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Abstract

Consider the following problem: If you want to sort n numbers in k (a constant) rounds then how many
comparisons-per-round do you need? This problem has been studied carefully and there exist several
algorithms and some lower bounds for it. Many of the algorithms are non-constructive. We have embarked
on an empirical study of most of the algorithms in the literature, including the non-constructive ones. This
paper is an exposition of what we have found. One of our conclusions is that non-constructive algorithms
can be useful.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

It is well known that sorting can be done with Oðn log nÞ comparisons. It is also known that (in
the comparison decision tree model) sorting requires Oðn log nÞ comparisons.
What happens if you allow massive parallelism? In the extreme case you can sort n elements in

one round by using ðn
2
Þ processors to make all the comparisons at once. It is easy to show that

sorting in one round requires ðn
2Þ processors. Can you sort in two rounds with a subquadratic

number of processors? What about k rounds? We survey the known literature and discuss
simulations of these algorithms that we have carried out. One of our main points will be that
nonconstructive algorithms can be useful.
We use the parallel decision tree model introduced by Valiant [25]. If p processors are used

then every node is a set of p comparisons and has 2p children corresponding to all
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possible answers. We think of a node as having information about how the comparisons
that led to that node were answered (formally a DAG on fx1;y;xng) and all information
derivable from that information (formally the transitive closure of that dag). The model
does not count the cost of communication between processors, nor does it count the cost
of transitive closure. The model does capture how hard it is to gather the information needed
to sort. Also, lower bounds in our model will apply to models that take these factors into
account. For more realistic models of parallelism see any current textbook on parallel algorithms,
e.g. [1,16].
The first round of a p-processor algorithm takes x1;y; xn about which nothing is known and

makes p comparisons. This can be represented as an undirected graph G on n vertices with p

edges. Hence the search for parallel sorting algorithms will involve finding graphs G that have nice
properties. Most of our algorithms depend on versions of the following two lemmas, which we
state informally:

1. Some undirected graph G with property P exists and does not have too many edges.
2. Let G ¼ ðV ;EÞ be a graph with V ¼ fx1;y; xng that has property P: Let G0 be any acyclic

orientation of G and let H be the transitive closure of G0: The graph H does not have too many
edges.

The literature has many algorithms to sort in constant time. Some are nonconstructive. We
have undertaken an empirical study of these algorithms by simulating most of them. This paper
will present the results of that study. We include proof sketches to indicate the algorithms used. A
companion paper [12] discusses the proofs in more detail.

2. Definitions and notation

There are several types of sorting algorithms.

Definition 2.1. 1. A nonconstructive algorithm for sorting n elements in k rounds is an algorithm
that is proven to exist, but its existence proof does not reveal how to produce it. For example, the
graph on n vertices that represents the first round may be proven to exist by the probabilistic
method [5,23].
2. A constructive algorithm for sorting in k rounds is a sequence of algorithms An with the

following properties: (1) The algorithmAn sorts n elements in k rounds. (2) There is a polynomial
time algorithm that, given n (in unary), produces An:
3. A randomized algorithm for sorting in k rounds is a sequence of randomized

algorithms An with the following properties: (1) The algorithm An sorts n elements
in k rounds. (2) There is a polynomial time algorithm that, given n (in unary),
produces An: Each time you run the algorithm the number of processors may vary
since it is randomized. We will be concerned with the expected number of processors.
One could instead fix the number of processors and be concerned with the number
of rounds. This is studied in [16]. Note that we are dealing with constructive
randomized algorithms. We do not know of any nonconstructive randomized algorithms.
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We noted above that the model assumes transitive closure is free. Some of our algorithms work
with the weaker assumption that only a partial transitive closure is free.

Definition 2.2. 1. Given a directed graph G the 2-step transitive closure is the graph formed as
follows: If in our original comparison graph we have ðx; yÞ and ðy; zÞ then we will add to that
graph ðx; zÞ: Note that if we have ðx; yÞ; ðy; zÞ; and ðz;wÞ we do add ðx; zÞ and we do add ðy;wÞ but
we do not add ðx;wÞ:
2. Let dX2: Given a directed graph G the d-step transitive closure is the graph defined

inductively as follows: (1) the 2-step transitive closure is as above. (2) the d-step transitive closure
is the 2-step transitive closure of the ðd � 1Þ-step transitive closure.

Definition 2.3. 1. sortðk; nÞ is the number of processors needed to sort n elements in k steps. The
algorithm may be nonconstructive.
2. csortðk; nÞ is the number of processors needed to sort n elements in k steps by means of a

constructive algorithm.
3. sortðk; n; dÞ is the number of processors needed to sort n elements in k steps by means

of an algorithm that only uses d-step transitive closure. The algorithm may be non-
constructive.
4. csortðk; n; dÞ is the number of processors needed to sort n elements in k steps by means of a

constructive algorithm that only uses d-step transitive closure.
5. rsortðk; nÞ is the expected number of processors needed to sort n elements in k steps by means

of a randomized algorithm.

Note 2.4. When we use order notation we take k to be a constant. Hence a statement

like ‘‘sortðk; nÞ ¼ Oðn1þ1=kðlog nÞ2�2=kÞ’’ means that the multiplicative constant might
depend on k:

We survey all known upper bounds on the quantities in Definition 2.3. Our goal is that the
reader (1) learns that there are many interesting constant-time parallel sorting algorithms in the
literature, and (2) learns what happens when these algorithms are simulated.

3. Empirical methodology

Since multiprocessor machines with enough processors to run these algorithms do not currently
exist, we performed our empirical studies using uniprocessor machines. This was accomplished by
implementing all algorithms using a for-loop to represent a single round. Within the loop, each
iteration represented a unique processor. Care was taken to assure that later iterations had no
access to information obtained during the earlier ones.
One limitation that this methodology presented was run-time. There were two factors involved

within this. First, as the number of elements to be sorted increases, the run-time increases since we
are using a single processor. Second, although the model assumes that transitive closure is free, the
run-time cost of this on a uniprocessor system is high.
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As a result, experiments were performed with values of n ranging from as small as 26 to no more

than 214: However, it should be noted that we were able to make many observations within this
range.
Another issue that needed to be dealt with was the generation of inputs as well as the generation

of graphs in some cases. To offset the known problems with random number generation, in all
experiments, multiple inputs and multiple graphs were used. The best, worst, and average of the
results on these inputs and graphs were all observed during the analysis. When looking for results,
we focused on the worst cases of the trials. We ran each algorithm (and in the case of algorithms
that used randomly generated graphs, on each graph) on between 10 and 100 different inputs as
time allowed.

4. Nonconstructive methods

4.1. The first nonconstructive algorithm

The first k-round sorting algorithm that uses a subquadratic number of processors is due

to Haggkvist and Hell [14]. They showed that sortðk; nÞpOðnak log2 nÞ where ak ¼ 3
2k�1�1
2k�1

: In

particular this implies sortð2; nÞpOðn5=3 log nÞ: Bollobás and Thomason [9] improved the k ¼ 2

case by showing sortð2; nÞpOðn3=2 log nÞ:

Theorem 4.1 (Bollobás and Thomason [9] and Haggkvist and Hell [14]). 1. sortð2; nÞ
pOðn5=3 log nÞ [14].
2. sortðk; nÞpOðnak log nÞ where ak ¼ 3
2k�1�1

2k�1
[14].

3. sortð2; nÞpOðn3=2 log nÞ [9].

Algorithm sketch: We sketch the first result. The second result uses induction with the first result as

its base case. The third result is similar to the first, but nontrivial. Let a ¼ 5
3
; p ¼ In2�am; q ¼

In4�2am; and r ¼ I2n4a�6 log2 nm: Let A ¼ jfG : G has n vertices and pqr edgesgj: Let G be a
graph from A: Consider the following algorithm.

1. (Round 1) Compare xi : xj iff ði; jÞ is an edge of G: (This takes pqr ¼ Oðna log nÞ comparisons.)

Let G0 be the orientation of G obtained by directing i to j iff xioxj: Let H be the transitive

closure of G0:
2. (Round 2) Compare all xi : xj such that ði; jÞ is not an edge of H:

One can show that there exists graphs GAA such that round 2 takes Oðna log nÞ comparisons. In
fact, one can show that most graphs in A have this property.

Nota Bene 4.2. Some authors have credited ([7] or [9]) with the result sortðk; nÞ ¼ Oðn1þ1=k log nÞ:
This citation is incorrect and this result is not even known to be true. However, Bollobás [6] later

obtained sortðk; nÞ ¼ Oðn1þ1=k ðlog nÞ2�2=k

ðlog log nÞ1�1=kÞ (see Section 4.3).
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Empirical Note 4.3. We did not code this algorithm up. The algorithms are nonconstructive in
that the graphs needed to represent the rounds are proven to exist but no method is provided to
construct them. This is not an obstacle (see Section 4.2). In these algorithms a graph is picked at
random from a set of graphs that have a certain number of edges. This is hard to program. As we
will see, other types of probabilistic methods are easy to code.

4.2. Expander graphs

Pippenger [20] showed that sortðk; nÞ ¼ Oðn1þ1=kðlog nÞ2�2=kÞ:

Definition 4.4 (Pippenger [20]). Let 1papn=2: An a-expanding graph is a graph in which for any
two disjoint sets of vertices of size a þ 1; there is at least one edge between the two sets.

Lemma 4.5 (Pippenger [20]). For 1papn=2 there exists an a-expanding graph with Oðn2 log n
a

Þ
edges.

Algorithm sketch: Assume you have a coin that has probability p ¼ 2 ln n
a

of being heads. Create

a graph on n vertices as follows: for each fi; jg; flip the coin. Put the edge fi; jg into the graph iff

the coin is heads. The probability that the graph will be an a-expander graph with Oðn2 log n
a

Þ edges
is nonzero (actually close to 1). Hence such a graph exists.

Lemma 4.6 (Pippenger [20]). If n elements are compared according to the edges of an a-expander

graph, then there will be at most Oða log nÞ candidates remaining for any given rank.

From Lemma 4.6 it is easy to prove the following:

Lemma 4.7 (Pippenger [20]). If n elements are compared according to the edges of an a-expander
graph, then they can be partitioned into Oð n

a log n
Þ sets, each containing Oða log nÞ elements, such that

the relationship between any pair of elements is known unless they both belong to a common set.

Theorem 4.8 (Pippenger [20]). sortðk; nÞ ¼ Oðn1þ1=kðlog nÞ2�2=kÞ:

Algorithm sketch: We prove this by induction on k: For k ¼ 1 this is trivial. Assume the
theorem for k � 1:
Let G be an a-expanding graph that is shown to exist by Lemma 4.5. We will pick the value of a

later.

1. (Round 1) Compare xi : xj iff ði; jÞ is an edge of G: (This takes Oðn2 log n
a

Þ comparisons.) Let G0 be

the orientation of G obtained by directing i to j iff xioxj: Let H be the transitive closure of G0:
2. (Rounds 2;y; k) Using Lemma 4.7 one can show that fx1;y; xng can be partitioned into

Oð n
a log n

Þ groups of size Oða log nÞ such that all comparisons between different groups are
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known. Sort the groups inductively in k � 1 rounds. This takes

O
n

a log n
ða log nÞ1þ

1
k�1ðlogða log nÞÞ2�

2
k�1

� �

processors.

To achieve the result set a ¼ Yð n1�1=k

ðlog nÞ1�2=kÞ:

Empirical Note 4.9. When implementing the algorithm, the probability p which was to be used to
generate the a-expanding graphs is based on the value for a which is in turn based on n: As a

starting point, we took p to be the exact value specified in the paper, p ¼ 2 ln n
a

: After gathering

results on 2-round sorting for values of n ranging between 100 and 5000 using that value for p; we
charted the number of processors that were used in each of the rounds in the worst case and found
that more work was being done in the first round than in the second. This implied that smaller
graphs might be better. From this, we generated experimental results based on p multiplied by a
constant factor between 0.01 and 2.00. We refer to this constant factor as Cp: These results led to

the observation that a good value for Cp would be somewhere between 0.2 and 0.4. Further

experiments lead to 0.36 as the best value for Cp: Fig. 1 shows results with Cp values between 0.01

and 0.60.

We can see in Figs. 2 and 3 that the ratio between the number of processors predicted by
Pippenger and the number of processors used by the simulation when using Cp ¼ 0:36 levels off

quickly, which agrees with Pippenger’s asymptotic analysis.

4.3. Super expander graphs

Alon and Azar [3] showed that sortð2; nÞ ¼ Oðn3=2 log nffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p Þ: Bollobás [6] extended this to show

that sortðk; nÞ ¼ Oðn1þ1=k ðlog nÞ2�2=k

ðlog log nÞ1�1=kÞ
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All these results use graphs similar to the a-expander graphs discussed in Section 4.2. We
sketch the algorithm of Alon and Azar and then make some brief comments about Bollobás ’s
algorithm.
We define a subset of a-expander graphs that has additional expanding properties. The

following definition is implicit in [3].

Definition 4.10. Let a; nAN and a ¼ Oðlog nÞ: A graph G on n vertices is an a-super-expander if the
following hold.

1. If A and B are disjoint subsets of vertices with a vertices each then some vAB has at least log2 n
neighbors in A:

2. Let xpa=e
ffiffiffiffiffiffiffiffiffi
log2 n

p
: If A and B are disjoint sets such that jAj ¼ x and jBj ¼ xðlog2 nÞ1=4; then

each vAA has at least log2 n neighbors in B:

The following lemma asserts that there exists small a-super-expander graphs. It is similar to
Lemma 4.5; however, we will be using it with a different value of a to obtain a better upper bound
on sortðk; nÞ:

Lemma 4.11 (Alon and Azar [3]). There exists an a-super-expanding graph with Oðn2 log n
a

Þ
edges.
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Algorithm sketch: Assume you have a coin that has probability p ¼ Yðlog n
a
Þ of being heads.

Create a graph on n vertices as follows: for each fi; jg; flip the coin. Put the edge fi; jg into the
graph iff the coin is heads. The probability that the graph will be an a-super-expander with

Oðn2 log n
a

Þ edges is nonzero (actually close to 1). Hence such a graph exists.

Lemma 4.12 (Alon and Azar [3]). If n elements are compared according to the edges of an a-super-
expanding graph, then there will be at most Oða log n=log log nÞ candidates remaining for any given rank.

Theorem 4.13 (Alon and Azar [3]). sortð2; nÞ ¼ Oðn3=2 log nffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p Þ

Algorithm sketch: This is similar to the k ¼ 2 case of Theorem 4.8. The value of a needed is

a ¼ Yð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log log n

p
Þ:

Theorem 4.14 (Bollobás [6]). sortðk; nÞ ¼ Oðn1þ1=k ðlog nÞ2�2=k

ðlog log nÞ1�1=kÞ:

Algorithm sketch: A rather complicated type of graph is defined which will, if used to guide
comparisons, yield much information. Let

p ¼ Y
n1=kðlog nÞ2�2=k

nðlog log nÞ1�1=k

 !
:

Assume you have a coin that has probability p of being heads. A graph on n vertices as follows:
for each fi; jg; flip the coin. Put the edge fi; jg into the graph iff the coin is heads. The probability

that the graph will be of this type and have Oðn1þ1=k ðlog nÞ2�2=k

ðlog log nÞ1�1=kÞ edges is nonzero (actually close to

1). We use this type of graph in round 1 and then proceed inductively.

Empirical Note 4.15. We did not code this algorithm up. For the values of n that we are looking at

it is not clear that the ðlog log nÞ1�1=k factor savings would be visible. Also, the algorithm to
generate these graphs is the same as that for the algorithms in Section 4.2 —generate a graph by

putting edges in with probability p ¼ Yðlog n
a
Þ: In our coding up of Pippenger’s algorithm we had

to fine-tune the value of p: We would do the same thing here. It is likely we would obtain very
similar results. In fact, because of the similarities in the methods, it is quite possible that we did

code up this algorithm while coding up Pippenger’s.

5. Constructive methods

5.1. Merging and sort

Let merge(k; n) be the number of processors needed to merge two lists of n elements in k

rounds.
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Haggkvist and Hell [15] present constructive proofs for the following upper bounds:

mergeðk; nÞ ¼ Yðn1þ1=ð2k�1ÞÞ and csortðk; nÞ ¼ Oðn1þ
ffiffi
2

p
=kÞ: Their sorting algorithm uses parallel

merging. The paper gives matching upper and lower bounds for merging. While all that was
needed was an upper bound for merging, knowing the exact bound allows us to know that the
sorting algorithm cannot be improved via an improvement to the bound on merging.

Lemma 5.1 (Haggkvist and Hell [15]). mergeðk; nÞ ¼ Oðn
2k

2k�1Þ

Algorithm sketch: The algorithm given for merging two ordered lists of n elements is to partition
each list into groups, and then do a pairwise comparison of the first element of each group in the
first list with the first element of each group in the second list. After doing these comparisons,
there will be a small number of groups whose members are still unordered relative to one another.
To prove this they consider the following graph: V is the set of groups, and an edge is placed
between A and B if there is an xAA and a yAB such that the ordering x : y is not known. They
show that this graph is planar and thus linear in size.

Haggkvist and Hell establish that a group size of Oðn1=3Þ is optimal for two round parallel

merging, giving mergeðn; 2Þ ¼ Oðn4=3Þ: By applying induction on the merging of the groups whose
orientation was not previously determined by the comparison of the first elements of each group,

they derive the generalization mergeðk; nÞ ¼ Yðn
2k

2k�1Þ:

Note 5.2. Haggkvist and Hell also showed that mergeðk; nÞ ¼ Oðn
2k

2k�1Þ:

Theorem 5.3 (Haggkvist and Hell [15]). 1. csortð3; nÞ ¼ Oðn8=5Þ:
2. csortð4; nÞ ¼ Oðn20=13Þ:
3. csortð5; nÞ ¼ Oðn28=19Þ:
4. csortðk; nÞ ¼ Oðn1þ

ffiffi
2

p
=kÞ:

Algorithm sketch: The algorithm to sort a list of values in k rounds is based on using some
number of rounds j to partition the list and sort each partition, and then use the remaining k � j
rounds to do a pairwise merge of those partitions. In the 3-round case, the list is partitioned into

groups of size Oðn2=5Þ and each partition is then sorted in one round using Oðn6=5Þ processors per
partition, or a total of Oðn8=5Þ processors. Then in the two remaining rounds, a pairwise merging

of the Oðn2=5Þ groups would produce all information required to fully order the original n values.
The other results are similar. In each case the calculation of the optimal value of j is nontrivial.

Let sk denote the smallest value such that a j exists that allows one to sort n numbers in k-rounds
with OðnskÞ processors. The following recurrence allows one to find sk for any particular k;
however, it has no closed form:

skþ1 ¼ min
2ð2 j � 1Þskþ1�j � 2 j

ð2 j � 1Þskþ1�j � 1
: j404skþ1�jX

2 j

2 j � 1

� �
:
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From this one can derive the approximation csortðk; nÞ ¼ Oðn1þ
ffiffi
2

p
=kÞ: The calculation is not

straightforward or tight.

Note 5.4. Assume that we knew csortð2; nÞpna log n: Then the recurrence in Theorem 5.3
could be modified to get results of the form csortðk; nÞ ¼ Oðnak log nÞ: The results obtained
would be better than those of Theorem 5.3 for small k: It is not clear what would happen
asymptotically.

Empirical Note 5.5. The algorithm specifies the size of the groups into which the values should be
partitioned. After this partitioning, two rounds are used to accomplish a pairwise merge across
these partitions. The final round is used to answer the remaining questions. We began by
partitioning into groups of exactly the specified size. The results when tested on values of n up to
2000 showed that there was a difference in the number of processors used in each of the two
rounds used for merging (Fig. 4).

To see if that difference would disappear as the value of n increased, we extended testing to
values of n up to 10,000 (Fig. 5). The results showed that the difference remained. This could have
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indicated that (as with Pippenger) some improvement might have been attainable by bringing the
number of processors used in the two merging rounds closer together.
By varying the size of the partitions as well as the size of the groups during merging by a

constant multiplicative factor, we found that small changes did not significantly affect the end
result and that large changes had detrimental effects. Additionally, the points at which the two
rounds used the same number of processors differed. Additionally, the number of processors
required in the final round could not be predictably balanced with either of these two rounds.
Figs. 6–8 demonstrate these differences for several values of n:
Although it was possible in some cases to bring the number of processors used in these rounds

closer together, there did not appear to be a predictable way in which to optimize this.
Additionally, the results shown in Figs. 4 and 5 had the same growth rate as the formula predicts.
Fig. 9 graphs the ratio of a formula’s predictions with the empirical results as n increases. The

ratio is relatively constant.
When moving to the case of sorting in four rounds, we discovered some interesting behavior.

Specifically, for values of n less than 8192, the simulation was behaving much worse than
predicted, but starting at 8192 it behaved as expected. See Fig. 10.
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Upon further investigation, we saw that as more rounds were introduced, for small values of n;
groups of size 1 or 0 might be created for the last round, so the processors would not be fully
utilized (in the last round). This ‘‘saving’’ in the final round was made up for by using more than
expected processors in the earlier rounds.
An additional issue which needs to be dealt with when implementing this algorithm is that it

assumes that all groups will be of an equal size. There are several ways in which the groups can be
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Fig. 9. Haggkvist and Hell 3-round sorting: formula vs. empirical results.

Fig. 10. Haggkvist and Hell 4-round sorting: formula vs. empirical results.
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padded to work with this limitation. In our simulations, we chose values for n that would partition
evenly.

5.2. Attempts at the k ¼ 2 case

Theorem 5.3 did not produce a constructive 2-round subquadratic sorting algorithm. This was
eventually solved by Pippenger (see Section 5.3); however, before it was solved there were some
interesting results that broke the ðn

2
Þ barrier.

1. Haggkvist and Hell [14] showed csortð2; nÞp13
15
ðn
2
Þ: Their proof used the Peterson graph and

balanced incomplete block designs.

2. Bollobás and Rosenfeld [8] showed csortð2; nÞp4
5
ðn
2
Þ: Their proof used the Erdos–Renyi graph

[11] based on projective geometry.

Empirical Note 5.6. We did not code up these algorithms since there were far better
nonconstructive ones available. Also, for the range of n we are discussing, it would be hard to

tell ðn
2
Þ from 4

5
ðn
2
Þ:

5.3. The first constructive subquadratic algorithm for k ¼ 2

In 1984 the first constructive 2-round subquadratic sorting algorithm was discovered by

Pippenger [21] who showed sortð2; nÞ ¼ Oðn1:95Þ:He never wrote it up; however, several references
to it exist including one in [7]. A year later he improved this result and generalized to k rounds by
developing the framework of expander graphs for sorting (see Section 4.2) and showing that the
graphs constructed by Lubotzky et al. [17] were a-expander graphs. These can be used to obtain
sorting algorithms that are constructive, though not as good as the nonconstructive ones in
Theorem 4.8.
Lemma 8 of [20] proves two things. We separate them out into two separate lemmas.

Lemma 5.7 (Pippenger [20]). Let G be a graph on n vertices. Let li be the ith largest eigenvalue
of the adjacency matrix. If l1 ¼ p þ 1 and ð8i42Þ½lip2

ffiffiffi
p

p � then G is an Oð nffiffi
p

p Þ-expanding

graph.

Lemma 5.8 (Lubotzky et al. and Pippenger [17,20]). Let p; q be primes that are congruent to

1 mod 4: Assume poq: There exists an explicitly constructed Oð qffiffi
p

p Þ-expanding graph with q þ 1

vertices and OðpqÞ edges.

Algorithm sketch: Lubotzky et al. [17] constructed a p þ 1-regular graph G on q þ 1
vertices with the following properties: (1) the largest eigenvalue of the adjacency matrix,
p þ 1; has multiplicity 1, and (2) all other eigenvalues have magnitude at most 2

ffiffiffi
p

p
: Clearly this

graph is on q þ 1 vertices and has OðpqÞ edges. By Lemma 5.7 this graph is an Oð qffiffi
p

p Þ-expanding
graph.
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Note 5.9. The graphs constructed by Lubotzky et al. are somewhat complicated. They use graphs
associated to certain groups.

Lemma 5.10. Let 1papn: Let n
a

be sufficiently large. There is an explicitly constructed a-expanding

graph G on n vertices of size Oðn3=a2Þ:

Algorithm sketch: We need to find primes p; q such that ðn
a
Þ2ppp2ðn

a
Þ2; npqp2n; and both p; q

are congruent to 1 mod 4: Such exists for n
a
large by the Prime Number Theorem for arithmetic

progressions (see [10] for example). Apply Lemma 5.8 to obtain a graph on YðnÞ vertices that is a
Oð qffiffi

p
p Þ-expanding, hence Oðn3

a2
Þ-expanding.

Theorem 5.11. csortðk; nÞpOðn1þ
2

ðkþ1Þðlog nÞ2�
4

ðkþ1ÞÞ:

Algorithm sketch: This proof is similar to that of Theorem 4.8 except that we use Lemma 5.10
with

a ¼ Y
n1�1=ð2k�1Þ

ðlog nÞ2=ð2k�1Þ

 !
:

Empirical Note 5.12. We did not code this algorithm up as it was somewhat complicated.

5.4. Two simple constructive algorithms

Alon [2] showed that csortð2; n; 2Þ ¼ Oðn7=4Þ: His algorithm is simpler than that of Theorem
5.11. Since Alon’s result is about limited closure sorting we will discuss it in Section 8; however, by
combining it with the recurrence in Theorem 5.3 he obtained improvements over Theorem 5.3. We
give the first few improvements. More numbers can be generated; however, the asymptotic values
do not improve.

Theorem 5.13 (Alon [2]). 1. csortð2; nÞ ¼ Oðn7=4Þ:
2. csortð3; nÞ ¼ Oðn8=5Þ:
3. csortð4; nÞ ¼ Oðn26=17Þ:
4. csortð5; nÞ ¼ Oðn22=15Þ:

Pippenger [20] noticed that a variant of Alon’s algorithm actually yields

csortð2; nÞpOðn5=3 log nÞ: (We will discuss this algorithm when discussing Alon’s algorithm.)
Golub [13] noticed that this could be combined with an easy modification of the
recurrence in Theorem 5.3 (as described in the note following Theorem 5.3) to obtain a
simple constructive algorithm which is better than that of Theorem 5.13. We give the first
few improvements. More numbers can be generated; however, the asymptotic values do not
improve.
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Theorem 5.14. 1. csortð2; nÞ ¼ Oðn5=3 log nÞ (use Pippenger’s modification of Alon).

2. csortð3; nÞ ¼ Oðn8=5Þ (use Theorem 5.3).

3. csortð4; nÞ ¼ Oðn3=2 log nÞ:
4. csortð5; nÞ ¼ Oðn23=16 log nÞ:

5.5. A constructive algorithm via pseudo-random generators

Wigderson and Zuckerman [26] present a constructive proof that sortðk; nÞ ¼ Oðn1þ1=kþoð1ÞÞ:
Their algorithm is based upon Pippenger’s nonconstructive sorting algorithm (See Section 4.2).
Recall that Pippenger showed that small a-expander graphs were useful for sorting, and then

showed that small a-expander graphs exist. The value of a taken for k-round sorting was a ¼

n
1�1

k

ðln nÞ1�
2
k

: Wigderson and Zuckerman present a constructive proof of the existence of a a-expander

graphs with slightly worse values of a: They use the machinery of extractors and pseudo-random
generators. Later authors improved this machinery and hence the results. The main results about
sorting are summarized below.

Theorem 5.15 (Wigderson and Zuckerman [26]). csortðk; nÞpOðn1þ1=kþoð1ÞÞ:

There have been improvements in extractor technology which have lead to a better
understanding of the oð1Þ term in [19,22].

Empirical Note 5.16. In this algorithm, there are a variety of interdependent formulas. In order
for them to work, there are certain values which must be positive. By substituting in values to

assure this, we find that 216 is the smallest value of n for which the formulas can possibly work.
Additionally, by writing a program to iterate through combinations of the variables used and the

requirements upon these variables, we found that the first value that would work would be 233:
Empiricism played two roles in our study of this algorithm. Since previous algorithms had

worked well on relatively small values of n we began coding our simulations and upon observing
poor and inaccurate results, were motivated to investigate the mathematics in more detail.
Empirical tests were then applied to the mathematical aspects of the algorithm in order to obtain
more information about ‘‘sufficiently large values of n:’’

6. A randomized algorithm

Alon, Azar, and Vishkin showed rsortðk; nÞ ¼ Oðn1þ1=kÞ: Their algorithm is fairly simple;
however, the analysis requires care.

Theorem 6.1 (Alon et al. [4]). rsortðk; nÞ ¼ Oðn1þ1=kÞ:
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Algorithm sketch: In the first round, n1=k � 1 values are chosen at random and each is compared

to all n � 1 other values. Between rounds, the n values are partitioned into Oðn1=kÞ blocks

ðA1;y;An1=kÞ based on the now ordered list of Oðn1=kÞ values such that if ioj then all members of
Ai are less than members of Aj:
In the remaining k � 1 rounds, each Ai is sorted. A careful analysis shows that the expected

number of processors required to do this is Oðn1þ1=kÞ:

Empirical Note 6.2. A question that arose during experiments with this algorithm was that of how
the expected number of processors would translate into an actual number of rounds. Since an
underestimate of the number of processors required would lead to additional rounds being needed
it would be in our best interest to observe the behavior of the algorithm to assist us in the selection
of a number of processors to use.
In the 2-round case, the average number of processors used in rounds 1 and 2, as well as the

maximum number of processors used in round 2, are so close that if graphed, they all overlap with
the line representing the formula. Similarly, many of the results in the 3- and 4-round cases are so
close that they would overlap on a graph and appear as a single line or as a cluster of lines. It
would be difficult to draw the graph as to show each line distinctly in gray scale.

The first round is deterministic and uses slightly less than n1þ1=k processors. We call this the
formula value. Not counting low order terms, it is a lower bound on how many processors the
algorithm needs.
Figs. 11–13 show the maximum over all rounds, maximum of the averages of all rounds, the

formula, and twice the formula.
There are still overlapping lines in the two-round case, but the basic idea comes across: these

empirical results give us reason to believe that if we allocate twice the expected number of
processors we have a good chance of being able to avoid the requirement that additional rounds
be used in the sort.

Empirical Note 6.3. There are still overlapping lines in the two-round case, but the basic idea
comes across: these empirical results give us reason to believe that if we allocate twice the expected
number of processors we have a good chance of being able to avoid the requirement that
additional rounds be used in the sort.
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7. A nonconstructive algorithm for sortð2; n; dÞ

Bollobás and Thomason [9] were the first ones to look at sorting with limited transitive closure.
They used nonconstructive means, similar (though more complicated) to those we have seen in
Theorems 4.1, 4.8, 4.13 and 4.14. Hence we omit even a sketch here.

Theorem 7.1 (Bollobás and Thomason [9]). sortð2; n; dÞpOð 1
2d

n1þ
d

2d�1ðlog nÞ1=2d�1Þ:

Empirical Note 7.2. In these algorithms a graph is picked at random from a set of graphs that
have a certain number of edges. This is very hard to program, so we did not do so.

8. A constructive algorithm for sortð2; n; 2Þ

Alon [2] showed that csortð2; n; 2Þ ¼ Oðn7=4Þ: He used techniques in projective geometry over
finite fields to construct graphs. He used the eigenvalue methods of [24] to prove his graphs had

the relevant properties. Pippenger used a variation of Alon’s graphs to obtain csortð2; nÞ ¼
Oðn5=3 log nÞ:
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Notation 8.1. If q is a prime power than Fq is the finite field on q elements.

Definition 8.2. We refer to one-step transitive closure at Direct Implication.

Definition 8.3 (Alon [2]). Let d; qAN and let q be a prime power. The number d will be referred to
as the dimension. The Geometric Expander over Fq of dimension d is the bipartite graph that we

construct below:

1. Create a set of d þ 1 tuples of the following form:

ð1; a1; a2;y; adþ1Þ a1;y; adþ1Af0; 1;y; q � 1g
ð0; 1; a2;y; adþ1Þ a2;y; adþ1Af0; 1;y; q � 1g
ð0; 0; 1; a3;y; adþ1Þ a3;y; adþ1Af0; 1;y; q � 1g

^

ð0; 0; 0;y; 0; 1; adþ1Þ adþ1Af0; 1;y; q � 1g

Note that each tuple represents a hyperplane in d þ 1 space over Fq: (Alternatively we could

have allowed all tuples that were not ð0;y; 0Þ and then identify any two that differ by a
constant multiple in Fq:)

2. Let U and V be the set of tuples above. An edge will exist between uAU and vAV iff u 
 v ¼ 0 in
the field Fq: (This is equivalent to saying that the planes which represent u and v are orthogonal

to one another.)

Note 8.4. Note that the number of vertices in the graph in Definition 8.3 is Yðqdþ1Þ and the

number of edges is Yðq2dþ1Þ: If we denote the number of vertices by n then the number of edges is

Yðn2�1
dÞ:

The following definition is implicit in [2].

Definition 8.5. An ðana; bnb; wnc; dndÞ-expander is a bipartite graph G ¼ ðU ;V ;EÞ such that
jU j ¼ jV j ¼ n and the following two properties hold:

1. ð8ZDVÞ½jZjXana ) jfxAU : jNðxÞ-Zjpbnbgjpwnc�;
2. ð8YDVÞ½jY jXbnb ) jNðYÞXn � dnd �:

Alon proved the following theorem using the eigenvalues methods of [24].

Lemma 8.6 (Alon [2]). Let G ¼ ðU ;V ;EÞ be the Geometric expander of dimension 4 over Fq: Let n

be the number of vertices in U (also V). Then G is a ð3n3=4; n1=2; n1=2; n3=4Þ-expanding graph with

Yðn7=4Þ edges.

The following lemma is implicitly in [2].
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Lemma 8.7. If there exist ðana; bnb; wnc; dndÞ-expanders of size OðneÞ then we can sort in 2 rounds

using only 2-step transitive closure in Oðnmaxfe;dþ1;cþ2�a;aþ1gÞ processors.

Theorem 8.8 (Alon [2]). sortð2; n; 2Þ ¼ Oðn7=4Þ:

Proof. This follows from Lemmas 8.6 and 8.7. &

Empirical Note 8.9. The generation of the graph based on the tuples was accomplished by
generating the tuples (which are the vertices) and then following the construction in the proof for
adding edges. This method of generating graphs is very fast. Once the graph was generated, it was
simply plugged into the existing code base from experimenting with Pippenger’s algorithm with
the transitive closure step modified to only look for direct implications.
One notable limitation of this algorithm is that it only works on certain values for n based on

the values used for q and d: Due to the way in which the points are marked with the tuples, n
needs to be of the form

CONDITION: q4�1
q�1

:

The proof that round one uses Oðn7=4Þ comparisons is easy and indicates that the number is

close to n7=4 (note the constant is 1). The proof that round two uses Oðn7=4Þ comparisons after
doing direct implication (henceforth DI) is interesting in that it actually indicates that a weaker

form of DI, which we call DM�; suffices for the Oðn7=4Þ bound. We coded up two algorithms.
Both begin by taking n and finding an n0Xn that satisfies the above condition and then applying
the graph to it for round one.
Alg 1: Apply DI to the resulting directed graph. In round two make all comparisons that were

not already made.
Alg 2: Apply DM� to the resulting directed graph. In round two make all comparisons that

were not already made.
We made the following empirical observations.

1. Both algorithms were easy to code. The graph for round 1 is easily generated in time linear in n:
(This is not surprising.)

2. It appears that in the second round Algorithm 1 made less than 0:5n25=16 comparisons and

Algorithm 2 made less than n13=8 comparisons. We caution the reader that these numbers are
fitted to only four datapoints; hence, we make no claims to these being the real values the
algorithm would produce for large n: However, in both cases, the quantities are far less than

Oðn7=4Þ; which is somewhat surprising. A tighter bound on round two may be provable.
3. There was more work done in round 2 in Algorithm 2 then Algorithm 1, though both were

linear.

We experimented with using d ¼ 3 and found that the resulting algorithm used Oðn5=3Þ
processors per round, which is better than Oðn7=4Þ: We also experimented with d ¼ 2 and 5 and
found the results to be worse. This behavior is not unexpected in retrospect, as Pippenger had
discussed using d ¼ 3 (as is discussed below). However, it is interesting to note that our empirical
testing did lead us in that direction.
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We briefly discuss Pippenger’s variant on Alon’s algorithm. As stated above, Alon used
eigenvalue methods. In particular he showed the following.

Lemma 8.10 (Alon [2]). Let H ¼ ðV ;V ;EÞ be a geometric expander of degree d over a field of q

elements. Let G ¼ ðV ;E0Þ be the graph where ðx; yÞAE0 iff ðx; yÞAE and xay: Then G has YðqdÞ
vertices and Oðq2�1=dÞ edges. Let l1;y; ln be the eigenvalues of the matrix for G in decreasing

order. Then l1 ¼ Yðq2d�2Þ and l2 ¼ ? ¼ ln ¼ Oðqd�1Þ: The constants work out so that if d ¼ 3

then l2p2
ffiffiffiffiffi
l1

p
:

The following lemma is implicit in [20]. It follows from Lemmas 5.7 and 8.10.

Lemma 8.11. Let d ¼ 3: Let G be as in Lemma 8.10. Let n be the number of vertices in G: Then G is

an Oðn1=3Þ-expander with Oðn5=3Þ edges.

From Lemmas 8.11 and 4.7 one can easily prove Theorem 5.14.a.

Empirical Note 8.12. We coded up the d ¼ 3 algorithm. Although it is supposed to use

Oðn5=3 log nÞ comparisons-per-round, empirically it looked like Oðn5=3Þ: The n we tried for it may
be too small to detect a difference. Both rounds seemed to use the same number of comparisons,

roughly n5=3 (note that the constant is 1).

8.1. Using merging for sortðk; n; 2Þ with k odd

Bollobás and Thomason [9] show that csortðk; n; 1Þ ¼ Oðn
3
2þ 1

2ð2kþ1=2�1ÞÞ for k odd.
Their algorithm is similar to the approach of Haggkvist and Hell (see Section 5.1). In that

algorithm you first partition the original list into sublists, recursively sort those sublists (in j
rounds), and merge them back into a single ordered list (in k � j) rounds, where j is picked
cleverly. By contrast the algorithm of Bollobás and Thomason uses k � 2 rounds to recursively
sort the sublists and then only 2 rounds to accomplish the merging of the sublists. These last 2
rounds are done in a clever way. This uses more processors than Haggkvist–Hell; however, rather
than computing the full transitive closure of the relationships learned, only 2-step transitive
closure.

Theorem 8.13 (Bollobás and Thomason [9]). For k odd, sortðk; n; 1Þ ¼ Oðn
3
2þ 1

2ð2kþ1=2�1ÞÞ:

Algorithm sketch: We show this by induction. If k ¼ 1 then this is trivial. Assume k41 and
k is odd.

1. (Preprocessing. Does not count.) Partition the n values into m sublists (each of size n=m) where

m ¼ n1=2
ðk�1=2Þ

:
2. (Rounds 1 to k � 2) Sort these sublists recursively in k � 2 rounds.
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3. (Round k � 1) For all sublists X ¼ fx1; x2;y; xn=mg and all veX compare v to all elements in

fx ffiffiffiffiffiffi
n=m

p ;x
2
ffiffiffiffiffiffi
n=m

p ;y;xn=mg simultaneously. We view each sublist as having been partitioned into

subblocks (e.g., the elements between x
4
ffiffiffiffiffiffi
n=m

p and x
5
ffiffiffiffiffiffi
n=m

p form a subblock). At the end of this

round we know, for each v; which subblock it belongs to.
4. (Round k) For each v and each sublist X we know which subblock of X ; v belongs. Compare v

to the elements in that subblock.

A straightforward analysis shows that this algorithm uses the number of processors specified. A
careful look at the last two rounds shows that it only uses 2-step transitive closure.

Empirical Note 8.14. After implementing this algorithm we became curious as to whether more
information was being accumulated than was being used. Specifically, after the first ‘‘merging’’
round, it seemed that there would potentially be enough information to eliminate the need for
some later comparisons. While the presented proof offered no hints, we were curious what
experimental results would show.
In the modified implementation, rather than waiting until after both of the ‘‘merging’’ rounds

compute direct implications, we instead computed these after the first round and then asked only
remaining questions during the second round. We felt that, since every value in the original list
could be used as a direct intermediary between many pairs computing these direct implications,
this could reduce the number of actual comparisons needed in the second merging round.
Although the experimental results did show this to be true, it does not appear that we can take
advantage of this by altering the number of sublists upon which we operate. While doing this can
bring the processors used in the odd numbered rounds closer together, three things should be
noted: (1) the odd numbered rounds all appear to be growing at the same rate, (2) most of the odd
numbered rounds are already close and it is only the final round which is really lower and (3) there
is no real effect towards bringing these closer to the growth rate of the number of processors used
in the even numbered rounds.
Another possibility would be to increase the size of the subblocks within each sublist. However,

this in itself would have no impact on the number of processors required in the final round.
Since this algorithm is similar to the one in Theorem 5.3 a comparison is appropriate. This

algorithm gives a slightly worse upper bound than the one in Theorem 5.3; however, it does hold
two possible advantages. First it requires only direct implications rather than full transitive
closure. Second it works on smaller length inputs and does not have the strict limitations for the
choice of n:

9. Lower bounds

Haggkvist and Hell [14] showed that sortðk; nÞXOðn1þ1=kÞ: Bollobás and Thomason [9]
improved the constant in the k ¼ 2 case. Alon and Azar [3] improved the result for all kX2 by

showing sortðk; nÞXOðn1þ1=kðlog nÞ
1
kÞ: Note that this is quite close to the upper bound in Section

4.3. Of more importance, this bound is larger than rsortðk; nÞ (see Section 6); hence sorting-in-
rounds is a domain where randomized algorithms are provably better than deterministic.
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Theorem 9.1 (Haggkvist and Hell [14]). sortðk; nÞ4n1þ1=k

2kþ1 � n=2:

Algorithm sketch: By induction on k: For k ¼ 1 this is trivial. Assume true for k � 1: Assume,

by way of contradiction, that the first round uses p2�kn1þ1=k � n=2 processors. Let G be the
graph of comparisons made.
By looking at the average degrees of vertices one can show that there is a set of n=2 nodes such

that the induced subgraph G0 on them is s-colorable where s ¼ 2�k�2n1=k: Color G0 with s colors.
Let V1;y;Vs be the color classes. Orient G0 as follows: For all 1piojps; for all vAVi; for all
uAVj; if ðv; uÞ is an edge then set vou: Orient G so that you use this orientation on G0 and all the

vertices not in G0 are less than all the vertices in G0: Once the transitive closure of G is taken one
still needs to sort each Vi in k � 1 rounds (one also needs to sort those elements not in G0 but this
is not needed for the lower bound). One can show the lower bound by using the inductive lower
bound on each Vi and some algebra.

Theorem 9.2 (Bollobás and Thomason [9]). For all co
ffiffiffiffiffiffiffiffi
3=2

p
; sortð2; nÞXcn3=2:

Algorithm sketch: This proof is similar to that of Theorem 9.1 except that the V1;y;Vs are
obtained by a greedy coloring and more care is taken in showing the largest value ofPs

i¼1 sortðk � 1; jVijÞ: Lagrange multipliers are used.

The key to the proofs of Theorems 9.1 and 9.2 is that we still need to sort each Vi: The proof
does not use the fact that you might have to make some comparisons between vertices in different
Vi: To improve this lower bound Alon and Azar showed that you will have to make such
comparisons.

Lemma 9.3 (Alon and Azar [3]). Let G be a graph with n vertices and dn edges. There exists an
induced subgraph on n

4
vertices such that (1) G0 has degree o4d; and (2) there is a 4d-coloring of G0

with color classes V1;y;V4d such that for all 1pi; jp4d; for all xAVi; there are at most 2ji�jjþ1

neighbors in Vj:

Algorithm sketch: Remove successively the highest degree vertex n
2
times. Let G0 be the induced

subgraph on the remaining n
2
vertices. One can show that G0 has degree o4d: Clearly G0 is 4d-

colorable. Let U1;y;U4d be the color classes. A probabilistic argument shows that there exists a
permutation of f1;y; 4dg that satisfies the properties needed.

Lemma 9.4 (Alon and Azar [3]). Let d be such that d ¼ oðnÞ and d ¼ Oðlog nÞ: Let G be a graph
with n vertices and dn edges. There exists an orientation of G such that the complement of its

transitive closure has at least Oðn2

d
logðn

d
ÞÞ edges.

Algorithm sketch: Use Lemma 9.3 to obtain G0 and V1;y;V4d as specified there. Orient G0 as
follows: For all 1pipjpm; for all uAVi; for all uAVj; if ðv; uÞ is an edge then set vou: Orient G so

that you use this orientation on G0 and all the vertices not in G0 are less than all the vertices in G0:
The complement of the transitive closure will not contain any edges within an Vi: In addition,
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because of the limit on how many edges can go from an Vi to an Vj; one can estimate additional

lower bounds on the number of edges in the complement of the transitive closure. (This is highly
nontrivial.)

Theorem 9.5 (Alon and Azar [3]). For k42; sortðk; nÞXOðn1þ1=kðlog nÞ1=kÞ:

Algorithm sketch: We prove this by induction. Note that k ¼ 2 is the base case and is nontrivial.
Assume that there is an algorithm that sorts n elements in 2 rounds and takes dn processors. We

know that d ¼ Oðn1=3Þ by Theorem 9.1. We can assume d ¼ oðn2=3Þ since if it is not then the
theorem for k ¼ 2 is already true. Let G be the graph representing the first round. Because of
the bounds on d we can apply Lemma 9.4 to the graph to obtain an orientation such that the

complement of the transitive closure has Oðn2

d
logðn

d
ÞÞ edges. Hence the second round needs

Oðn2

d
logðn

d
ÞÞ processors. Algebra shows that d ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
Þ:

We now sketch the induction step. It will be easier than the k ¼ 2 case since it does not use
Lemma 9.4. Assume the lower bound for k � 1 where kX3: Assume there is an algorithm for
sorting in k rounds. Let G be the graph representing the first round of the algorithm. Assume G
has dn edges. By Turan’s theorem (see [5] for a nice probabilistic proof) a graph with dn edges has
an independent set of size n

2dþ1
: By repeated application of Turan’s theorem we can find s ¼ OðdÞ

pairwise disjoint independent sets of size Oð n
1þd

Þ which we denote as V1;y;Vs: Let V0 be all other

vertices. Orient G as follows: For all 1pipjps; for all vAVi; for all uAVj; if ðv; uÞ is an edge then

set vou: The remaining k � 1 rounds need to sort each Vi; i41: Algebra and the induction
hypothesis suffice to prove the result.

10. Open problems

The next section has tables of known results, both upper and lower bounds. The tables yield
many open questions about closing these gaps.
There are no lower bounds for constructive sorting except those bounds that come from general

sorting. Hence another open question would be to either obtain lower bounds for csortðk; nÞ that
use the fact that the algorithm is constructive, or show that any sorting algorithm can be turned
into a constructive one.
Another open problem is to obtain simpler proofs of the known upper bounds, especially the

constructive ones.

11. Summary of results

In this section we put all the known results into tables. We leave out the big-O’s and big-O’s
unless there is an interesting point to be made about the constants.
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11.1. Nonconstructive methods for sorting

k k ¼ 2 k ¼ 3 Ref

nð3
2
k�1�1Þ=ð2k�1Þ log n n5=3 log n n11=3 log n [15]

n3=2 log n [9]

n1þ1=kðlog nÞ2�2=k n3=2 log n n4=3ðlog nÞ4=3 [20]

n3=2 log nffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p [3]

n1þ1=k ðlog nÞ2�2=k

ðlog log nÞ1�1=k
n3=2 log nffiffiffiffiffiffiffiffiffiffiffiffiffi

log log n
p n4=3

ðlog nÞ4=3

ðlog log nÞ2=3
[6]

1. All of the above results use the probabilistic method.
2. In [15] a graph is picked at random from the set of all graphs with n vertices and nak edges where

ak ¼ ð3
2k�1�1Þ
ð2k�1Þ :

3. In all of the other algorithms a graph was picked by assigning to each edge a
probability.

4. The n1þ1=kðlog nÞ2�2=k algorithm was fairly easy to code and behaved as expected with low
implicit constants.

11.2. Constructive methods for sorting

k k ¼ 2 k ¼ 4 Ref

39
45
ðn
2
Þ [14]

4
5
ðn
2
Þ [8]

n1þð2=
ffiffiffiffi
2k

p
Þ n2 n20=13 [15]

n1þð2=
ffiffiffiffi
2k

p
Þ n7=4 n26=17 [2]

n1þð2=
ffiffiffiffi
2k

p
Þ n7=4 n3=2 [13,20]

n1þ2=ðkþ1Þðlog nÞ2�4=ðkþ1Þ
n5=3ðlog nÞ2=3 n7=5ðlog nÞ6=5 [17,20]

n1þ1=kþoð1Þ n3=2þoð1Þ n5=4þoð1Þ [18,26]

1. The first two results listed for general k are both approximations for a general recurrence.

2. All of the n1þð2=
ffiffiffiffi
2k

p
Þ algorithms are recursive and were hard to code. The first one used a trivial

base case and only worked for large n: The rest used more sophisticated base cases and worked
well for small n: All of them had quite reasonable multiplicative constants; usually less than 1.

3. The algorithms of [17,20] were based on certain types of graphs that can be generated
constructively but are difficult to deal with. We did not code it up.

4. The algorithm of [18,26] would only make sense for n that were quite large. Hence we did not
code it up.
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11.3. Limited closure sorting

The only result here are for 2-round sorting.

d d ¼ 2 Ref Constructive?

1
2d

n1þ
d

2d�1ðlog nÞ1=2d�1 1
4
n5=3ðlog nÞ1=3 [9] No

n7=4 [2] Yes

The first algorithm relies on picking a graph at random in a way that is hard to code up, so we

did not code it up. The second algorithm is easy to code up and when we did so it used n7=4

comparisons in the first round and less in the second.

11.4. Lower bounds

We include these known lower bounds for completeness.

Problem Bound Ref Comments

sortðk; nÞ n1þ1=k

2kþ1 � n=2 [14]

sortðk; nÞ ð
ffiffiffiffiffiffiffiffi
3=2

p
�

eÞn1þ1=k

[9] kX2

sortðk; nÞ n1þ1=kðlog nÞ
1
k [3] kX2

sortð2; n; 2Þ n5=3 [9]

sortð2; n; dÞ n1þd=2d�1 [9]

Merging
n

2k

2k�1
[15]

11.5. Comparisons between different algorithms

In this section we compare the various algorithms to each other. To compare two (say) 3-round
algorithms we take as a measure the maximum number of comparisons used in a round. For
example, if a run of the algorithm used 14 comparisons in the first round, 18 in the second round,
and 11 in the third round, then we would say ‘18 comparisons’.
We compare the following pairs of algorithms.

1. Pippenger’s algorithm with Haggkvist and Hell’s algorithm (henceforth HH) for both 3- and
4-round.

2. Pippenger’s algorithm with Alon’s algorithm for 2 rounds. (Alon’s only works for
2 rounds.)

3. Pippenger’s algorithm with Alon-Azar-Vishkin’s algorithm (henceforth AAV) for 3 and 4
rounds. The AAV is randomized; however, we compare what it does in its worse case.
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Pippenger’s algorithm performs better than HH or Alon’s. This underscores the point that
nonconstructive algorithms can outperform constructive ones. AAV beats Pippenger, which
shows that randomized is better still. The drawback of randomized algorithms is that if you are
unlucky in a particular run it may take longer; however, this did not happen in our observations.
Note also that the drawback of nonconstructive algorithms is that if you are unlucky in the
preprocessing then you may be stuck with an algorithm that is not good on any run; however, this
did not happen. Hence we are comparing Pippenger’s algorithm to AAV’s algorithm when neither
one experienced bad luck.
We note that comparing Pippenger’s algorithm to Alon’s in terms of number of comparisons is

unfair since Alon’s algorithm has the benefit of limited transitive closure.
In Figs. 14 and 15 we compare Pippenger’s algorithm with HH’s algorithm. For the most part

all the algorithms have the same shape as their analytic bound resulting in Pippenger’s doing
better. We again note the one exception—HH does particularly badly in 4-rounds before
n ¼ 8192: This is because the algorithm assumes that both n and the blocksize are powers
of 2. This assumption affects the algorithm in many ways resulting in the bad runtime
mentioned.
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Fig. 14. Haggkvist and Hell vs. Pippenger 3-round sorting.

Fig. 15. Haggkvist and Hell vs. Pippenger 4-round sorting.
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In Fig. 16 we compare Alon’s 2-round constructive algorithm with Pippenger’s 2-round
nonconstructive algorithm. Both algorithms have the same shape as their analytic bound,
resulting in Pippenger’s doing better.
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Fig. 16. Alon vs. Pippenger 2-round sorting.

Fig. 17. Alon, Azar, Vishin vs. Pippenger 3-round sorting.

Fig. 18. Alon, Azar, Vishin vs. Pippenger 4-round sorting.
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In Figs. 17 and 18 we compare Pippenger’s algorithm with AAV’s algorithm. For the most part
all the algorithms have the same shape as their analytic bound, resulting in AAV doing slightly
better.
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