
BitTorrent is an Auction:
Analyzing and Improving BitTorrent’s Incentives

Dave Levin Katrina LaCurts Neil Spring Bobby Bhattacharjee
University of Maryland University of Maryland University of Maryland University of Maryland

dml@cs.umd.edu katrina@cs.umd.edu nspring@cs.umd.edu bobby@cs.umd.edu

ABSTRACT
Incentives play a crucial role in BitTorrent, motivating users to up-
load to others to achieve fast download times for all peers. Though
long believed to be robust to strategic manipulation, recent work
has empirically shown that BitTorrent does not provide its users
incentive to follow the protocol. We propose an auction-based
model to study and improve upon BitTorrent’s incentives. The
insight behind our model is that BitTorrent uses, not tit-for-tat as
widely believed, but an auction to decide which peers to serve. Our
model not only captures known, performance-improving strategies,
it shapes our thinking toward new, effective strategies. For exam-
ple, our analysis demonstrates, counter-intuitively, that BitTorrent
peers have incentive to intelligently under-report what pieces of
the file they have to their neighbors. We implement and evalu-
ate a modification to BitTorrent in which peers reward one another
with proportional shares of bandwidth. Within our game-theoretic
model, we prove that a proportional-share client is strategy-proof.
With experiments on PlanetLab, a local cluster, and live down-
loads, we show that a proportional-share unchoker yields faster
downloads against BitTorrent and BitTyrant clients, and that under-
reporting pieces yields prolonged neighbor interest.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Applications; H.1.0 [Information Systems]: Models and
Principles—General; H.5.3 [Information Interfaces and Presen-
tation]: Group and Organization Interfaces—Collaborative com-
puting; J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Design, Economics, Theory

Keywords
Incentive systems, BitTorrent, tit-for-tat, auctions, proportional share

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

1. INTRODUCTION
BitTorrent [2] is a remarkably successful decentralized system

that allows many users to download a file from an otherwise under-
provisioned server. To ensure quick download times and scalabil-
ity, BitTorrent relies upon those downloading a file to cooperatively
trade portions, or pieces, of the file with one another [5]. Incentives
play an inherently crucial role in such a system; users generally
wish to download their files as quickly as possible, and since Bit-
Torrent is decentralized, there is no global “BitTorrent police” to
govern their actions. Users are therefore free to attempt to strate-
gically manipulate others into helping them download faster. The
role of incentives in BitTorrent is to motivate users to contribute
their resources to others so as to achieve desirable global system
properties—fast download times for all peers, resilience to failures,
and so on—without having to resort to a centralized coordinator.

Though long believed to be robust to strategic manipulation, Bit-
Torrent’s incentives have recently come under scrutiny. Clients
such as BitThief [17] and BitTyrant [22] empirically demonstrate
that users do not currently have incentive to follow the BitTorrent
protocol. These results are a surprising contrast to the general un-
derstanding that BitTorrent uses a tit-for-tat-like mechanism. We
address this apparent contradiction by considering the following
natural questions: Can we rigorously show why BitTorrent is vul-
nerable to strategic manipulation? Can we develop new incentive
mechanisms to make BitTorrent robust to a wide range of selfish
gaming while retaining, or even improving, its performance?

Analyzing BitTorrent’s incentives
We find that these questions have, to date, gone unanswered in large
part due to a basic misinterpretation of BitTorrent’s incentives. Bit-
Torrent is widely understood to use tit-for-tat [5, 13, 18, 19, 23,
24].1 The first broad contribution of our work is in developing
a game theoretic model of BitTorrent’s incentives that shows that
BitTorrent does not use tit-for-tat. We find that an auction-based
model is more accurate. The difference is subtle, as BitTorrent
does share some of the same properties of tit-for-tat. But we show
that re-framing the existing mechanism as an auction is powerful
in that (1) it captures the known, performance-improving strategies
of BitThief and BitTyrant, (2) it reveals new means of strategically
manipulating BitTorrent, and (3) it provides insight into the design
of a more robust incentive mechanism.

The studies of BitTorrent’s incentives have focused predomi-
nately on how to game the unchoking algorithm which peers use to
determine how much to upload to others. Our auction-based model
captures this algorithm, but also reveals another area for strategic
manipulation: the piece revelation strategy, which dictates what

1These are but several examples; that BitTorrent uses tit-for-tat is
virtually a consensus in the literature.

243

pieces a peer tells others that it has. The standard practice is for
a peer to truthfully report all of the pieces it has to other peers.
To the best of our knowledge, we are the first to consider non-
trivial piece revelation strategies. We draw inspiration from the
economic phenomenon of decoupling, in which a group of mar-
ket countries shed their dependence on another by trading among
themselves. We show that a BitTorrent peer has incentive to intel-
ligently under-report the pieces it has and to intentionally reduce
the multiplicity of others’ pieces so as to keep peers uploading to it
instead of to each other. With evaluation on PlanetLab, we demon-
strate that strategic piece revelation can yield prolonged neighbor
interest, which can result in faster download times. We also find
that even when all peers under-report their pieces to one another,
system-wide download times increase by a surprisingly small per-
centage.

In a system as complex as BitTorrent, there are potentially many
components peers could game. We believe that the two we consider—
the unchoking algorithm and the piece revelation strategy—constitute
the essence of a “BitTorrent-like” file swarming system. To obtain
a more complete understanding of BitTorrent’s incentives, we also
consider what role piece rarity plays in strategic behavior. We show
experimentally that achieving a block monopoly is infeasible—
even with a large fraction of colluding peers—and conclude that
BitTorrent’s rarest-first piece selection is a natural deterrent to such
strategies.

Improving BitTorrent’s incentives
The second main contribution of our work is in applying our the-
oretical understanding of BitTorrent to develop new, more robust
incentives. Our auction-based model reveals a rather straightfor-
ward modification in the way a peer clears its auction, that is, in
how much a peer rewards others for uploading to it. We consider
a proportional share auction clearing, in which each player is re-
warded with an amount of good proportional to how much it bid.
This approach has recently received attention in resource alloca-
tion [8, 12], and has been shown to converge quickly to a market
equilibrium [30]. Applying this straightforward model in practice
introduces several technical challenges which we address, includ-
ing how to find other peers with whom to trade, and how to boot-
strap new participants.

We emphasize that our proportional share mechanism is intended
to replace the current unchoking algorithm, not to game it like Bit-
Thief and BitTyrant. However, we show that proportional share
performs better against BitTorrent peers than the standard protocol.
Further, with the intent of incremental deployment, we present a
solution that does not require any modification to BitTorrent’s wire
protocol; the only modifications we make are to the local decisions
a peer makes. Our client is therefore usable today, and we show
with extensive experiments on PlanetLab and live swarms that as
more users adopt our client, system-wide performance improves.

Roadmap
The rest of this paper is structured as follows. We present related
work in Section 2. Section 3 contains the necessary background
to our analysis: our goals, assumptions, and the pertinent aspects
of the BitTorrent protocol. In Section 4, we present our auction-
based model of BitTorrent and use it to prove several properties of
BitTorrent, including: it is indeed not tit-for-tat and it is suscep-
tible to Sybil attacks. We consider the role block rarity plays in
incentives and consider piece revelation strategies in Section 5. In
Section 6, we apply the proportional share mechanism as a BitTor-
rent unchoker, and prove several properties in the context of Bit-
Torrent: that it is fair, not susceptible to Sybil attacks, and more

resistant to collusion. We present in Section 7 several extensions to
our proportional share mechanism we found useful in implementa-
tion. We have implemented our proportional share client, and eval-
uate experimentally on PlanetLab, a local cluster, simulations, and
live swarms; we present these results in Section 8. In Section 9, we
propose a bootstrapping algorithm that improves upon BitTorrent’s
optimistic unchoking by ensuring that new peers contribute to the
swarm as soon as they join. Finally, we conclude in Section 10.

2. RELATED WORK
File swarming has received significant attention from researchers

and users alike, BitTorrent [2] in particular. Our work involves
modeling, gaming, and improving BitTorrent’s incentives.

2.1 Studies of BitTorrent’s incentives
Cohen began the study of his BitTorrent protocol’s incentives

by demonstrating that tit-for-tat-based incentives make BitTorrent
robust to strategic gaming [5]. However, Cohen later found strict
tit-for-tat to come at too high a cost [4], and weakened the proto-
col’s incentives to achieve better performance. Strategies to game
BitTorrent to obtain faster downloads were not long to follow.

Gaming BitTorrent
BitTyrant [22] is a modification of the Azureus BitTorrent client
that exploits the “last place is good enough” observation discussed
in Section 4. Schneidman et al. [26] were the first to observe this
strategy; BitTyrant is an empirical study of its effectiveness. Bit-
Tyrant attempts to find the smallest winning bid by beginning at
some initial bid and then increasing or decreasing by some small
percentage. BitThief [17] studies the feasibility of downloading in
BitTorrent without uploading. A BitThief client attempts to enter
as many peers’ optimistic unchoke slots as possible: the so-called
large view exploit [27]. This strategy results in a tragedy of the
commons; entering as many optimistic unchoke slots as possible
is a rational strategy for all peers to make (it always improves the
expected completion time), but when a significant percentage2 of
the peers run the BitThief client, overall performance will logically
decrease.

Some have also considered implementation-specific attacks, such
as uploading garbage data [16, 26]. We focus only on the compo-
nents of BitTorrent’s protocol that we find to be characteristic of its
class of file swarming, not any particular implementation. Strate-
gically gaming BitTorrent helps further the understanding of its in-
centives; our auction-based model (Section 4) is validated in part
by the fact that it captures both BitTyrant and BitThief, and reveals
new means of gaming BitTorrent.

Modeling BitTorrent’s incentives
Others have considered game-theoretic models of BitTorrent. Coupon
replication [18] has been used as a way to model trading in Bit-
Torrent and show that altruism does not play a critical role in file
swarming systems’ performance, nor that rarest-first block schedul-
ing is of critical importance. This model may prove too simplis-
tic in modeling BitTorrent’s incentives in a heterogeneous envi-
ronment; by assuming that blocks are traded in discrete segments
(coupons), it effectively assumes homogeneous bandwidth. Propor-
tional share [8, 12, 30] has been studied in many contexts. Zhang
and Wu show that proportional share in a BitTorrent-like system
quickly achieves a market equilibrium. However, they do not con-
sider any of the common externalities that can destabilize the equilibrium—

2The precise percentage depends on the number of unchoke slots
per peer.

244

block rarity and availability (Section 5), and churn—nor do they
address bootstrapping the system (Section 9).

2.2 Improving BitTorrent’s incentives
Much work has gone into encouraging cooperation among self-

ish BitTorrent participants. We present related work based on the
incentive mechanisms used to achieve this.

Tit-for-tat
Tit-for-tat is a common incentive mechanism in which peers pro-
vide blocks to those who have provided them blocks in the past.
BitTorrent was originally described as using tit-for-tat [5]; we dis-
cuss BitTorrent’s mechanism in more detail in Section 4. Jun and
Ahamad [11] propose removing optimistic unchoking from BitTor-
rent in favor of a k-TFT scheme, in which peers continue upload-
ing to others until the deficit (blocks given minus blocks received)
exceeds some niceness number k. Their results show, as Cohen
found with BitTorrent [14], that removing optimistic unchoking in-
creases the average completion time, but does indeed punish free-
riders more heavily. Jun and Ahamad observe that if free-riders
can benefit in a system, then eventually the system will devolve
into all free-riders, so a strong disincentive to free-ride is necessary
to halt this “evolution.” Garbacki et al. [10] consider an amortized
tit-for-tat scheme that effectively allows contributions made while
downloading one file to apply in a tit-for-tat-like manner to other
files in the future. Other solutions to this problem generally involve
monetary mechanisms.

Monetary mechanisms
Dandelion [28] is a file distribution protocol that uses currency and
key exchanges through a centralized server to provide incentive
for sharing across different downloads. By requiring centralized
servers, Dandelion trades off scalability for incentive-compatibility.
BitStore [25] is an exploratory work into applying monetary, second-
price auctions

Both Dandelion and BitStore use currency to address what we
call the seeder promotion problem: providing incentive to peers
who have completed downloading a file to seed the file. This is
a very important problem, as well; solving it would increase file
availability. We believe the mechanisms we present in this paper
can complement future solutions to seeder promotion.

Topology-based reciprocation
FOX’s structured, cyclic topology provides a means for peer to pun-
ish nodes both upstream and downstream from it [15]. Ngan et
al. [21] take a similar approach by having peers periodically reform
a SplitStream [3] structure, with the hopes that peers who were
downstream from a cheater will later be upstream from it, thereby
giving it the ability to punish. In addition to the overhead of re-
forming the structure, peers must wait for a new restructuring to
even have the possibility of punishing free-riders. In both of these
systems, fairness is defined very strictly; peers receive as much as
they give. We find this to be unnecessarily strict, as there may be
highly provisioned nodes who are willing to give much more to the
system as long as they can download more; FOX, for one, does not
provision for this.

Bootstrapping file exchange
We present a mechanism in Section 9 to provide newly joined peers
an initial set of pieces of the file to trade. The standard mecha-
nism in BitTorrent is optimistic unchoking; each peer uploads to
at least one other peer at random, with a weighted preference to
new nodes. Optimistic unchoking is the basis of BitThief [17] and

the large view exploit [27], while our mechanism encourages peers
to trade immediately. Our mechanism is similar in nature to Dan-
delion [28], but is much lighter weight; it need only be applied
when a node has no currency—either when it first joins the system
or when it has no blocks of interest to its neighbors—and not for
every subsequent block. Also, the technique does not require any
trade-off of scalability for incentives, and can be applied to any sce-
nario employing simultaneous exchange of blocks with node churn.
Super-seeding is a new feature in some BitTorrent clients in which
a seeder will upload block b to some new peer p, but will not upload
any more blocks to p until the seeder observes that other peers have
block b, and hence p must be uploading to others. Our mechanism
differs from super-seeding; since ours applies to selfish leechers,
not altruistic seeders, we cannot afford to give a block and hope
for one to be returned later. Instead, our mechanism ensures that
new peers upload blocks at the same time as downloading. Further,
super-seeding is clearly susceptible to a Sybil attack, in which p
requests b, then with Sybil p′ states that it has block b. We show
that our mechanism is resilient to Sybil attacks.

3. BACKGROUND AND GOALS
In this section, we provide a basic overview of the portions of

the BitTorrent protocol pertinent to our study of its incentives. Our
description of BitTorrent is intentionally broad so as to capture a
broader class of “BitTorrent-like” protocols. We also define the
goals of the individual users—their utility—and the goals of the
system designer—the social good. The goal in designing an incen-
tives mechanism is to achieve some desirable, provable properties
of the social good, while appealing to users’ selfishness.

3.1 BitTorrent basics
BitTorrent peers are classified on a per-file basis as leechers if

they are downloading (and uploading) the file and seeders if they
have the entire file and are uploading (only) to leechers. A tracker
stores a small amount of state to assist leechers in discovering other
peers. Files in BitTorrent consist of pieces which in turn consist of
blocks. A leecher � is interested in another peer p if p has pieces
that � does not; similarly, � finds p interesting. All leechers are
interested in all seeders.

BitTorrent peers may maintain open connections to multiple neigh-
bors, but generally only upload to, or unchoke, a small number of
them. Users may adjust this number of unchoke slots, but it is gen-
erally either some small constant (4) or some function of their up-
load bandwidth. The unchoking algorithm dictates to whom and
how much to unchoke. To bootstrap, the unchoking algorithm con-
sists of at least one random peer to optimistically unchoke regard-
less of that peer’s contribution.

Peers inform one another of the pieces they have; when they first
connect to a neighbor, they send a bit array of their pieces, called
a bitfield, which they later update with per-piece have messages.
All peers maintain an estimate of each piece’s availability: a count
of how many neighbors have that piece. When a peer p begins
unchoking leecher �, � informs p which of p’s blocks it wishes to
receive next. The common strategy is rarest-first, in which � prior-
itizes the pieces it views as least available.

3.2 Assumptions: Selfishness and rationality
The value that leecher � gains from a file swarming system can

be naturally defined to be how quickly � downloads the file. We
can thus define �’s utility u� to be the average download speed: if
it takes � time T� to download a file of size F then u� = F/T�.
Note that we do not define utility at some specific time t, as that
would not capture the fact that faster download speeds at the begin-

245

ning of a download can be offset by poor download speeds at the
end. We assume that all leechers are selfish—they each attempt to
maximize their own utility—and rational—for any two strategies,
� will choose the one that yields greater expected utility.

Our definition of �’s utility does not capture the leecher’s cost of
uploading; this is intentional. We do not believe it is a leecher’s
goal to minimize the amount it has to upload in order to download
as quickly as possible. Instead, we rely, as do existing BitTorrent
clients, on the user to specify the amount of upload capacity they
wish to allow BitTorrent to allot. Users are thus expected to find
their own best return-on-investment, that is, the ideal ratio of util-
ity (download speed) to cost. A peer’s upload costs can come in
many forms, for instance: (1) actual costs to send, as in a price-
per-byte cell phone data plan, or (2) the contention with other net-
working applications’ performance. Upload costs can therefore be
extremely complex and change over time. We believe it is best to
not include it in a formal definition of u�, and to instead allow the
user to set her own upload capacity. In game theory parlance, the
user’s chosen upload capacity would represent her type, and the
optimal advertised type would depend on externalities of which the
BitTorrent application is unaware.

3.3 Goals: Desirable system properties
As system designers, we prefer outcomes that maximize some

notion of the public good, which may in fact be at odds with selfish
peers’ individual strategies. A goal of our work is to understand
the price of anarchy: the difference between the social good ob-
tained from fully cooperative peers and that obtained from selfish
peers. There are many ways to define public good: max-min utility,
max-average utility, max-average return-on-investment, and so on.
Strict “get exactly as much as you give” fairness properties seem to
require undesirable overhead, such as extensive bookkeeping [20],
topology constraints [15, 21], or a monetary system [29]. Further,
we find that strict fairness requirements can degrade overall per-
formance. In FOX [15], for instance, peers are motivated to give
precisely as much as they receive. Under heterogeneous network
conditions, higher-provisioned FOX peers may not have incentive
to give more to the system, even though they would have been will-
ing to, if it led to faster downloads.

We favor a simpler, more practical definition of fairness: the
more a peer gives, the more it gets. Consider the ramifications this
fairness property would have on the social good; a highly provi-
sioned peer will upload as much as possible to download as quickly
as possible. While serving the selfish peer, the rest of the peers
benefit because the highly provisioned peer gives as much as it can.
Legout et al. [13] suggest a similar, relaxed form of fairness, and
conclude that BitTorrent’s current rarest-first and unchoking strate-
gies suffice. We arrive at a different conclusion in section 4.3: that
BitTorrent’s incentives are not fair, even under this relaxed defini-
tion.

4. BITTORRENT AS AN AUCTION
Auctions offer a natural model of interactions among selfish Bit-

Torrent peers. In such auctions, each peer places bids in the form
of bandwidth to its neighbors, who in return give bandwidth as the
good. With an auction-based model, we expect to gain insight into
BitTorrent’s incentive structure. Surprisingly, though our specific
model is quite simple (a two-line algorithm), it is validated by the
fact that it captures recent attacks on the BitTorrent protocol, and
reveals new attacks, as well. Thus, while we do not expect our
model to be the most accurate representation of BitTorrent, it does
provide the necessary motivation and insight into a new solution
(Section 6). In this section, we use our model to analyze what

incentives BitTorrent gives selfish clients to cooperate, and BitTor-
rent’s susceptibility to gaming.

4.1 An auction-based model
We propose the following auction-based model of BitTorrent.

Each peer i separates time into rounds3, which are not synchro-
nized among peers. At round t, i runs the auction in Algorithm 1.

Algorithm 1 BitTorrent’s current auction.

1. Run an auction for i’s bandwidth; accept bandwidth bj(t−1)
from interested peer j as j’s bid.

2. Send 1/s fraction of i’s total outgoing bandwidth to each
of the highest (s − 1) interesting bidders from the previous
round, as well as one other interested peer at random.

4.2 BitTorrent is not tit-for-tat
BitTorrent has historically been described as employing tit-for-

tat. The tit-for-tat strategy in a repeated game is defined as cooper-
ating in the first round, and, in every subsequent round, replicating
the opponent’s strategy from the previous round [1]. Though simi-
lar to tit-for-tat—in that i sends predominately to peers that send to
it—Algorithm 1 differs fundamentally in terms of to whom i sends.

To see the difference, consider a rational peer p’s response to
node i playing Algorithm 1. The ideal strategy against tit-for-tat is
to cooperate in every round [1]. BitTyrant [22] is built off of the
following observation of p’s behavior: It is in a rational player p’s
best strategy to bid as little as possible to still be one of the (s− 1)
(deterministic) winners of i’s auction. BitTyrant finds this minimal
amount with by adjusting their estimate by small multiplicative fac-
tors; Piatek et al. observe that binary search is not suitable as node
churn can rapidly alter peer reciprocation. Further, Piatek et al. find
that, with a finite upload bandwidth “budget,” one should favor up-
loading to peers who offer a high return on investment, potentially
uploading none to peers that offer poor returns.

That BitTorrent does not employ tit-for-tat is not in and of itself
a bad thing. In fact, this choice was intentional, to improve per-
formance [4]. However, it brings to light the importance of under-
standing precisely what properties BitTorrent’s incentive structure
offers.

4.3 BitTorrent is not fair
There are many definitions of fairness. Our proposed, natural

fairness property from Section 3.3 can be formalized as follows: if
peer p1 uploads more to peer q than does peer p2, then q should
reward p1 more than p2. This is clearly not the case in BitTorrent.
Only the top (s− 1) uploading peers are guaranteed to receive any
data from q, and each of these receive the same allocation: 1/s
of q’s bandwidth. Further, of the top (s − 1) uploaders to q, as
they upload more, they are not guaranteed to obtain more. Once a
highly-provisioned peer wins all of the s auctions in which it bids,
it has no incentive to bid more in these auctions.

4.4 BitTorrent is susceptible to Sybil attacks
A Sybil attack [6] consists of a single host representing itself as

many peers in an attempt to gain more from the system than it could
as a single peer. BitTorrent is susceptible to two classes of Sybil at-
tacks. The first is in regards to optimistic unchoking. By creating S

3Azureus uses 10 second rounds.

246

Sybils {σ1 . . . , σS} and using each of them to request to be in oth-
ers’ optimistic unchoking slots, the host will obtain in expectation
S times more optimistic unchoking slots. The only Nash equilib-
rium of such an attack is for all peers to create as many Sybils as
possible and, as in BitThief [17], to request to be optimistically un-
choked by as many other peers as possible. Indeed, for every peer,
this is a dominant strategy. Unfortunately, this results in a tragedy
of the commons, like in BitThief (see Section 2). We address this
problem with a proposed bootstrapping mechanism that would re-
move the need for optimistic unchoking (Section 9).

The auction in Algorithm 1 reveals another class of Sybil attacks
to which BitTorrent is susceptible, but which, to the best of our
knowledge, has yet to be exploited by any selfish clients. Recall
that a rational peer has incentive to come in last, (s−1)’th, place in
the auction so that it receives the same good for the cheapest price.
To obtain more good, the peer would have to win more than one
slot. Let ci be the current bid on (cost of) slot i, cs−1 ≤ cs−2 ≤
· · · ≤ c1, and let ε be the smallest increase such that if a peer were
to bid ci + ε, it would win slot i. The optimal strategy of rational
peer p with upload capacity Up is:

Algorithm 2 A Sybil attack on the BitTorrent .

1. Find the maximum k such that k · (cs−k + ε) ≤ Up.

2. Create k Sybils, {σ1, . . . , σk}, and with σi bid cs−k + ε.

To summarize Algorithm 2, p would attempt to come in last
(s’th) place, (s − 1)’th place, . . . , and (s − k + 1)’th place. To
do so, p would have to outbid the current (s− k + 1)’th place peer
with each of p’s bids, or else the (s − k + 1)’th place peer would
obtain one of the last k places.

The feasibility of Algorithm 2 in practice depends on the num-
ber of the victim’s upload slots (s), the other peers’ bids, and the
attacker’s upload capacity. The best case scenario for an attacker p
would be to find a peer who is currently receiving many small bids,
in which case p could potentially win all of the bids at that peer.
The worst case scenario for an attacker p would be where p could
only afford the last-place slot at any other peer; in this case, Al-
gorithm 2 is identical to BitTyrant. Hence, we can view this Sybil
attack as a generalization of BitTyrant.

In a sense, BitTorrent could be made more fair if each peer em-
ployed this Sybil-based strategy; if a peer so desired, it could up-
load more (with more Sybils) to a fast neighbor to download more.
The mechanism we present in Section 6 has the similar property of
“the more you give the more you get.”

General-purpose solutions to Sybil attacks could apply, such as
money [29] or proofs of work [7]. We show in Sections 6 and 9,
however, that there exist natural incentive schemes that are Sybil-
proof and would not require additional infrastructure or significant
computation overhead.

4.5 BitTorrent’s susceptibility to collusion
BitTorrent’s auction-clearing mechanism is open to collusion. To

date, selfish BitTorrent clients such as BitTyrant and BitThief have
considered only non-collusive strategies.4 We briefly sketch here
how one could collude against BitTorrent. In Section 6, we present
a mechanism that is less susceptible to this class of gaming.

A set of colluding peers can form a coalition C against a set
of victims {v1, . . . , vk} by simply agreeing with one another to
upload only nominal amounts to each vi. The coalition is built on

4Though BitTyrant peers ramp allocations to one another, they do
not directly collude against BitTorrent peers.

the premise of “turning victims into seeds” by uploading only a
nominal amount of data to the victims and getting a full unchoke
slot in return.

The feasibility of such an attack depends on how many “cheap
slots” victim vi has. In the best case scenario for a coalition C,
each vi would currently not be receiving any bids, in which case the
coalition can effectively act as the Sybil attack in Algorithm 2 and
achieve all of each vi’s unchoke slots. In the worst case scenario,
each vi with si slots would be receiving at least si large bids. Put
another way, for a victim vi to be resilient to collusion, it must
have si neighbors who are not participating in the coalition. We
present a mechanism in Section 6 in which collusion fails as long
as a single neighbor is not in the coalition.

5. MAXIMIZING INTEREST
In the auction in Section 4, a peer sends only to those in whom it

is interested, and, equivalently, receives only from those interested
in it. Clearly, a peer benefits from being interesting to as many
of its interesting peers as possible. A peer’s interest in one of its
neighbors is based solely on what pieces that neighbor claims to
have. In this section, we consider what piece revelation strategies
a peer can employ to maximize the number of neighbors who are
interested in it. That such strategies are feasible is counter-intuitive;
it seems natural that peers should advertise all they have to offer
to remain interesting. We show, however, that a peer can prolong
interest by under-reporting what blocks it has.

A natural question follows: how successful can an under-reporting
strategy be? Can a peer, for instance, obtain a piece monopoly? We
show empirically that piece monopolies are infeasible. BitTorrent’s
rarest-first piece selection strategy is a viable deterrent to the style
of piece hoarding that would be necessary to obtain a monopoly,
even when a large number of leechers collude.

To the best of our knowledge, we are the first to consider non-
trivial piece revelation strategies. BitThief’s strategy is effectively
to obtain as large a set of neighbors as possible and to reveal that it
has no blocks of interest to any of its neighbors [17]. Shneidman et
al. [26] suggest over-stating what blocks a peer has and uploading
garbage blocks, but this is infeasible, as peers can easily detect
and punish this defection. Other theoretical work assumes either
an infinitely-sized file [30] or cooperative peers [18].

5.1 Leechers want all the attention
We begin our study of piece revelation strategies by considering

what outcomes are preferable to leechers. In Figure 1, we show
a leecher i’s preferences over various scenarios, and denote pref-
erences �i. Clearly, i prefers to have as many neighbors that are
interesting to i to be interested i as possible. This will result in
more peers bidding at i, and thus faster download times. Thus, (a)
�i (c) �i (e).

The degree to which leecher i’s neighbors find other peers inter-
esting affects i’s future interest. If i’s neighbors trade pieces that
i has with one another, then i risks becoming uninteresting to its
neighbors sooner than if i’s neighbors only had interest in i. This
gives us (b) �i (d) �i (f) from Figure 1.

Note that case (f) can only occur when i does not know at least
one of j or k. To see this, suppose the converse: that j and k are
interested in one another, that i has no interest in either, but that
they are all neighbors with one another. Then j has some piece pj

that k does not have. Since i is not interested in j, i must have pj .
k would therefore be interested in i due at least to i having pj , a
contradiction.

Nonetheless, (e) �i (f); i prefers the scenario in which no peers
are interested in one another to the scenario in which other peers

247

j k

i
iiiii

j j j j k

i

k

ii

kk

i

j k

i

(a) (b) (c) (d) (e) (f)

Figure 1: Node i prefers to be as interesting as possible, and more interesting to its neighbors than its neighbors’ neighbors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ra

c.
 o

f d
ow

nl
oa

d
to

 g
et

 h
oa

rd
ed

 b
lo

ck

Number of block hoarders

Regular clients
Hoarding clients

Figure 2: Rarest-first overcomes attempts at block monopolies.

are progressing while i is not. This is because the sooner j and k
finish downloading the file, the sooner they may leave the swarm,
reducing the potential number of peers eventually bidding at i. This
is an example of when selfish participants’ preferences conflict with
the social good.

In the remainder of this section, we consider strategies a leecher
i can take to achieve preferable scenarios from Figure 1.

5.2 Forcing a block monopoly is infeasible
A tempting initial attempt at maximizing a peer’s demand is to

try to obtain a block monopoly. If p were the only peer in the system
with some block b, then p could extort bandwidth from all other
peers, giving out b to others at a rate so slow that p is the only
one making discernible progress toward completing the download.
Of course, with a seeder, a single node obtaining a monopoly is
virtually impossible.

We consider here the feasibility of a more relaxed form of monopoly:
forcing the rarity of a block up by intentionally hoarding it, that is,
refusing to give it out to peers until it becomes so rare that peers
may be willing to pay a premium price for them. Clearly, BitTor-
rent is sufficiently robust to overcome a single hoarding node, but
what about a colluding set of peers? We answer this by modifying
the Azureus BitTorrent client to perform block hoarding. In our
implementation, a hoarder knows the blocks he wishes to hoard a
priori, attempts to obtain these block(s) as soon as possible, and
then refuses to inform others (with BitTorrent have messages) that
he has the block. We ran experiments on a local cluster of 25 ma-
chines, varying the number of nodes hoarding the same piece.

Figure 2 shows that normal (non-hoarding, rarest-first) clients
overcome block hoarding; that is, with an arbitrary fraction of hoard-
ers, the normal clients obtain the block. Indeed, they obtain it more
quickly; the expected point in the download at which a block is
downloaded is 50% into the download, but the hoarders force the
observed availability of the block down, causing normal clients to
attempt to download it sooner. This is reflected in Figure 2; with
no hoarders, the given block is centered around the expected value

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 5 10 15 20 25

H
oa

rd
er

s’
 r

el
at

iv
e

do
w

nl
oa

d
tim

e

Number of block hoarders

Compared to non-hoarders
If they had not hoarded

Figure 3: Hoarders’ download times.

of 50%, but with more hoarders, normal clients tend to obtain the
block sooner than halfway through the download.

Our experiments capture what happens when a node’s hoarding
strategy does not work, in the sense that at no point does a hoarder
reveal its hoarded block and attempt to use it to download more
from others. Figure 3 demonstrates that, when a hoarding strategy
does not work, it can have adverse effects on the peer’s download
time. The dots represent the relative download times to the other,
non-hoarding clients, and the histogram represents the hoarders’
download time relative to if they had not hoarded, i.e., relative to
the download time when the number of hoarders is zero. One can
interpret this figure as follows: it is in a peer’s best interest to hoard
blocks only when the dots are below the line.

There is a parabolic trend in Figure 3 that is consistent across all
runs of this experiment. A few hoarders experiences faster down-
load times than non-hoarding peers, slower when the number of
hoarders is roughly equal to the number of non-hoarders. When
hoarders far outnumber non-hoarders, hoarders perform compar-
atively faster, but, as shown by the solid line in Figure 3, harm
overall performance.

We conclude that hoarding-based strategies can work, but (1) since
it would require such widespread collusion, it is infeasible, and
(2) given that it can increase download times if many peers per-
form it, it may not be a worthwhile risk for a peer to take.

5.3 Under-reporting to prolong interest
In both the BitTorrent and prop-share auctions, bidders consist

solely of the peers interested in the peer running the auction. Al-
though forcing a block monopoly appears to be infeasible, increas-
ing the number of bidders—the number of interested peers—is pos-
sible with strategic piece revelation.

A piece revelation strategy dictates which blocks a peer claims
to make available to its neighbors. Suppose βi represents peer i’s
block bit-field, where βi(k) = 1 if i has block k and 0 other-
wise. i reports its bit-field to new neighbors, and sends updates
in the form of have messages to existing neighbors. Let β′

i repre-

248

sent the bit-field i presents its neighbors, which need not be its true
value βi. If i over-reports block k, that is β′

i(k) > βi(k), then i’s
neighbors could easily detect this by not obtaining k upon request,
and could subsequently punish i by allotting him less bandwidth.
Hence, we can assume that β′

i(k) ≤ βi(k), that is, that i will not
over-report the blocks it has, but may under-report. Further, if i
reports some block k and peer j requests it, then i must deliver that
block. Otherwise, if i sends block k′, it may hurt j’s download
time—j may have requested k′ from another peer, and thus j could
have spent time downloading two copies of the same block—thus
j would have incentive to punish i. Hence, we can further assume
that peer i delivers the blocks it reports, and that the only avenue
for strategic piece revelation is under-reporting.

An under-reporting strategy
Why would i under-report its blocks? Certainly, i would not under-
report to the point of becoming uninteresting to its peers, as the
more interesting i is, the greater number of potential bids it can
receive. A myopic peer might attempt to maximize its interest by
declaring its true bit-field, as BitTorrent and BitTyrant currently
do. However, a peer need not report all of the blocks it has to be
equally interesting. Further, it is important to note that the blocks
that i gives out at round t affects how interesting other peers find
i in future rounds: Consider the simple motivating example in Fig-
ure 1(a), in which i has two neighbors j and k, both of whom find i
interesting but do not find one another interesting. This scenario is
preferable to i; both j and k will bid at i and i alone. Were i to truth-
fully report βi(t), j and k could request from i different blocks,
which would make j and k interested in each other. This would
then place i into scenario (b) or, if those were the only two blocks
holding j and k’s interest, scenario (e). Thus, i would under-report
his blocks in order to maintain his neighbors’ prolonged interest.

We conclude that peers indeed have incentive to strategically un-
der-report what blocks they have. This leads us to the piece revela-
tion Algorithm 3.

Algorithm 3 Strategic piece revelation. Run by i when peer j be-
comes uninterested in i.

1. Let β′
j denote j’s bitfield, and Li(j) the list of pieces that i

has revealed to j.

2. If there does not exist any piece p such that β′
j(p) < βi(p)

then quit; i cannot truthfully gain j’s interest.

3. Find the piece p with β′
j(p) < βi(p) that maximizes the

number of other neighbors k for which (i) k also has p:
βk(p) = βi(p), or (ii) i has revealed p to k: p ∈ Li(k).

4. Send a have-message to j, revealing that i has piece p, and
add p to Li(j).

Algorithm 3 is reactive; peer i only reveals that he has a piece
to j when j loses interest. Instead of revealing the rarest piece
he has, peer i reveals the most common piece he has that j does
not. Providing j with a rare piece would make j more interesting
to his neighbors, potentially removing some interest from i. This
corresponds to i attempting to maintain the state in Figure 1(a) as
opposed to (b), (d), or (f).

Evaluation of strategic piece revelation
We evaluate our strategic piece revelation on PlanetLab, and present
the results in Figure 4. The experiment consists of two runs. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

F
ra

c.
 p

ee
rs

 w
ith

 m
ut

ua
l i

nt
er

es
t

Time into the download (sec)

Strategic piece revealer
Standard client

Figure 4: An example run, showing that strategic piece reve-
lation can yield prolonged interest from neighbors, and hence
faster download times in general.

both, all but one peer start at the same time and run the standard
BitTorrent client, revealing all of their pieces. The remaining peer
runs one of the two strategies and starts 20 seconds after all the
other peers, to test whether strategic block revelation can maintain
the interest of peers who have many more blocks than he does. This
result clearly shows the power in under-reporting one’s pieces; the
strategic peer is able to maintain others’ interest over a prolonged
period of time. Also clear from Figure 4 is the power of maintain-
ing interest; the strategic peer downloads more quickly, as more
peers place their bids throughout the download.

It seems intuitive that strategic piece revelation would induce a
tragedy of the commons: that as the number of strategic piece re-
vealers increases, system-wide download times would be severely
increased. We ran experiments in which all peers strategically re-
vealed their pieces. We saw on average a 12% increase in system-
wide download times when all peers strategically revealed. That
there is an increase in download times is unsurprising; a strategic
piece-revealing peer does not know which pieces to offer to another
strategic peer to garner its interest. The increase in system-wide
download times is not much higher because peers continue to re-
veal pieces to their neighbors until they gain their interest.

These results indicate that selfish BitTorrent clients can benefit
from under-reporting, but that as this practice becomes widespread,
there may be an overall performance loss. There is therefore more
to be understood about how strategic piece-revealers should inter-
act with one another. For instance, one area of future work is to
consider strategic interest declaration, as a means of encouraging
neighbors to reveal as many pieces as they truly have.

6. CLEARING AUCTIONS WITH PROPOR-
TIONAL SHARE

The auction-based model of Section 4 motivates a new means
of clearing BitTorrent peers’ auctions. We extend recent results
on the market equilibria achieved by proportional share [30]. Let
by
x(t) denote the amount of bandwidth x gives to y during round t.

Algorithm 4 captures a proportional share auction, run at round t.
Clearly, the prop-share auction requires bootstrapping; peers must

give some initial amount of goods to one another to obtain any in
return. Though similar to BitTorrent’s optimist unchoking in that
a peer must initially give without getting anything in return, the
amount of “altruism” of a prop-share client is much less. A peer

249

Algorithm 4 Proportional share auction clearing.

1. Run an auction for i’s bandwidth; accept bandwidth bi
j(t)

from peer j as j’s bid.

2. Let Bi represent i’s total available upload bandwidth. Send
to peer j his proportional share:

bj
i (t) = Bi · bi

j(t − 1)P
k bi

k(t − 1)
. (1)

could give an arbitrarily small amount, e.g., a single block. In the
subsequent round, a prop-share client will ramp up its allocations
according to Eq. (1). This bootstrapping mechanism also serves as
a means of discovering new peers; we return to this point in the
context of “finding a good deal.”

Our extensions to Zhang and Wu’s work [30] focus predomi-
nately on how this simple mechanism can be applied to dynamic
network settings. A successful mechanism must maintain BitTor-
rent’s proven robustness to such conditions.

We stress that prop-share is intended to be a replacement of
BitTorrent’s current auction clearing mechanism, not a strategy to
game existing BitTorrent clients. As we showed in Section 4.4, Bit-
Tyrant with a Sybil attack is the ideal strategy against BitTorrent,
and we do not expect prop-share to perform as well as this strat-
egy. In the rest of this section, we show that prop-share is (nearly)
a Nash equilibrium, and is thus not susceptible to a single peer’s
deviation.

6.1 Best response to prop-share
We can capture peer i’s best response to all other nodes playing

proportional share as follows:

maximize
X

j

Bj · bj
i (t)P

k bj
k(t)

s.t.
X

j

bj
i ≤ Bi and ∀k : bk

i ≥ 0

An immediate observation of this nonlinear program is that each
peer has incentive to allocate all of its upload bandwidth, that is,P

k bk
i = Bi. The solution to this nonlinear program [8] involves

finding the bid to peer j at which the marginal benefit of increasing
that bid is less than the marginal benefit of increasing the bid to
some other peer k.

The best response to all peers playing prop-share is distinct from
prop-share; that is, prop-share is not always a Nash equilibrium.
This is because there may be some peers whose marginal benefit
never exceeds others’, and the best response is to never send to
these peers. Conversely, with prop-share, peer i will provide band-
width to all peers that uploaded to i in the previous round.

Computing the best response to other nodes playing prop-share
requires peer i to know each of its neighbors’ upload capacity, Bj ,
and the sum bids its neighbors have received from other peers. This
information is reasonable to assume in the setting Feldman et al. [8]
studied, wherein the auctioneers are not profit-maximizing, but this
is clearly not the case in file swarming. One could envision trying to
estimate these values, but the accuracy of such an estimation would
be at best difficult to ensure, and would likely require extensive
book-keeping.

6.2 Prop-share is enough
We show that simply employing prop-share with incomplete in-

formation achieves nearly the same return on investment as hav-

 29

 29.5

 30

 30.5

 31

 31.5

 32

 32.5

A
vg

. r
el

. d
iff

. i
n

st
ra

te
gy

 (
%

)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40

Im
provem

ent to prop-share (%
)

Normalized bandwidth

Figure 5: Prop-share is distinct from the best response. Though
significantly different, completion times were consistently no
worse than 0.25% longer.

ing perfect information, even against perfectly-informed peers. To
demonstrate this, we simulated the scenario in which all peers ex-
cept for peer p play prop-share, and compare p’s allocations and
resulting download speed when it plays prop-share versus the best-
response algorithm provided by Feldman et al. [8]. In the case of
best-response, we allowed p to have complete information of other
peers’ bandwidth, Bj , and bids, bj

−i. For prop-share, such com-
plete information is unnecessary, as p needs only know the local
information of how much each peer gave to p in the previous round.
We present values averaged over 30 runs, varying the number of
peers as well as p’s bandwidth. Each game lasted for 30 iterations,
but we observed that they converged after just a few rounds, con-
firming previous results [8, 30].

First we consider the question: does the best-response strategy
result in similar allocations to those of prop-share, that is, are they
effectively the same strategy? Figure 5 shows the average relative
difference between best-response and prop-share allocations; on a
per-peer basis, the best-response allocation differs by an average of
roughly 30% from prop-share, and decreases as p has increasing
bandwidth. Put simply: best-response and prop-share strategies
result in vastly different bandwidth allocations. Even as a peer’s
“bargaining power” increases, best-response remains consistently
“different” from prop-share, which we demonstrate by allowing p’s
bandwidth to vary from .1 to 40 times the average system-wide
bandwidth.

Surprisingly, the clear difference between best-response and prop-
share results in little improvement to utility. Best-response im-
proved download speed by significantly less than 1% in all of our
simulated scenarios. These results lead us to conclude that prop-
share is the preferred response to all other peers playing prop-share
because it achieves download speeds nearly equal to best response
and, importantly, does not require complete information.

6.3 Prop-share is Sybil-proof
BitTorrent’s auction is susceptible to Sybil attacks because its

auction returns discretized goods (Section 4.4). We show that prop-
share, on the other hand, is resilient to Sybil attacks. Note that a
Sybil attack applies only to a given neighbor v. Let yv denote the
sum of other peers’ bids at v. Suppose peer p were to create S
Sybils, p1, . . . , pS , where pi contributes ci to some victim neigh-
bor v, for a total contribution C =

PS
i=1 ci. To show that prop-

share is Sybil-proof, it suffices to show that, for a fixed amount of

250

contribution C, p will receive the same amount of bandwidth for
any set of Sybils, including the set of size 1. Indeed, for an arbi-
trary set of Sybils, p will in turn receive from prop-share-playing
node v:

SX

i=1

Bv · ciPS
j=1 cj + yv

=
Bv · PS

i=1 ciPS
j=1 cj + yv

=
Bv · C
C + yv

(2)

In practice, Sybils perform even worse against a prop-share client.
Each Sybil would require additional communication overhead for
transmitting various protocol messages: declaring interest, listing
the pieces they have, etc. Eq. (2) shows that Sybils would not
improve performance even without such overhead, and would in
practice result in poorer performance, as the peer would be forced
to spend more of its budget (bandwidth) on protocol messages in
lieu of data.

6.4 Prop-share is (more) collusion-resistant
Coalitional strategies would succeed against BitTorrent because

no colluding peer has incentive to upload more to its respective
victim; doing so would not result in greater download speeds. This
property does not hold in prop-share, and is the basis for prop-
share’s collusion resistance. Consider a coalition C against a vic-
tim v who is playing prop-share. Suppose that, if the coalition
were to play prop-share, then peer i ∈ C would have uploaded

bp
i to p and received fraction fi =

b
p
iP

k b
p
k

of p’s bandwidth. Let

fmin = mini∈C{fi}. Ensuring that each member of C obtains as
much bandwidth from p as if each member were to strictly play
prop-share is one way to keep the coalition from dissolving To
achieve this, each coalition member i can agree to upload band-
width εfi/fmin to p, where ε is some nominal amount of band-
width. p will thus return to i a fraction of p’s bandwidth equal to

εfi/fminP
j∈C εfj/fmin

=
fiP

j∈C fj
=

fi

1
= fi

as long as the only peers uploading to p are the members of the
coalition. If even a single peer k �∈ C were to bid at p during C’s
collusion, k stands to gain a large return on investment. Indeed, as
the coalition becomes more beneficial to its users (ε → 0), its sus-
ceptibility to being dissolved increases; k’s share of p’s bandwidth
as the coalition’s nominal bandwidth decreases is

lim
ε→0

bk

bk +
P

j∈C
εfj

fmin

=
bk

bk + 0
= 1

Hence, as long as there is a single peer not in C, the coalition as
a whole will have to dissolve, in which case all the members of C
play prop-share. Compare this to BitTorrent, in which a node with
s slots needs s non-colluding peers to dissolve a coalition.

While this demonstrates prop-share’s natural defense against col-
lusion, we discuss an extension in Section 7 that provides prop-
share greater resilience.

7. IMPLEMENTATION
A nice property of the proportional share mechanism in Section 6

is its simplicity; each peer needs only to recall what its neighbors
have most recently sent, and reply proportionally. An evaluation
of proportional share’s incentive properties is thus rather straight-
forward, and prove to be strong in theory. It is not unreasonable
to assume that providing strong incentive properties would result
in a decrease in performance. To study this, we have implemented
a proportional share client, and evaluate it on PlanetLab and live
swarms in Section 8. The core of the mechanism is the same in

implementation as in Algorithm 4. We present in this section addi-
tional features we have found important in implementation.

7.1 Finding a good deal
Some peers are better deals than others, in the sense that some

have higher values of B/
P

j �=i bj . Zhang and Wu [30] assume
that a node’s neighbors are given, and show that proportional share
converges quickly to an equilibrium. In reality, peers may learn
of others’ and strategically change their neighbor set. An opti-
mal strategy would require a peer to have global knowledge of all
other peers. The “large view exploit” [27], that BitThief [17] em-
ploys, attempts precisely this by continually requesting peers from
the tracker, but with the goal of being optimistically unchoked by
as many peers as possible. In fact, it is in any BitTorrent peer’s
best interest to learn of as many peers as possible so as to try to
download from those with which it has a better connection.

However, such global knowledge does not scale, and instead
each peer operates on a smaller subset of neighbors. Instead, in
our implementation, we do not modify the number of neighbors
a peer gets from the tracker, but a combination of prop-share and
the large-view exploit would, we believe, result in a more efficient
market equilibrium.

Bootstrapping prop-share allows peers to “research” new neigh-
bors and potentially find those with better return on investment, that
is, larger values of Bj/

P
k bj

k. Zhang and Wu’s analysis [30] as-
sumes a fixed topology and initialize everyone’s sharing to some
random value. However, in practice, node churn variable traffic
conditions require peers to discover new neighbors. We propose
that peers allot a fraction (80% in our implementation) of their
bandwidth to returning proportional shares to their neighbors, and
use their remaining “budget” to research new neighbors. This re-
quires no changes to the BitTorrent wire protocol, and is what we
use in our implementation.

7.2 What have you done for me lately?
Recall that a prop-share peer runs its auction (Algorithm 4) once

per round, using only the information of its neighbors’ contribu-
tions from the previous round. This simple mechanism can lead to
oscillations. Suppose for instance that at round t, peer p decides to
“research” his neighbor q as above. In the following round, q will
reply with p’s proportional share, but since q did not upload to p in
the previous round, p uploads none to q. This will clearly continue
oscillating unless there is some external force to bring them to con-
vergence. In our implementation, we employ a weighted average
of a node’s neighbors’ four most recent contributions, and reward
peers proportionally based on this.

7.3 Fighting collusion with ratio caps
Although prop-share is more collusion-resistant than BitTorrent

(Section 6.4), there still exists the possibility for a large coalition
to extort a victim’s bandwidth at little cost. Protecting peers from
collusion is difficult, as it is often unclear whether nodes are, as
a coalition, appearing slow to some victim, or whether they are
actually slow. There is a very interesting trade-off here: One could
err on the side of caution, and better protect peers from periods of
attack. Alternatively, one could err on the side of the social good,
allocating large amounts to new neighbors early at the risk of them
not reciprocating the favor.

In our implementation, we simply cap the amount of bandwidth
a peer gives to any of its neighbors to a factor, f . This is similar
in nature to k-TFT [11], but differs largely in the sense that, in
our implementation, it is intended to only be applied when there is
a high disparity. When a peer attempts to undersell another peer,

251

this mechanism will keep that peer to achieving at most f times
the amount of bandwidth it sends. When two peers wish to upload
to one another, the multiplicative factor ramps up the allocation
exponentially fast.

8. PROPSHARE EVALUATION
In this section we present our experimental evaluation of our

PropShare client.
We emphasize the goal of our PropShare client: to maintain ro-

bust incentive properties without sacrificing speed. The previous
sections of this paper show PropShare’s resilience to many forms
of strategic gaming. Demonstrating these points experimentally is
difficult if not impossible, as one failed attempt at gaming a system
is hardly proof that it is impervious to strategic manipulation. The
auction-based model we presented in Section 4 is intended to serve
as a general tool for a rigorous study of incentives in BitTorrent-
like settings where experiments do not apply. Here, we focus on
PropShare’s performance both in live swarms and on PlanetLab.

8.1 How do we expect PropShare to perform?
In our evaluation, we compare our PropShare client to BitTor-

rent and BitTyrant. While BitTyrant was built specifically to game
BitTorrent, the goal of our PropShare client is to provide robust
incentives even against future clients. Our implementation there-
fore takes no BitTorrent- or BitTyrant-specific actions. As such,
we expect that BitTyrant will perform better in a swarm consisting
predominately of BitTorrent peers.

In the publicly available BitTyrant implementation, BitTyrant
peers ramp bandwidth allocations to one another using a k-TFT-
like scheme. This strategy is not shown to be strategyproof [22].
We considered modifying the BitTyrant client to remove this po-
tentially game-able strategy, or to announce our PropShare client
as a Tyrant to gain from others’ sharing. However, in practice, one
would not be able to do this, and there may be many peers employ-
ing many different strategies. We thus opted to let our PropShare
client “fly blind” against BitTyrant peers.

8.2 Experiments on live swarms
We begin our evaluation by comparing performance of BitTor-

rent, BitTyrant, and PropShare on live swarms. In these experi-
ments, we chose torrents with a large leecher-to-seeder ratio to test
the various clients’ ability to trade with others. We started the three
clients simultaneously from three separate machines, each on the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

ct
io

n
to

 B
itT

or
re

nt
’s

 d
ow

nl
oa

d
tim

e

Torrent ID, sorted by PropShare completion time

PropShare
BitTyrant

Figure 6: Runs on live swarms

University of Maryland network. We limited each client’s upload
bandwidth to 100 kilobytes per second.

Figure 6 validates our hypotheses regarding PropShare’s per-
formance relative to other clients. We plot results from 21 live
swarms, sorted by PropShare completion time. BitTyrant, being
tailored specifically to exploiting BitTorrent peers, frequently per-
forms the best of the three clients. Although our PropShare client is
a straightforward realization of the proportional share mechanism
from Section 6 that employs no BitTorrent-specific mechanisms, it
performs comparably well to BitTyrant, and in all but one down-
load, much better than BitTorrent. We believe PropShare expe-
riences good performance in live swarms because it shares some
similarities with BitTyrant; PropShare allocates more bandwidth to
peers with greater return on investment. The main difference be-
tween PropShare and BitTyrant is that PropShare will reward all
peers, even those with poor return on investment, with bandwidth.
The results in Figure 6 indicate that this additional expenditure is
not detrimental, and in some cases improves performance.

We conclude that PropShare is incrementally deployable. Users
could begin using and benefiting from a PropShare client today,
and we intend to make our client available as open source. Prop-
Share does not require a full deployment to benefit, or a change
in the protocol to improve performance. This is a result of Prop-
Share’s resilience to strategic manipulation; PropShare does not re-
quire mechanisms such as voting or long-term agreements in order
to benefit, and is even resilient to colluding peers. It is thus natu-
ral that a single PropShare peer would perform well in a swarm of
non-PropShare (but rational) peers.

8.3 Competitive experiments
It is reasonable to assume that the vast majority of the peers con-

tacted in our live swarms experiments ran unmodified BitTorrent
clients. We now study how PropShare performs when either it or
BitTyrant hold the majority.

Experimental setup
We ran competitive experiments on roughly 110 PlanetLab nodes.
In these experiments, we pitted two clients against one another by
keeping the number of peers fixed across all experiments, but vary-
ing the relative fraction of client types. We adopted Piatek et al.’s
BitTyrant experimental setup: three seeders per file, with a com-
bined upload bandwidth of 128KBps, a locally run tracker, and
peers downloading 5MB files. We used the bandwidth distribution
presented by Piatek et al. [22], and varied each peer’s bandwidth
cap in each run. Each peer left the swarm as soon as it was done
downloading the file. We reduced dependencies across runs by not
using the same file between two separate runs; many trackers im-
pose a limit on how often peers can request new peers, which could
force some of the slower peers from an earlier experiment to be
forced into long waits at the beginning of the next. Each pair of
points in the figures that follow represents the average over at least
3 runs, and error bars denote 95% confidence intervals.

BitTyrant vs. BitTorrent
The original BitTyrant study [22] measured average download times
on swarms consisting of all BitTyrant or all BitTorrent peers, or
when one BitTyrant peer attempted to game the rest of the sys-
tem. We augment that study by considering intermediate ratios of
clients. Figure 7 shows that there are interesting dynamics between
the two extreme points. There is a clear trend toward an increase in
BitTyrant performance as there are fewer of them.

The trend of Figure 7 is clear within the context of the auction
model of Section 4. Consider a strategic bidder b; if there are few

252

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 0.2 0.4 0.6 0.8 1

A
vg

. D
ow

nl
oa

d
T

im
es

 (
se

c)

Frac. BitTyrant Clients

BitTorrent
BitTyrant

Figure 7: BitTyrant vs. BitTorrent

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

A
vg

. D
ow

nl
oa

d
T

im
es

 (
se

c)

Frac. PropShare Clients

BitTorrent
PropShare

Figure 8: PropShare vs. BitTorrent

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 0.2 0.4 0.6 0.8 1

A
vg

. D
ow

nl
oa

d
T

im
es

 (
se

c)

Frac. BitTyrant Clients

BitTyrant
PropShare

Figure 9: PropShare vs. BitTyrant

other strategic bidders in the system, then b can more easily obtain
the last (but still paying) place in the auction. As bidders begin to
learn that they do not need to place such large bids at their respec-
tive auctions, they are free to bid at more peers. This in turn raises
the contention at each peer for the last-place slot.

Figure 7 also reveals a tragedy of the commons. The users with
the best download times in this figure are the BitTyrant peers who
were in the minority; the early BitTyrant adopters, so to speak, were
rewarded well, but as more users switch to BitTyrant, overall per-
formance degrades for all users. With a majority of BitTyrant peers,
the predominate interactions system-wide are between BitTyrant
peers; their strategy of ramping up bandwidth allocations to one
another compensates for this tragedy of the commons. The end re-
sult is a system with overall better performance than BitTorrent—
BitTyrant incurs lower average download times as a whole—but
one that is not known to offer strategyproofness guarantees [22].

PropShare vs. BitTorrent
When run against BitTorrent, PropShare clients exhibit different
behavior than do BitTyrant clients. Rather than experience the
best performance when a minority, PropShare clients maintain low
download times even as the number of PropShare clients increases.
This appears to come at the BitTorrent peers’ expense, as Prop-
Share induces more significant increase in download times for non-
PropShare peers. This implies, along with our live swarm results,
that PropShare not only can be used today to achieve better down-
load times, but that its performance will not degrade as more users
switch to it.

PropShare vs. BitTyrant
Next, we run PropShare clients against BitTyrant clients. In each
mix of clients in Figure 9, PropShare clients out-perform BitTyrant
peers. This by no means proves that PropShare is not game-able,
but lends further credence to PropShare’s ability to be used today,
among clients of varying strategies. A swarm consisting of all
PropShare clients performs worse on average than a swarm of all
BitTyrant clients. That PropShare would even be competitive while
BitTyrant peers ramp allocations to one another is encouraging; it
shows that PropShare’s cost of robust incentives is low.

All other peers
One peer BitTyrant PropShare

BitTyrant 86.9 (6.40) 109 (15.6)
PropShare 70.5 (4.61) 107 (14.3)

Table 1: Average download times (seconds, with standard devi-
ation) for a single client choosing between two strategies.

All-versus-one
From Figure 9, we see a general decrease in download times as the
fraction of BitTyrant peers increases. We now study the cause of
this. BitTyrant effectively runs two parallel strategies: one against
other BitTyrants, and one against all other strategies. The inter-
BitTyrant strategy has not been shown to be strategyproof [22]. We
do not consider here how one might game such a strategy. Instead,
we focus on testing the following hypothesis: that BitTyrant’s im-
proved download times are strictly a result of the (potentially game-
able) actions they take against one another, and not indicative of
BitTyrant gaming PropShare. To test this hypothesis, we run all-
versus-one experiments, where N −1 peers run one strategy (Prop-
Share or BitTyrant) the remaining peer runs alternates between the
two strategies in subsequent runs. We present our results in Table 1.
These results are consistent with Figure 9, in that a majority of Bit-
Tyrant peers yields faster system-wide download times on average.
Table 1 shows that a BitTyrant peer does not on average success-
fully game PropShare clients, and that in fact a PropShare client
is the preferred strategy against a swarm of all (other) BitTyrants.
We conclude that the decrease in download times observed with
more BitTyrant peers is not a result of gaming PropShare, but the
speedup from the potentially game-able inter-BitTyrant strategy.

9. BOOTSTRAPPING FILE SHARING
Viewing BitTorrent as an auction further motivates the need for

seeding: how can a node bid in an auction without any form of
“currency” (blocks)? A node can exploit the optimistic unchoking
by going to each peer; this is the so-called large view exploit [27]
on which BitThief [17] is based. Optimistic unchoking attempts to
trade off robust incentives for a greater social good by decreasing
the average download time. However, the lack of incentives opens
it to attack, which decreases in social good [17]. One might think
that the seed nodes are enough to bootstrap the system, but in fact
this is not strictly true, and is what motivates the need for optimistic
unchoking at all peers. This is a somewhat orthogonal problem to
the auction mechanism, so we propose a mechanism that solves
this problem in the more general context of bootstrapping piece
exchange.

Suppose two nodes A and B have been trading blocks for multi-
ple rounds, and a new node n has just requested that A “bootstrap”
him by giving him blocks. A may be suspicious for two reasons:
(1) n may simply take the block and leave, never giving A anything
in return, or (2) n may be a Sybil [6] of B (or some other node),
and B is simply trying to extort more bandwidth out of A.

A may settle his suspicions by agreeing to send block b en-
crypted with a symmetric key KA, [b]KA , to n. A must ensure
that the bandwidth it gives to n is not “wasted,” i.e., that (1) A re-
ceives bandwidth in return, and (2) A’s established trading with B

253

is not adversely affected. Thus, A does not reveal KA unless n
forwards the block to B.

Algorithm 5 Bootstrapping piece exchange

1. n requests a block (of A’s choosing) from A.

2. A informs B that it will be using n as a “proxy.” A encrypts
b with KA and sends a hash of [b]KA to B.

3. A informs n to forward packets to B.

4. A sends [b]KA to n, which n forwards to B. Concurrently,
B sends an encrypted block [b′]KB to A.

5. B verifies that the hash of the block n sent matches what
A sent. If correct, B informs A that it received the correct
block from n, i.e., that n performed the task as instructed.

6. If B sends A the proper hash, then A reveals KA to n and
B, and B reveals KB to A.

The newcomer, n, pays his dues in two ways: (1) by forwarding
(to B) as much as it receives (from A), and (2) by placing its trust
in A to truthfully reveal KA. Note that n need not place any trust in
B; if B reports that the data it received is incorrect, then A will not
reveal KA to either B or n, so it is in B’s best interest to truthfully
report in step 6. Friedman and Resnick [9] observe that there is a
trade-off between a system’s barrier of entry (i.e., how easy it is to
bootstrap) and the long-term participants’ protection against free-
riders with cheap pseudonyms. Algorithm 5 addresses this trade-off
reasonably: n’s barrier of entry is low (placing trust in A), and n
cannot free-ride.

One could envision using weak keys, so that even if A does not
reveal KA, n can find KA in a reasonable amount of time (though
more time than it would take for A to have simply sent KA).

10. CONCLUSION
We have formalized some of the debate on incentives in BitTor-

rent by focusing on two of its main components: the unchoking al-
gorithm and the piece revelation strategy. Within a game theoretic
model, we have shown that BitTorrent does not use tit-for-tat, and
we have proposed an auction-based model that we find to be more
accurate. When viewed as an auction, it becomes clear that BitTor-
rent’s current unchoking algorithm does not yield the fairness and
robustness guarantees desired from such a system. With the goal
of “the more you give the more you get,” we have investigated the
use of a proportional share mechanism as a replacement to BitTor-
rent’s unchoker, and shown that it achieves fairness and robustness
without any wire-line modifications to the BitTorrent protocol.

Our auction-based model sheds light on a new class of strategic
manipulation: under-reporting what pieces a peer has to its neigh-
bors. We have demonstrated that reactively revealing only enough
to keep neighbors interested can result in prolonged interest and
faster download times. Lastly, we have proposed a new bootstrap-
ping mechanism with the goal of replacing BitTorrent’s optimistic
unchoking in favor of an approach that encourages peers to con-
tribute to the system as soon as they join.

There remain many interesting areas of future work. The two
components we considered—piece rarity and unchoking—are, in
this paper, treated orthogonally: Is there a model that unifies the
two? The bootstrapping mechanism we propose is intended to be
used by new peers, but is there incentive for an existing peer to use
it, for instance, to obtain rare blocks from peers who are otherwise

uninterested? Our results in this paper focus on incentives within
a swarm, and not between swarms. The problem of seeder promo-
tion—providing incentives to peers who have completed download-
ing the file to seed the file—is very important. We believe that the
mechanisms we have presented can complement future solutions to
seeder promotion.

Acknowledgments
We thank our shepherd Alex Snoeren, John Douceur, and the anony-
mous reviewers for their helpful comments. This work was sup-
ported in part by NSF Awards CNS 0626629 and ITR 0426683 and
MIPS grant 3808.

11. REFERENCES
[1] R. Axelrod. Evolution of Cooperation. Basic Books, New York, 1984.
[2] BitTorrent. http://www.bittorrent.com/.
[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh. SplitStream: High-bandwidth content distribution in a cooperative
environment. In ACM SOSP, 2003.

[4] B. Cohen. Blog entry regarding avalanche. Online:
http://bramcohen.livejournal.com/20140.html?thread=226988.

[5] B. Cohen. Incentives build robustness in BitTorrent. In P2PEcon, 2003.
[6] J. Douceur. The Sybil Attack. In IPTPS, 2002.
[7] C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In CRYPTO,

2005.
[8] M. Feldman, K. Lai, and L. Zhang. A price-anticipating resource allocation

mechanism for distributed shared clusters. In ACM EC, 2005.
[9] E. J. Friedman and P. Resnick. The social cost of cheap pseudonyms. Journal of

Economics & Management Strategy, 10(2):173–199, June 2001.
[10] P. Garbacki, D. H. Epema, and M. van Steen. An amortized tit-for-tat protocol

for exchanging bandwidth instead of content in P2P networks. In SASO, 2007.
[11] S. Jun and M. Ahamad. Incentives in BitTorrent induce free riding. In

P2PEcon, 2005.
[12] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. A. Huberman.

Tycoon: an implemention of a distributed market-based resource allocation
system. Multiagent and Grid Systems, 1(3):169–182, Aug. 2005.

[13] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke algorithms
are enough. In IMC, 2006.

[14] R. LeMay. BitTorrent creator slams Microsoft’s methods. ZDNet Australia,
June 2005.

[15] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair file swarming with FOX. In
IPTPS, 2006.

[16] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting BitTorrent for fun
(but not profit). In IPTPS, 2006.

[17] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in BitTorrent is
cheap. In HotNets, 2006.

[18] L. Massoulié and M. Vojnović. Coupon Replication Systems. In ACM
SIGMETRICS, 2005.

[19] G. Neglia, G. L. Presti, H. Zhang, and D. Towsley. A network formation game
approach to study BitTorrent tit-for-tat. In NET-COOP, 2007.

[20] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair sharing of
peer-to-peer resources. In IPTPS, 2003.

[21] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible
peer-to-peer multicast. In 2nd Workshop on the Economics of Peer-to-Peer
Systems, Cambridge, Massachusetts, June 2004.

[22] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani. Do
incentives build robustness in BitTorrent? In NSDI, 2007.

[23] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like
peer-to-peer networks. In SIGCOMM, 2004.

[24] V. Rai, S. Sivasubramanian, S. Bhulai, P. Garbacki, and M. van Steen. A
multiphased approach for modeling and analysis of the BitTorrent protocol. In
ICDCS, 2007.

[25] A. Ramachandran, A. D. Sarma, and N. Feamster. BitStore: An
incentive-compatible solution for blocked downloads in Bittorrent.

[26] J. Shneidman, D. C. Parkes, and L. Massoulié. Faithfulness in Internet
algorithms. In PINS, 2004.

[27] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent
networks with the large view exploit. In IPTPS, 2007.

[28] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion: Cooperative
content distribution with robust incentives. In USENIX, 2007.

[29] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A secure
economic framework for P2P resource sharing. In P2PEcon, 2003.

[30] F. Wu and L. Zhang. Proportional response dynamics leads to market
equilibrium. In ACM STOC, 2007.

254

	Introduction
	Related Work
	Studies of BitTorrent's incentives
	Improving BitTorrent's incentives

	Background and Goals
	BitTorrent basics
	Assumptions: Selfishness and rationality
	Goals: Desirable system properties

	BitTorrent as an Auction
	An auction-based model
	BitTorrent is not tit-for-tat
	BitTorrent is not fair
	BitTorrent is susceptible to Sybil attacks
	BitTorrent's susceptibility to collusion

	Maximizing Interest
	Leechers want all the attention
	Forcing a block monopoly is infeasible
	Under-reporting to prolong interest

	Clearing Auctions with Proportional Share
	Best response to prop-share
	Prop-share is enough
	Prop-share is Sybil-proof
	Prop-share is (more) collusion-resistant

	Implementation
	Finding a good deal
	What have you done for me lately?
	Fighting collusion with ratio caps

	PropShare Evaluation
	How do we expect PropShare to perform?
	Experiments on live swarms
	Competitive experiments

	Bootstrapping File Sharing
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

