivize all teams to fix (duplicated) bugs by modifying the
prize structure for the Multiuser DB contest. Instead of only giving away prizes to top teams, non-
MOOC participants could still win monetary prizes if they scored outside of third place. Placements
were split into different brackets, and one team from each bracket was randomly selected to receive
a prize. Prizes increased based on bracket position (e.g., the fourth and fifth place bracket winner
received $500, while the sixth and seventh place bracket winner received $375). Our hope was
that builders would submit fixes to bump themselves into a higher bracket, which would have a
larger payout. Unfortunately, it does not appear that fix participation increased for non-MOOC
participants for the Multiuser DB contest. To confirm this, we ran a linear regression model, but
according to the model, incentive structure was not a factor in fix participation. The model did
confirm that teams with a higher score at the end of break-it fixed a greater percentage of the bugs
against them.

Additionally, we randomly sampled 60% of Multiuser DB teams to identify the types of vul-
nerabilities they chose to fix. We manually analyzed each break to determine the underlying vul-
nerability to determine whether the expected fix difficulty impacted team decisions. We did not
observe any clear trend in the vulnerabilities teams chose to fix, with all vulnerability types both
fixed by some teams and not fixed by others. Instead, we found teams most often made a binary
decision, choosing to fix all (38%) or none (38%) of their vulnerabilities. The remaining teams only
slightly strayed from a binary choice by either fixing all but one vulnerability (16%) or only one
vulnerability (8%).

5.6 Presence of Security Bugs

While resilience score is not sufficiently meaningful, a useful alternative is the likelihood that a
build-it submission contains a security-relevant bug; by this, we mean any submission against
which at least one crash, privacy, integrity, or availability defect is demonstrated. In this model,
we used logistic regression over the same set of factors as the ship model.

Table 7 lists the results of this logistic regression; the coefficients represent the change in log
likelihood associated with each factor. Negative coefficients indicate lower likelihood of finding
a security bug. For categorical factors, the exponential of the coefficient (exp(coef)) indicates how
strongly that factor being true affects the likelihood relative to the baseline category.9 For numeric

9In cases (such as the ATM contest) where the rate of security bug discovery is close to 100%, the change in log likelihood
starts to approach infinity, somewhat distorting this coefficient upwards.
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Fig. 7. The fraction of teams in whose submission a security bug was found, by contest and language

category.

factors, the exponential indicates how the likelihood changes with each unit change in that factor.
R2 as traditionally understood does not make sense for a logistic regression. There are multiple
approximations proposed in the literature, each of which have various pros and cons. We present
Nagelkerke (R2 = 0.619), which suggests the model explains an estimated 61% of variance [45].

ATM implementations were far more likely than Secure Log implementations to have a discov-
ered security bug.10 We hypothesize this is due to the increased security design space in the ATM
problem as compared to the Secure Log problem. Although it is easier to demonstrate a security er-
ror in the Secure Log problem, the ATM problem allows for a much more powerful adversary (the
MITM) that can interact with the implementation; breakers often took advantage of this capability,
as discussed in Section 4.

Multiuser DB implementations were 31× as likely as Secure Log implementations to have a
discovered security bug. We hypothesize this is due to increased difficulty in implementing a cus-
tom access control system. There are limited libraries available that directly provide the required
functionality, so contestants needed to implement access control manually, leaving more room for
error. For the Secure Log problem, builders could utilize cryptographic libraries to secure their ap-
plications. In addition, it was potentially easier for breakers to discover attacks with the Multiuser
DB problem, since they could reuse break tests against multiple build submissions.11

The model also shows that C/C++ implementations were more likely to contain an identified
security bug than either static- or dynamic-language implementations. For static languages, this
effect is significant and indicates that—assuming all other features are the same—a C/C++ program
was about 11× (that is, 1/0.089 given in Table 712) more likely to contain an identified bug. This
effect is clear in Figure 7, which plots the fraction of implementations that contain a security bug,
broken down by language type and contest problem. Of the 21 C/C++ submissions (see Figure 4),

10This coefficient (corresponding to 103×) is somewhat exaggerated (see prior footnote), but the difference between contests
is large and significant.
11One caveat here is that a quirk of the problem definition permitted breakers to escalate correctness bugs into security
problems by causing the state of Multiuser DB submissions to become out of sync with the oracle implementation, and
behave in a way that seemed to violate availability. We only realized after the contest was over that these should have
been classified as correctness bugs. For the data analysis, we retroactively reclassified these bugs as correctness problems.
Had they been classified properly during the contest, break-it team behavior might have changed, i.e., to spend more time
hunting proper security defects.
12Here, we use the inverse of the exponential coefficient for Statically Typed, because we are describing the relation-
ship between variables in the opposite direction than as presented in the table, i.e., the baseline C/C++ in comparison to
Statically Typed as opposed to Statically Typed in comparison to baseline C/C++.
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Table 8. The Number and Percentage of Teams that had Different Types

of Security Bugs by Language Category

Language Category Integrity Confidentiality
Integrity, Confidentiality, or

Availability (Multiuser DB)
Crash

C/C++ 9/43% 4/19% 5/24% 7/33%
Dynamic 27/45% 17/28% 11/18% 0/0%
Static 15/31% 10/20% 10/20% 0/0%

Percentages are relative to total submissions in that language category, across all contests. Integrity, confidentiality, and
availability bugs were not distinguished for the Multiuser DB problem during that contest. We group them in their own
column.

17 of them had a security bug: 5/9 for the Secure Log contest, 7/7 for the ATM contest, and 5/5 for
the Multiuser DB contest. All five of the buggy implementations from the Secure Log contest had
a crash defect, and crashes were the only security-related problem for three of them; none of the
ATM implementations had crash defects; two of the Multiuser DB C/C++ submissions had crash
defects. All crash defects were due to violation of memory safety. More details about the crashes
are presented in Section 4.1. Table 8 breaks down the number and percentage of teams that had
different categories of security bugs.

The model shows four factors that played a role in the outcome, but not in a statistically sig-
nificant way: using a dynamically typed language, lines of code of an implementation, developer
knowledge of C, and number of team members. We see the effect of the first in Figure 7. We note
that the number of team members is just outside the threshold of being significant. This suggests
that an implementation is 1.4× (1/0.705) less likely to have a security bug present for each team
member.

Finally, we note that MOOC participation was not included in our final model, indicating that
(this kind of) security education did not have a significant effect in the outcome. Prior research [48]
similarly did not find a significant effect of education in secure programming contexts. Our previ-
ous work investigating differences between experts (hackers) and non-experts (software testers)
suggests improvements in vulnerability finding skill are driven by direct experiences with a va-
riety of vulnerabilities (e.g., discovering them, or being shown specific examples) [70]. Therefore,
we hypothesize the hands-on experience of BIBIFI may support secure development improvement
in ways that MOOC lectures, without direct experience, do not.

5.7 Breaking Success

Now, we turn our attention to break-it team performance, i.e., how effective teams were at finding
defects in build-it teams’ submissions. First, we consider how and why teams performed as indi-
cated by their (normalized) break-it score prior to the fix-it phase. We do this to measure a team’s
raw output, ignoring whether other teams found the same bug (which we cannot assess with confi-
dence due to the lack of fix-it phase participation per Section 5.5). This data set includes 141 teams
that participated in the break-it phase for the Secure Log, ATM, and Multiuser DB contests. We
also model which factors contributed to security bug count, or how many total security bugs a
break-it team found. Doing this disregards a break-it team’s effort at finding correctness bugs.

We model both break-it score and security bug count using several of the same potential fac-
tors as discussed previously, but applied to the breaking team rather than the building team. In
particular, we include the Contest they participated in, whether they were MOOC participants,
the number of break-it Team members, average team-member Coding experience, average team-
member Knowledge of C, and unique Languages known by the break-it team members. We also add
two new potential factors. (1) Whether the breaking team also qualified as a Build participant.
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Table 9. Factors and Baselines for Break-it Models

Factor Description Baseline

Contest Secure Log, ATM, or Multiuser DB contest. Secure Log
# Team members A team’s size. —
Knowledge of C The fraction of team members who know C or C++. —
# Languages known Number of programming languages team members know. —
Coding experience Average years of programming experience. —
MOOC If the team was participating in the MOOC capstone. Non-MOOC
Build participant If the breaking team qualified as a build participant. Non-builder
Advanced techniques If the breaking team used software analysis or fuzzing. Not advanced

Table 10. Final Linear Regression Model of Teams’ Break-it Scores,

Indicating How Many Points Each Selected Factor Adds to the Total Score

Factor Coef. CI p-value

Secure Log — — —
ATM −2401.047 [−3781.59, −1020.5] <0.001*

Multiuser DB −61.25 [−1581.61, 1459.11] 0.937
# Team members 386.975 [45.48, 728.47] 0.028*

Coding experience 87.591 [−1.73, 176.91] 0.057
Build participant 1260.199 [−315.62, 2836.02] 0.119
Knowledge of C −1358.488 [−3151.99, 435.02] 0.14

R
2 = 0.15.

(2) Whether the breaking team reported using Advanced techniques like software analysis or
fuzzing to aid in bug finding. Teams that only used manual inspection and testing are not cate-
gorized as advanced. Thirty-four break-it teams (24%) reported using advanced techniques. These
factors are summarized in Table 9.

When carrying out the power analysis for these two models, we aimed for a medium effect size
by Cohen’s heuristic [25]. Assuming a power of 0.75, our conference paper considered a population
of N = 108 for the Secure Log and ATM contests; with the eight degrees of freedom it yields a
prospective effect size f 2 = 0.136. Including the Multiuser DB contest increases the degrees of
freedom to nine and raises the population to N = 141. This yields a prospective effect size f 2 =

0.107, which (again) is an improvement over the initial analysis.

Break score. The model considering break-it score is given in Table 10. It has a coefficient of
determination R2 = 0.15, which is adequate. The model shows that teams with more members
performed better, with an average of 387 additional points per team member. Auditing code for
errors is an easily parallelized task, so teams with more members could divide their effort and
achieve better coverage.

The model also indicates that Secure Log teams performed significantly better than ATM teams,
and Multiuser DB teams performed similarly to ATM teams. Figure 8 illustrates that correctness
bugs, despite being worth fewer points than security bugs, dominate overall break-it scores for the
Secure Log contest. In the ATM contest, the scores are more evenly distributed between correctness
and security bugs. This outcome is not surprising to us, as it was somewhat by design. The Secure
Log problem defines a rich command-line interface with many opportunities for subtle correctness
errors that break-it teams can target. It also allowed a break-it team to submit up to 10 correctness
bugs per build-it submission. To nudge teams toward finding more security-relevant bugs, we
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Fig. 8. Scores of break-it teams prior to the fix-it phase, broken down by points from security and correctness

bugs. The final score of the break-it team (after fix-it phase) is noted as a dot. Note the different ranges in the

y-axes. In general, the Secure Log contest had the least proportion of points coming from security breaks.

reduced the submission limit from 10 to 5, and designed the ATM and Multiuser DB interface
to be far simpler. For the Multiuser DB contest, an even greater portion of break-it scores come
from security bugs. This again was by design as we increased the security bug limit. Instead of
submitting a maximum of two security bugs against a specific build-it team, breakers could submit
up to five security (or correctness) bugs against a given team.

Interestingly, making use of advanced analysis techniques did not factor into the final model; i.e.,
such techniques did not provide a meaningful advantage in our context. This makes sense when we
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Table 11. Final Linear Regression Modeling the Count of

Security Bugs Found by Each Team

Factor Coef. CI p-value

Secure Log — — —
Multiuser DB 9.617 [5.84, 13.39] <0.001*

ATM 3.736 [0.3, 7.18] 0.035*

# Team members 1.196 [0.35, 2.04] 0.006*

Build participant 4.026 [0.13, 7.92] 0.045*

Coefficients indicate how many security bugs each factor adds to the
count. R

2 = 0.203.

Fig. 9. Count of security bugs found by each break-it team, organized by contest and whether the team

also participated in build-it. The heavy vertical line in the box is the median, the boxes show the first and

third quartiles, and the whiskers extend to the most outlying data within ±1.5× the interquartile range. Dots

indicate further outliers.

consider that such techniques tend to find generic errors such as crashes, bounds violations, or null
pointer dereferences. Security violations for our problems are more often semantic, e.g., involving
incorrect design or improper use of cryptography. Many correctness bugs were non-generic too,
e.g., involving incorrect argument processing or mishandling of inconsistent or incorrect inputs.

Being a build participant and having more coding experience is identified as a positive factor in
the break-it score, according to the model, but neither is statistically significant (though they are
close to the threshold). Interestingly, knowledge of C is identified as a strongly negative factor in
break-it score (though again, not statistically significant). Looking closely at the results, we find
that lack of C knowledge is extremely uncommon, but that the handful of teams in this category
did unusually well. However, there are too few of them for the result to be significant.

Again, we note MOOC participation was not included in our final model, suggesting this security
education had at most a limited effect on breaking success.

Security bugs found. We next consider breaking success as measured by the count of security
bugs a breaking team found. This model (Table 11) explains 20% of variance (R2 = 0.203). The
model again shows that team size is important, with an average of one extra security bug found
for each additional team member. Being a qualified builder also significantly helps one’s score; this
makes intuitive sense, as one would expect to gain a great deal of insight into how a system could
fail after successfully building a similar system. Figure 9 shows the distribution of the number
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of security bugs found, per contest, for break-it teams that were and were not qualified build-it
teams. Note that all but eight of the 141 break-it teams made some attempt, as defined by having
made a commit, to participate during the build-it phase—most of these (115) qualified, but 18 did
not. If the reason was that these teams were less capable programmers, then that may imply that
programming ability generally has some correlation with break-it success.

On average, four more security bugs were found by ATM teams than Secure Log teams. This
contrasts with the finding that Secure Log teams had higher overall break-it scores, but corre-
sponds to the finding that more ATM submissions had security bugs found against them. As
discussed above, this is because correctness bugs dominated the Secure Log contest but were not
as dominant in the ATM contest. Once again, the reasons may have been the smaller budget on
per-submission correctness bugs for the ATM contest, and the greater potential attack surface in
the ATM problem.

Multiuser DB teams found ten more security bugs on average than Secure Log teams. One pos-
sible reason is that the Multiuser DB contest permitted teams to submit up to five security bug
reports per target, rather than just two. Another is that with Multiuser DB it was easier for break-
ers to reuse break tests to see when multiple targets were susceptible to the same bug.

5.8 Model Differences

In the conference version of this article [56], we presented previous versions of these models with
only data from the Secure Log and ATM contests. The updated models with Multiuser DB data are
very similar to the original models, but there are some differences. We describe the differences to
each model in this subsection.

Ship scores. In the original ship score model, students of the MOOC capstone performed
119 points better than non-MOOC teams. This correlation goes away when the Multiuser DB data
is included. We hypothesize that this is due to prior coursework. MOOC students took three prior
security courses that cover cryptography, which is directly relevant to the Secure Log and ATM
problem, but not the Multiuser DB problem.

Lines of code is not statistically significant in the updated model, but it was significant in the
original model. Each additional line of code corresponded with a drop of 0.03 points in ship score.
Code size may not have improved ship scores for the Multiuser DB contest due to the nature of the
problem. Teams needed to implement custom access control policies and there are fewer libraries
available that implement this functionality.

Presence of security bugs. In the original presence-of-security-bugs model, lines of code was a
significant factor. Each additional line of code slightly increased the likelihood of a security bug
being present (1.001×). Lines of code is not in the latest model, which is similar to the change in
the ship score model (Section 5.4). We hypothesize this change occured for the same reasons.

Break score. The break score model basically remained the same between versions. The only
difference is the coefficients slightly changed with the addition of the Multiuser DB contest.

Security bugs found. The linear regression model for the number of security bugs found essen-
tially remained unchanged. The only material change was the addition of the factor that found
that Multiuser DB breakers found more security bugs than Secure Log problem breakers.

5.9 Summary

The results of our quantitative analysis provide insights into how different factors correlate with
success in building and breaking software. Programs written in C and C++ received higher ship
scores due to better performance. C/C++ submissions were also 11×more likely to have a reported
security flaw than submissions written in statically typed languages.
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Break-it teams with more team members found more security bugs and received more break-it
points. Searching for vulnerabilities is easily parallelizable, so teams with more members could
split the workload and audit more code. Successful build participants found more security bugs.
This is intuitive as successfully building a program gives insights into the mistakes other similar
programs might make.

6 RELATED WORK

BIBIFI bears similarity to existing programming and security contests but is unique in its focus
on building secure systems. BIBIFI also is related to studies of code and secure development but
differs in its open-ended contest format.

Contests. Cybersecurity contests typically focus on vulnerability discovery and exploitation, and
sometimes involve system administration for defense. One popular style of contest, dubbed capture

the flag (CTF), is exemplified by a contest held at DEFCON [4]. Here, teams run an identical system
that has buggy components. The goal is to find and exploit the bugs in other competitors’ systems
while mitigating the bugs in your own. Compromising a system enables a team to acquire the
system’s key and thus “capture the flag.” In addition to DEFCON CTF, there are other CTFs such
as iCTF [24, 29, 65], S3 [16], KotH [20], and PicoCTF [22]. The use of this style of contest in an
educational setting has been explored in prior work [28, 31, 38]. The Collegiate Cyber Defense
Challenge [26, 27, 46] and the Maryland Cyber Challenge & Competition [8] have contestants
defend a system, so their responsibilities end at the identification and mitigation of vulnerabilities.
These contests focus on bugs in systems as a key factor of play, but neglect software development.

Since BIBIFI’s inception, additional contests have been developed in its style. Make it and Break
it [76] is an evaluation of the Build-it, Break-it, Fix-it type of contest. Two teams were tasked
with building a secure internet of things (IoT) smart home with functionality including remote
control of locks, speakers, and lighting. Teams then broke each other’s implementations and found
vulnerabilities like SQL injection and unauthorized control of locks. The contest organizers found
this style of contest was beneficial in the development of cybersecurity skills and plan to run
additional contests in the future. Git-based CTF [73] is similar to BIBIFI in that students were
asked to implement a program according to a given specification. It differs in the fact that the CTF
was fully run on Github and contestants used issue-tracking to submit breaks. In addition, builders
were encouraged to fix breaks as soon as breaks were submitted, since they periodically lost points
for unfixed breaks. This seems to have been an effective motivation for convincing builders to fix
their mistakes, and it may be a solution to improve BIBIFI’s fix-it participation.

Programming contests challenge students to build clever, efficient software, usually with con-
straints and while under (extreme) time pressure. The ACM programming contest [1] asks teams
to write several programs in C/C++ or Java during a 5-hour time period. Google Code Jam [6] sets
tasks that must be solved in minutes, which are then graded according to development speed (and
implicitly, correctness). Topcoder [9] runs several contests; the Algorithm competitions are small
projects that take a few hours to a week, whereas Design and Development competitions are for
larger projects that must meet a broader specification. Code is judged for correctness (by passing
tests), performance, and sometimes subjectively in terms of code quality or practicality of design.
All of these resemble the build-it phase of BIBIFI but typically consider smaller tasks; they do not
consider the security of the produced code.

Secure Development Practices and Advice. There is a growing literature of recommended practices
for secure development. The BSIMM (“building security in” maturity model) [2] collects informa-
tion from companies and places it within a taxonomy. Microsoft’s Security Development Lifecycle
(SDL) [40] describes possible strategies for incorporating security concerns into the development
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process. Several authors make recommendations about development lifecycle and coding prac-
tices [19, 23, 39, 43, 60, 68]. Acar et al. collect and categorize 19 such resources [15].

Studies of secure software development. Researchers have considered how to include security in
the development process. Work by Finifter and Wagner [35] and Prechelt [54] relates to both our
build-it and break-it phases: they asked different teams to develop the same web application using
different frameworks, and then subjected each implementation to automated (black box) testing
and manual review. They found that both forms of review were effective in different ways, and that
framework support for mitigating certain vulnerabilities improved overall security. Other studies
focused on the effectiveness of vulnerability discovery techniques, e.g., as might be used during
our break-it phase. Edmundson et al. [32] considered manual code review; Scandariato et al. [59]
compared different vulnerability detection tools; other studies looked at software properties that
might co-occur with security problems [37, 71, 77]. BIBIFI differs from all of these in its open-
ended, contest format: Participants can employ any technique they like, and with a large enough
population and/or measurable impact, the effectiveness of a given technique will be evident in
final outcomes.

Other researchers have examined what factors influence the development of security errors.
Common findings include developers who do not understand the threat model, security APIs with
confusing options and poorly chosen defaults, and “temporary” test configurations that were not
corrected prior to deployment [33, 34, 36]. Interview studies with developers suggest that security
is often perceived as someone else’s responsibility, not useful for career advancement, and not part
of the “standard” developer mindset [47, 75]. Anecdotal recommendations resulting from these in-
terviews include mandating and rewarding secure coding practices, ensuring that secure tools and
APIs are more attractive than less secure ones, enable “security champions” with broadly defined
roles, and favoring ongoing dialogue over checklists [17, 72, 74]. Developer Observatory [13, 14, 62]
is an online platform that enables large-scale controlled security experiments by asking software
developers to complete a security relevant programming tasks in the browser. Using this platform,
Acar et al. studied how developer experience and API design for cryptographic libraries impact
software security. Oliveira et al. [49] performed an experiment on security blindspots, which they
define as a misconception, misunderstanding, or oversight by the developer in the use of an API.
Their results indicate that API blindspots reduce a developer’s ability to identity security concerns,
I/O functionality is likely to cause blindspots, and experience does not influence a developer’s
ability to identify blindspots. Thompson [64] analyzed thousands of open source repositories and
found that code review of pull requests reduced the number of reported security bugs.

Crash de-duplication. For accurate scoring, BIBIFI identifies duplicate bug reports by unifying
the ones addressed by the same (atomic) fix. But this approach is manual, and relies on imperfect
incentives. Other works have attempted to automatically de-duplicate bug reports, notably those
involving crashes. Stack hashing [44] and AFL [11] coverage profiles offer potential solutions,
however Klees et al. [42] show that fuzzers are poor at identifying which underlying bugs cause
crashing inputs. Semantic crash bucketing [67] and symbolic analysis [52] show better results
at mapping crashing inputs to unique bugs by taking into account semantic information of the
program. The former supports BIBIFI’s view that program fixes correspond to unique bugs.

7 CONCLUSION

This article has presented Build-it, Break-it, Fix-it (BIBIFI), a new security contest that brings to-
gether features from typical security contests, which focus on vulnerability detection and miti-
gation but not secure development, and programming contests, which focus on development but
not security. During the first phase of the contest, teams construct software they intend to be
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correct, efficient, and secure. During the second phase, break-it teams report security vulnerabili-
ties and other defects in submitted software. In the final, fix-it, phase, builders fix reported bugs and
thereby identify redundant defect reports. Final scores, following an incentives-conscious scoring
system, reward the best builders and breakers.

During 2015 and 2016, we ran three contests involving a total of 156 teams and three different
programming problems. Quantitative analysis from these contests found that the best performing
build-it submissions used C/C++, but submissions coded in a statically typed language were less
likely to have a security flaw. Break-it teams that were also successful build-it teams were signifi-
cantly better at finding security bugs. Break-it teams with more members were more successful at
breaking, since auditing code is a task that is easily subdivided.

The BIBIFI contest administration code is available at https://github.com/plum-umd/bibifi-code;
data from our contests is available in limited form, upon request. More information, data, and
opportunities to participate are available at https://builditbreakit.org.
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