
GUPT: Privacy Preserving Data Analysis Made Easy

Prashanth Mohan
UC Berkeley

prmohan@cs.berkeley.edu

Abhradeep Thakurta∗
Pennsylvania State University

azg161@cse.psu.edu

Elaine Shi
UC Berkeley

elaines@cs.berkeley.edu
Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

David E. Culler
UC Berkeley

culler@cs.berkeley.edu

ABSTRACT
It is often highly valuable for organizations to have their
data analyzed by external agents. However, any program
that computes on potentially sensitive data risks leaking in-
formation through its output. Differential privacy provides
a theoretical framework for processing data while protecting
the privacy of individual records in a dataset. Unfortunately,
it has seen limited adoption because of the loss in output
accuracy, the difficulty in making programs differentially
private, lack of mechanisms to describe the privacy bud-
get in a programmer’s utilitarian terms, and the challenging
requirement that data owners and data analysts manually
distribute the limited privacy budget between queries.

This paper presents the design and evaluation of a new
system, GUPT, that overcomes these challenges. Unlike
existing differentially private systems such as PINQ and
Airavat, it guarantees differential privacy to programs not
developed with privacy in mind, makes no trust assump-
tions about the analysis program, and is secure to all known
classes of side-channel attacks.

GUPT uses a new model of data sensitivity that degrades
privacy of data over time. This enables efficient allocation
of different levels of privacy for different user applications
while guaranteeing an overall constant level of privacy and
maximizing the utility of each application. GUPT also in-
troduces techniques that improve the accuracy of output
while achieving the same level of privacy. These approaches
enable GUPT to easily execute a wide variety of data anal-
ysis programs while providing both utility and privacy.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; H.3.5
[Information storage and retrieval]: Online Information
Services

Keywords
Algorithms, Differential Privacy, Data Mining, Security

∗Part of this work was done while visiting UC Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. INTRODUCTION
Organizations frequently allow third parties to perform

business analytics and provide services using aggregated data.
For instance, social networks have enabled many applica-
tions to be built on social data providing services such as
gaming, car-pooling and online deals. Retailers often share
data about their customers’ purchasing behavior with prod-
uct merchants for more effective and targeted advertising
but do not want to reveal individual customers. While shar-
ing information can be highly valuable, companies provide
limited access to this data because of the risk that an indi-
vidual’s privacy would be violated. Laws such as the Health
Insurance Portability and Accountability Act (HIPAA) have
considered the dangers of privacy loss and stipulate that
patient’s personally identifiable information should not be
shared. Unfortunately, even in datasets with “anonymized”
users, there have been cases where user privacy was breached.
Examples include the deanonymization of AOL search logs [3],
the identification of patients in a Massachusetts hospital by
combining the public voters list with the hospital’s anonymized
discharge list [23] and the identification of the users in an
anonymized Netflix prize data using an IMDB movie rating
dataset [18].

Often the value in sharing data can be obtained by al-
lowing analysts to run aggregate queries spanning a large
number of entities in the dataset while disallowing analysts
from being able to record data that pertains to individual en-
tities. For instance, a merchant performing market research
to identify their next product would want to analyze cus-
tomer behavior in retailers’ databases. The retailers might
be willing to monetize the dataset and share aggregate an-
alytics with the merchant, but would be unwilling to allow
the merchant to extract information specific to individual
customers in the database. Researchers have invented tech-
niques that ranged from ad-hoc obfuscation of data entries
(such as the removal of Personally Identifiable Information)
to more sophisticated anonymization mechanisms satisfying
privacy definitions like k-anonymity [25] and `-diversity [15].
However, Ganta et al. [8] and Kifer [13] showed that practi-
cal attacks can be mounted against all these techniques. A
recent definition called differential privacy [5] formalizes the
notion of privacy of an individual in a dataset. Unlike earlier
techniques, differentially private mechanisms use statistical
bounds to limit the privacy loss of an individual incurred
by running statistical queries on datasets. It is designed to
perturb the result of a computation in a manner that has lit-
tle effect on aggregates, yet obscures the data of individual
constituents.

While differential privacy has strong theoretical proper-
ties, the shortcomings of existing differentially private data
analysis systems have limited its adoption. For instance, ex-
isting programs cannot be leveraged for private data anal-
ysis without modification. The magnitude of the pertur-
bation introduced in the final output is another cause of
concern for data analysts. Differential privacy systems op-
erate using an abstract notion of privacy, called the ‘privacy
budget’. Intuitively a lower privacy budget implies better
privacy. However, this unit of privacy does not easily trans-
late into the utility of the program and is thus difficult for
data analysts who are not experts in privacy to interpret.
Further, analysts would also be required to efficiently dis-
tribute this limited privacy budget between multiple queries
operating on a dataset. An inefficient distribution of the
privacy budget would result in inaccurate data analysis and
reduce the number of queries that can be safely performed
on the dataset.

We introduce GUPT1, a platform that allows organiza-
tions to allow external aggregate analysis on their datasets
while ensuring that data analysis is performed in a differ-
entially private manner. It allows the execution of existing
programs with no modifications, eliminating the expensive
and demanding task of rewriting programs to be differen-
tially private. GUPT enables data analysts to specify a
desired output accuracy rather than work with an abstract
privacy budget. Finally, GUPT automatically parallelizes
the task across a cluster ensuring scalability for concurrent
analytics. We show through experiments on real datasets
that GUPT overcomes many shortcomings of existing dif-
ferential privacy systems without sacrificing accuracy.

1.1 Contributions
We design and develop GUPT, a platform for privacy-

preserving data analytics. We introduce a new model for
data sensitivity which applies to a large class of datasets
where the privacy requirement of data decreases over time.
As we will explain in Section 3.3, using this model is ap-
propriate and allows us to overcome significant challenges
that are fundamental to differential privacy. This approach
enables us to analyze less sensitive data to get reasonable
approximations of privacy parameters that can be used for
data queries running on the newer data.

GUPT makes the following technical contributions that
make differential privacy usable in practice:

1. Describing privacy budget in terms of accuracy:
Data analysts are accustomed to the idea of working
with inaccurate output (as is the case with data sam-
pling in large datasets and many machine learning al-
gorithms have probabilistic output). GUPT uses the
aging model of data sensitivity, to allow analysts to
describe the abstract ‘privacy budget’ in terms of ex-
pected accuracy of the final output.

2. Privacy budget distribution: GUPT automati-
cally allocates a privacy budget to each query in or-
der to match the data analysts’ accuracy requirements.
Further, the analyst also does not have to distribute
the privacy budget between the individual data oper-
ations in the program.

3. Accuracy of output: GUPT extends a theoretical
differential privacy framework called “sample and ag-
gregate” (described in Section 2.1) for practical ap-

1GUPT is a Sanskrit word meaning ‘Secret’.

plicability. This includes using a novel data resam-
pling technique that reduces the error introduced by
the framework’s data partitioning scheme. Further,
the aging model of data sensitivity allows GUPT to
select an optimal partition size that reduces the per-
turbation added for differential privacy.

4. Prevent side channel attacks: GUPT defends against
side channel attacks such as the privacy budget at-
tacks, state attacks and timing attacks described in [10].

2. BACKGROUND
Differential privacy places privacy research on a firm the-

oretical foundation. It guarantees that the presence or ab-
sence of a particular record in a dataset will not signifi-
cantly change the output of any computation on a statistical
dataset. An adversary thus learns approximately the same
information about any individual record, irrespective of its
presence or absence in the original dataset.

Definition 1 (ε-differential privacy [5]). A
randomized algorithm A is ε-differentially private if for all
datasets T, T ′ ∈ Dn differing in at most one data record and
for any set of possible outputs O ⊆ Range(A), Pr[A(T) ∈
O] ≤ eε Pr[A(T ′) ∈ O] . Here D is the domain from which
the data records are drawn.

The privacy parameter ε, also called the privacy budget [16],
is fundamental to differential privacy. Intuitively, a lower
value of ε implies stronger privacy guarantee and a higher
value implies a weaker privacy guarantee while possibly achiev-
ing higher accuracy.

2.1 Sample and Aggregate

Algorithm 1 Sample and Aggregate Algorithm [24]

Input: Dataset T ∈ Rn, length of the dataset n, privacy
parameters ε, output range (min,max).

1: Let ` = n0.4

2: Randomly partition T into ` disjoint blocks T1, · · · , T`.
3: for i ∈ {1, · · · , `} do
4: Oi ← Output of user application on dataset Ti.
5: If Oi > max, then Oi ← max.
6: If Oi < min, then Oi ← min.
7: end for
8: A← 1

`

∑`
i=1Oi + Lap(|max−min |

`·ε)

GUPT leverages and extends the “sample and aggregate”
framework [24, 19] (SAF) to design a practical and usable
system which will guarantee differential privacy for arbitrary
applications. Given a statistical estimator P(T) , where T
is the input dataset , SAF constructs a differentially private
statistical estimator P̂(T) using P as a black box. Moreover,

theoretical analysis guarantees that the output of P̂(T) con-
verges to that of P(T) as the size of the dataset T increases.

As the name “sample and aggregate” suggests, the algo-
rithm first partitions the dataset into smaller subsets; i.e.,
` = n0.4 blocks (call them T1, · · · , T`) (see Figure 1). The
analytics program P is applied on each of these datasets Ti
and the outputs Oi are recorded. The Oi’s are now clamped
to within an output range that is either provided by the an-
alyst or inferred using a range estimator function. (Refer to

T

T1 T2 T3 Tl
…

Average

DATASET

BLOCKS

f … f f f PROGRAM

+ Laplacian noise

Private output

f(T1) f(T2) f(T3) f(Tl)

Figure 1: An instantiation of the Sample and Ag-
gregate Framework [24].

Section 4.1 for more details.) Finally, a differentially private
average of the Oi’s is calculated by adding Laplace noise
(scaled according to the output range). This noisy final out-
put is now differentially private. The complete algorithm is
provided in Algorithm 1. Note that the choice of number of
blocks ` = n0.4 is from [24], used here for completeness. For
improved choices of `, see Section 4.3.

GUPT extends the conventional SAF described above in
the following ways: i) Resampling: GUPT introduces the
use of data resampling to improve the experimental accuracy
of SAF, without degrading the privacy guarantee; ii) Opti-
mal block allocation: GUPT further improves experimen-
tal accuracy by finding the better block sizes (as compared
to the default choice of n0.6) using the aging of sensitivity
model explained in Section 3.3.

2.2 Related Work
A number of advances in differential privacy have sought

to improve the accuracy of very specific types of data queries
such as linear counting queries [14], graph queries [12] and
histogram analysis [11]. A recent system called PASTE [21]
allows queries on time series data where the data is stored
on distributed nodes and no trust is laid on the central ag-
gregator. In contract to PASTE, GUPT trusts the aggre-
gator with storing all of the data but provides a flexible
system that supports many different types of data analysis
programs.

While systems tailored for specific tasks could potentially
achieve better output accuracy, GUPT trades this for the
generality of the platform. We show through experimental
results that GUPT achieves reasonable accuracy for prob-
lems like clustering and regression, and can even perform
better than the existing customized systems.

Other differential privacy systems such as PINQ [16] and
Airavat [22] have also attempted to operate on a wide va-
riety of data queries. PINQ (Privacy INtegrated Queries)
proposed programming constructs which enable application
developers to write differentially private programs using ba-
sic functional building blocks of differential privacy (e.g.,
exponential mechanism [17], noisy counts [5] etc.). It does
not consider the application developer to be an adversary.
It further requires the developers to rewrite the application
to make use of the PINQ primitives. On the other hand,
Airavat was the first system that attempted to run unmodi-
fied programs in a differentially private manner. It however
required the programs to be written for the Map-Reduce

programming paradigm [4]. Further, Airavat only considers
the map program to be an “untrusted” computation while
the reduce program is “trusted” to be implemented in a dif-
ferentially private manner. In comparison, GUPT allows for
the private analysis of a wider range of unmodified programs.
GUPT also introduces techniques that allow data analysts
to specify their privacy budget in units of output accuracy.
Section 7.3 presents a detailed comparison of GUPT with
PINQ, Airavat and the sample and aggregate framework.

Similar to iReduct [28], GUPT introduces techniques that
reduce the relative error (in contrast to absolute error). Both
systems use a smaller privacy budget for programs that pro-
duce larger outputs, as the relative error would be small
as compared programs that generate smaller values for the
same absolute error. While iReduct optimizes the distri-
bution of privacy budget across multiple queries, GUPT
matches the relative error to the privacy budget of individual
queries.

3. PROBLEM SETUP
There are three logical parties:
1. The analyst/programmer, who wishes to perform ag-

gregate data analytics over sensitive datasets. Our
goal is to make GUPT easy to use for an average pro-
grammer who is not a privacy expert.

2. The data owner, who owns one or more datasets, and
would like to allow analysts to perform data analytics
over the datasets without compromising the privacy of
users in the dataset.

3. The service provider, who hosts the GUPT service.
The separation between these parties is logical; in reality,

either the data owner or a third-party cloud service provider
could host GUPT.

Trust assumptions: We assume that the data owner and
the service provider are trusted, and that the analyst is un-
trusted. In particular, the programs supplied by the analyst
may act maliciously and try to leak information. GUPT
defends against such attacks using the security mechanisms
proposed in Section 6.

3.1 GUPT Overview

Web	 Frontend	

Data	 Set	 	
Manager	

1. Data Set
2. Privacy
↵Budget (ε)

Isolated	
Execu.on	
Chambers	

Isolated	
Execu.on	
Chambers	

Isolated	
Execu.on	
Chambers	

Computa4on	
Manager	

Untrusted	
Computa4on	

Comp	 Mgr	 XML	 RPC	 Layer	

1.  Computation
2.  Accuracy
3.  Output Range

Differentially
Private Answer

Data Analyst

Data Owner

Figure 2: Overview of GUPT’s Architecture

The building blocks of GUPT is shown in Figure 2:
• The dataset manager is a database that registers in-

stances of the available datasets and maintains the
available privacy budget.
• The computation manager instantiates computations

and seamlessly pipes data from the dataset to the ap-
propriate instances.
• The isolated execution chambers isolate and prevent

any malicious behavior by the computation instances.
These building blocks allow the principals of the system

to easily interact with many parameters being automatically
optimized or are left as optional arguments for experts.

Interface with the data owner: (a) A multi-dimensional
dataset (such as a database table) that for the purpose
of our discussion, we assume is a collection of real valued
vectors , (b) a total privacy budget that can be allocated
for computations on the dataset and (c) [Optional] input
attribute ranges, i.e. the lower and upper bound for each
dimension of the data. A detailed discussion on these bounds
is presented in Section 4.1.

For privacy reasons, the input ranges provided should not
contain any sensitive information. For example, it is rea-
sonable to expect that a majority of the household’s annual
income should fall within the range [0; 500,000] dollars, thus
it is not considered sensitive. On the other hand if the rich-
est household’s income is used as the upper bound private
information could be leaked. In this case, a public informa-
tion source such as the national GDP could be used.

Interface with the analyst: (a) Data analytics pro-
gram, (b) a reference to the data set in the dataset
manager, (c) either a privacy budget or the desired accu-
racy for the final answer and finally (d) an output range
or a helper function for estimating the output range.

A key requirement for the analytics program is that it
should be able to run on any subset of the original dataset.
As GUPT executes the application in a black-box fashion,
the program may also be provided as a binary executable.

Privacy budget distribution: In order to guarantee ε-
differential privacy for a dataset T , the privacy budget should
be distributed among the various applications (call them
A1, · · · ,Ak) that operate on T . A composition lemma [5]
states that if A1, · · · ,Ak guarantee ε1, · · · , εk-differential
privacy respectively, then T is ε-differential private, where
ε =

∑k
i=1 εi. Thus judicious allocation of the privacy budget

is extremely important. Unlike existing differential privacy
solutions, GUPT relieves the analyst and the data owner
from that task of distributing this limited privacy budget
between multiple data analytics programs.

3.2 Privacy and Utility Guarantees
GUPT guarantees ε-differential privacy to the final out-

put. It provides similar utility guarantees as the original
sample and aggregate algorithm from [24]. This guarantee
applies to the queries satisfying “approximate2 normality”
condition defined by Smith [24], who also observed that a
wide class of queries satisfy this normality condition. Some
of the examples being various maximum-likelihood estima-
tors and estimators for regression problems. The formal
utility guarantees are deferred to Appendix A.
GUPT provides the same level of privacy for queries that

are not approximately normal. Reasonable utility could be

2By approximately normal statistic we refer to the generic
asymptotically normal statistic in Definition 2 of [24].

expected even from queries that are not approximately nor-
mal, even though no theoretical guarantees are provided.

3.3 Aging of Sensitivity
In real life datasets, the potential privacy threat for each

record is different. A privacy mechanism that considers this
can obtain good utility while satisfying the privacy con-
straints.

We introduce a new model called aging of sensitivity of
data where older data records are considered to have lower
privacy requirements. GUPT uses this model to optimize
some parameters of the sample and aggregate framework
like block size (Section 4.3) and privacy budget allocation
(Section 5.1). Consider the following motivating example:

Example 1. Let T70 yrs and Tnow be two datasets contain-
ing the ages of citizens in a particular region 70 years earlier
and at present respectively. It is conceivable that the privacy
threat to T70 yrs is much lower as many of the participating
population may have deceased. Although T70 yrs might not be
as useful as Tnow for learning specific trends about the cur-
rent population, it can be used to learn some general concepts
about Tnow. For example, a crude estimate of the maximum
age present in Tnow can be obtained from T70 yrs.

GUPT estimates such general trends in data distribution
and uses them to optimize the performance of the system.
The optimization results in a significant reduction in error.
More precisely, the aged data is used for the following: i)
to estimate an optimal block size for use in the sample and
aggregate framework, ii) to identify the minimum privacy
budget needed to estimate the final result within a given
accuracy bound, and iii) to appropriately distribute the pri-
vacy budget ε across various tasks and queries.

For simplicity of exposition, the particular aging model in
our analysis is that a constant fraction of the dataset has
completely aged out, i.e. the privacy of the entries in this
constant fraction is no more of a concern. In reality, if the
aged data is still weakly privacy sensitive, then it is possible
to privately estimate these parameters by introducing an
appropriate magnitude of noise into these calculations. The
weak privacy of aged data allows us to keep the noise low
enough such that the estimated parameters are still useful.
Existing techniques [1, 26] have attempted to use progressive
aggregation of old data in order to reduce its sensitivity. The
use of differentially private operations for aggregation can
potentially be exploited to generate our training datasets.
The use of these complementary approaches offer exciting
opportunities that have not been explored in this paper.

It is important to mention that GUPT does not require
the aging model for default functionality. The default pa-
rameter choices allow it work well in a generic setting. How-
ever, our experiments show that the aging model provides
an additional improvement in performance.

4. ACCURACY IMPROVEMENTS
The sample and aggregate framework (Algorithm 1) in-

troduces two sources of error:
• Estimation error: This arises because the query is eval-

uated on a smaller data block, rather than the en-
tire dataset. Typically, the larger the block size, the
smaller the estimation error.
• Noise: Another source of error is due to the Laplace

noise introduced to guarantee differential privacy.

Intuitively, the larger the number of blocks, the lower
the sensitivity of the aggregation function – since the
aggregation function has sensitivity s

`
, where s denotes

the output range of each block, and ` denotes the num-
ber of blocks. As a result, given a fixed privacy param-
eter ε, with a larger number of blocks, the magnitude
of the Laplace noise is lowered.

GUPT uses two strategies (resampling and selecting the
optimal block size) to reduce these types of errors. Before
delving into details of the techniques, the following section
explains how the output range for a given analysis program
is computed. This range is used to decide the amount of
noise to be added to the final output.

4.1 Output Range Estimation
The sample and aggregate framework described in Algo-

rithm 1 does not describe a mechanism to obtain the range
within which the output can lie. This is needed to esti-
mate the noise that should be added for differential privacy.
GUPT implements this requirement by providing the fol-
lowing mechanisms:

1. GUPT-tight: The analyst specifies a tight range for the
output.

2. GUPT-loose: The analyst only provides a loose range
for the output. In this case, the computation is run on
each data block and their outputs are recorded. A dif-
ferentially private percentile estimation algorithm [24]
is then applied on the set of outputs to privately com-
pute the 25-th and the 75-th percentile values. These
values are used as the range of the output and are
supplied to Algorithm 1.

3. GUPT-helper: The analyst could also provide a range
translation function. If either (a) input range is not
present or (b) only very loose range for the input (e.g.,
using the national GDP as an upper-bound on annual
household income) is available, then GUPT runs the
same differentially private percentile estimation algo-
rithm on the inputs to privately compute the 25-th and
the 75-th percentile (a.k.a, lower and upper quartiles)
of the inputs. This is used as a tight approximation
of the input range. The analyst-supplied range trans-
lation function is then invoked to convert the “tight”
input range into an estimate of the output range.

Our experiments demonstrate that one can get good re-
sults for a large class of problems using the noisy lower and
upper quartiles as approximations of the output range. If the
input dataset is multi-dimensional, the range estimation al-
gorithm is run independently for each dimension. Note that
the choice of 25-th and 75-th percentile above is somewhat
arbitrary. In fact, one can choose a larger inter-percentile
range (e.g., 10-th and 90-th percentile) if there are more
data samples. However, this does not affect the asymptotic
behavior of the algorithm.

4.2 Resampling
The variance in the final output is due to two sources

of randomness: i) partitioning the dataset into blocks and
ii) the Laplace noise added. The following resampling tech-
nique3 can be used to reduce the variance due to partitioning
the dataset into blocks. Instead of requiring each data entry
to reside in exactly one block (as described in the original
sample and aggregate framework [24]), each data entry can

3A variant of this technique was suggested by Adam Smith.

now reside in multiple blocks. The resampling factor γ de-
notes the number of blocks in which each data entry resides.

If the number of records in the dataset is n, block size is β
and each data entry resides in γ blocks, it is easy to see that
the number of blocks ` = γn/β. To incorporate resampling,
we make the following modifications to Algorithm 1. Lines
1 and 2 are modified as follows. Consider ` = γn/β bins of
size β each. The ith entry from the dataset T is picked and
randomly placed into γ bins that are not full. This process
is performed for all the entries in the dataset T . In Line 8,

the Laplace noise is changed to Lap(β|max−min |
n·ε). The rest

of Algorithm 1 is left intact.
The main benefit of using resampling is that it reduces the

variance due to partitioning the dataset into blocks without
increasing the noise needed for the same level of privacy.

Claim 1. With the same privacy level ε, resampling with
any γ ∈ Z+, does not increase the Laplace noise being added
(for fixed block size β).

Proof. Since each record appears in γ blocks, a Laplace
noise of magnitude O(γs

ε`
) = O(sβ

εn
) should be added to pre-

serve ε-differential privacy. This means that once the block
size is fixed, the noise is independent of the factor γ.

Intuitively, the benefit from resampling is that the vari-
ance due to partitioning of the dataset into blocks is reduced
without increasing the Laplace noise (added in Step 8 of Al-
gorithm 1) needed for the same level of privacy with the
inclusion of γ > 1. Consider the following example to get a
better understanding of the intuition.

Example 2. Let T be a dataset (with n records) of the
ages of a population and max be the maximum age in the
dataset. The objective is to find the average age (Av) in

this dataset. Let Âv be the average age of a dataset formed
with n0.6 uniformly random samples drawn from T with re-
placement. The expectation of Âv equals the true average
Av. However, the variance of Âv will not be zero (unless all

the entries in T are same). Let O = 1
ψ

∑ψ
i=1 Âv(i), where

Âv(i) is the i-th independent computation of Âv mentioned
above and ψ is some constant. Notice that O has the same
expected value as Âv but the variance has reduced by a fac-
tor of ψ. Hence, resampling reduces the variance in the final
output O without introducing bias.

The above example is a simplified version of the actual
resampling process. In the actual resampling process each
data block of size n0.6 is allowed to have only one copy of
each data entry of T . However, even with an inaccurate
representation, the above example captures the essence of
the underlying phenomenon.

In practice, the resampling factor γ is picked such that it is
reasonably large, without increasing the computation over-
head significantly. Notice that the increase in accuracy with
the increase of γ becomes insignificant beyond a threshold.

4.3 Selecting the Optimal Block Size
In this section, we address the following question: Given

a fixed privacy budget, how do we pick the optimal block size
to maximize the accuracy of the private output?

Observe that increasing the block size β increases the noise
magnitude, but reduces the estimation error. Therefore, the
question boils down to: how do we select an optimal block

size that will allow us to balance the estimation error and
the noise? The following example elucidates why answering
the above question is important.

Example 3. Consider the same age dataset T used in
Example 2. If our goal is to find the average of the entries
in T while preserving privacy, then it can be observed that
(ignoring resampling) the optimal size of each block is one
which attains the optimal balance between the estimation er-
ror and noise. If the block size was one, then the expected
error will be O(1/n), where n is the size of the dataset. How-
ever, if we use the default block size (i.e., n0.6), the expected
error will be O(1/n0.4) which is much higher.

As a result getting the optimal block size based on the
specific task helps to reduce the final error to a large extent.
The optimal block size varies from problem to problem. For
example, in k-means clustering or logistic regression the op-
timal block size has to be much larger than one.

Let ` = nα be the optimal number of blocks, where α is
a parameter to be ascertained. Hence, n1−α is the block
size. (For the simplicity of exposition we do not consider
resampling.) Let f : Rk×n → R be the query which is
to be computed on the dataset T . Let the data blocks be
represented as T1, · · · , T`. Let s be the sensitivity of the
query, i.e., the absolute value of maximum change that any
f(Ti) can have if any one entry of T is changed. With the
above parameters in place, the ε-differentially private output
from the sample and aggregate framework is

f̂(T) =
1

nα

nα∑
i=1

f(Ti) + Lap(
s

εnα
) (1)

Assume that the entries of the dataset T are drawn i.i.d,
and that there exists a dataset T np (with entries drawn i.i.d.
from the same distribution as T) whose privacy we do not
care for under the aging of sensitivity model. Let nnp be the
number of entries in T np. We will use the aged dataset T np

to estimate the optimal block size. Specifically, we partition
T np into blocks of size β = n1−α. The number of blocks
`np in T np is therefore `np =

nnp

n1−α . Notice that `np is a
function of α, whose optimal value has to be found. Also
note that the minimum value of α must satisfy the following
inequality: nnp ≥ n1−α.

One possible approach for achieving a good value of α is
by minimizing the empirical error in the final output. The

empirical error in the output of f̂ is defined as∣∣∣∣∣∣ 1

`np

`np∑
i=1

f(Ti
np)− f(Tnp)

∣∣∣∣∣∣︸ ︷︷ ︸
A

+

√
2s

εnα︸ ︷︷ ︸
B

(2)

Here A characterizes the estimation error, and B is due to
the Laplace noise added. We can minimize Equation 2 w.r.t.
α when α ∈ [1− lognnp/ logn, 1]. Conventional techniques
like hill climbing can be used to obtain a local minima.

The α computed above is used to obtain the optimal num-
ber of blocks. Since, the computation involves only the non-
private database T np, there is no effect on overall privacy.

5. PRIVACY BUDGET MANAGEMENT
In differential privacy, the analyst is expected to specify

the privacy goals in terms of an abstract privacy budget
ε. The analyst performs the data analysis task optimizing

it for accuracy goals and the availability of computational
resources. These metrics do not directly map onto the ab-
stract privacy budget. It should be noted that even a privacy
expert might be unable to map the privacy budget into accu-
racy goals for arbitrary problems. In this section we describe
mechanisms that GUPT use to convert the accuracy goals
into a privacy budget and to efficiently distribute a given
privacy budget across different analysis tasks.

5.1 Estimating Privacy Budget for Accuracy
Goals

In this section we seek to answer the question: How can
GUPT pick an appropriate ε, given a fixed accuracy goal?
Specifically, we wish to minimize the ε parameter to maxi-
mally preserve the privacy budget. It is often more intuitive
to specify an accuracy goal rather than a privacy parameter
ε, since accuracy relates to the problem at hand.

Similar to the previous section, we assume the existence
of an aged dataset T np (drawn from the same distribution
as the original dataset T) whose privacy is not a concern.

Consider an analyst who wishes to guarantee an accuracy
ρ with probability 1 − δ, i.e. the output should be within
a factor ρ of the true value. We wish to estimate an ap-
propriate ε from an aged data set T np of size nnp. Let β
denote the desired block size. To estimate ε, first the per-
missible standard deviation in the output σ is calculated
for a specified accuracy goal ρ and then the following opti-
mization problem is solved. Solve for ε, under the following
constraints: 1) the expression in Equation 3 equals σ2, 2)
α = max{0, log(n/β)}.

1

nα

 1

`np

`np∑
i=1

f(Tnp
i)−

1

`np

`np∑
i=1

f(Tnp
i)

2
︸ ︷︷ ︸

C

+
2s2

ε2n2α︸ ︷︷ ︸
D

(3)

In Equation 3, C denotes the variance in the estimation
error and D denotes the variance in the output due to noise.

To calculate σ from the accuracy goal, we can rely on
Chebyshev’s inequality: Pr[|f̂(T) − E(f(Ti))| > φσ] < 1

φ2 .

Furthermore, assuming that the query f is a approximately
normal statistic, we have |E(f(Ti)) − Truth| = O (1/β).

Therefore: Pr[|f̂(T) − Truth| > φσ + O (1/β)] < (1/φ2) To
meet the output accuracy goal of ρ with probability 1 − δ,
we set σ '

√
δ|1 − ρ|f(T np). Here, we have assumed that

the true answer is f(T np) and 1/β � σ/
√
δ.

Since in the above calculations we assumed that the true
answer is f(T np), an obvious question is “why not output
f(T np) as the answer?”. It can be shown that in a lot of
cases, the private output will be much better than f(T np).

If the assumption that 1/β � σ/
√
δ does not hold, then

the above technique for selecting privacy budget would pro-
duce suboptimal results. This however does not compromise
the privacy properties that GUPT wants to maintain, as it
explicitly limit the total privacy budget allocated for queries
accessing a particular dataset.

5.2 Automatic Privacy Budget Distribution
Differential privacy is an alien concept for most analysts.

Further, the proper distribution of the limited privacy bud-
get across multiple computations require significant mathe-
matical expertise. GUPT eliminates the need to manually
distribute privacy budget between tasks. The following ex-
ample will highlight the requirement of an efficient privacy

budget distribution rather than distributing equally among
various tasks.

Example 4. Consider the same age census dataset T from
Example 2. Suppose we want to find the average age and
the variance present in the dataset while preserving differ-
ential privacy. Assume that the maximum possible human
age is max and the minimum age is zero. Assume that the
non-private variance is computed as 1

n

∑n
i=1(T (i)−Avpriv)2,

where Avpriv is the private estimate of the average and n is
the size of T . If an entry of T is modified, the average Av
changes by at most max/n, however the variance can change
by at most max2/n.

Let ε1 and ε2 be the privacy level expected for average and
variance respectively, with the total privacy budget being ε =
ε1 + ε2. Now, if it is assumed that ε1 = ε2, then the error
in the computation of variance will be in the order of max
more than in the computation of average. Whereas if privacy
budget were distributed as ε1 : ε2 = 1 : max, then the noise
in both the average and variance will roughly be the same.

Given privacy budget of ε and we need to use it for com-
puting various queries f1, · · · , fm privately. If the private
estimation of query fi requires εi privacy budget, then the
total privacy budget spent will be

∑m
i=1 εi (by composition

property of differential privacy [5]). The privacy budget is

distributed as follows. Let ζi
εi

be the standard deviation of

the Laplace noise added by GUPT to ensure privacy level εi.
Allocate the privacy budget by setting εi = ζi∑m

i=1 ζi
ε. The

rationale behind taking such an approach is that usually the
variance in the computation by GUPT is mostly due to the
variance in the Laplace noise added. Hence, distributing ε
across various tasks using the technique discussed above en-
sures that the variance due to Laplace noise in the private
output for each fi is the same.

6. SYSTEM SECURITY
GUPT is designed as a hosted platform where the an-

alyst is not trusted. It is thus important to ensure that
the untrusted computation should not be able to access the
datasets directly. Additionally, it is important to prevent the
computation from exhausting resources or compromising the
service provider. To this end, the “computation manager”
is split into a server component that interacts with the user
and a client component that runs on each node in the clus-
ter. The trusted client is responsible for instantiating the
computation in an isolated execution environment. The iso-
lated environment ensures that the computation can only
communicate with a trusted forwarding agent which sends
the messages to the computation manager.

6.1 Access Control
GUPT uses a mandatory access control framework (MAC)

to ensure that (a) communication between different instances
of the computation is disallowed and (b) each instance of the
computation can only store state (or modify data) within its
own scratch space. This is the only component of GUPT
that depends upon a platform dependent implementation.
On Linux, the LSM framework [27] has enabled many MAC
frameworks such as SELinux and AppArmor to be built.
GUPT defines a simple AppArmor policy for each instance
of the computation, setting its working directory to a tem-
porary scratch space that is emptied upon program termi-
nation. AppArmor does not yet allow fine grained control to

limit network activity to individual hosts and ports. Thus
the “computation manager” is split into a server and client
component. The client component of the computation man-
ager allows GUPT to disable all network activity for the
untrusted computation and restrict IPC to the client.

We determined an empirical estimate of the overhead in-
troduced by the AppArmor sandbox by executing an imple-
mentation of k-means clustering on GUPT 6, 000 times. We
found that the sandboxed version of GUPT was only 0.012
times slower than the non-sandboxed version (overhead of
1.26%).

6.2 Protection against side-channel attacks
Haeberlen et al. [10] identified three possible side-channel

attacks against differentially private systems. They are i)
state attack, ii) privacy budget attack, and iii) timing attack.
GUPT is not vulnerable to any of these attacks.

State attacks: If the adversarial program can modify some
internal state (e.g., change the value of a static variable)
when encountered with a specific data record. An adver-
sary can then look at the state to figure out whether the
record was present in the dataset. Both PINQ (in it’s cur-
rent implementation) and Airavat are vulnerable to state
attacks. However, it is conceivable that operations can be
isolated using .NET AppDomains in PINQ to isolate data
computations. Since GUPT executes the complete analysis
program (which may be adversarial) in isolated execution
chambers and allows the analyst to access only the final dif-
ferentially private output, state attacks are automatically
protected against.

Privacy budget attack: In this attack, on encountering a
particular record, the adversarial program issues additional
queries that exhausts the remaining privacy budget. [10]
noted that PINQ is vulnerable to this attack. GUPT pro-
tects against privacy budget attacks by managing the pri-
vacy budget itself, instead of letting the untrusted program
perform the budget management.

Timing attacks: In a timing attack, the adversarial pro-
gram could consume an unreasonably long amount of time
to execute (perhaps get into an infinite loop) when encoun-
tered with a specific data record. GUPT protects against
this attack by setting a predefined bound on the number of
cycles for which the data analyst program runs on each data
block. If the computation on a particular data block com-
pletes before the predefined number of cycles, then GUPT
waits for the remaining cycles before producing an output
from that block. In case the computation exceeds the prede-
fined number of cycles, the computation is killed and a con-
stant value within the expected output range is produced as
the output of the program running on the data block under
consideration.

Note that with the scheme above, the runtime of GUPT
is independent of the data. Hence, the number of execution
cycles does not reveal any information about the dataset.
The proof that the final output is still differentially private
under this scheme follows directly from the privacy guar-
antee of the sample and aggregate framework and the fact
that a change in one data entry can affect only one data
block (ignoring resampling). Thus GUPT is not vulnerable
to timing attacks. Both PINQ and Airavat do not protect
against timing attacks [10].

7. EVALUATION
For each data analysis program, the program binary and

interfaces with the GUPT “computation manager” should
be provided. For arbitrary binaries, a lean wrapper program
can be used for marshaling data to/from the format of the
computation manager.

In this section, we show using results from running com-
mon machine learning algorithms (such as k-means cluster-
ing and logistic regression on a life sciences dataset) that
GUPT does not significantly affect the accuracy of data
analysis. Further, we show that GUPT not only relieves the
analysts from the burden of distributing a privacy budget
between data transformation operations, it also manages to
provide superior output accuracy. Finally, we show through
benchmarks the scalability of the GUPT architecture and
the benefits of using aged data to estimate optimal values of
privacy budget and block sizes.

7.1 Case Study: Life Sciences dataset
We evaluate the efficacy of GUPT using the ds1.10 life

sciences dataset taken from http://komarix.org/ac/ds as a
motivating example for data analysis. This dataset contains
the top 10 principal components of chemical/biological com-
pounds with each of the 26, 733 rows representing different
compounds. Additionally, the reactivity of the compound is
available as an additional component. A k-means clustering
experiment enables us to cluster compounds with similar fea-
tures together and logistic regression builds a linear classifier
for the experiment (e.g., predicting carcinogens). It should
be noted that these experiments only provide estimates as
the final answer, e.g., the cluster centroids in the case of
k-means. We show in this section that the perturbation in-
troduced by GUPT only affects the final result marginally.

7.1.1 Output Accuracy

2 4 6 8 10
Privacy Budget (ε)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

GUPT-tight

Non private baseline

Figure 3: Effect of privacy budget on the accuracy
of prediction using Logistic Regression on the life
sciences dataset

As mentioned in Section 4, any analysis performed using
GUPT has two sources of error – (a) an estimation error,
introduced because each instance of the computation works
on a smaller subset of the data and (b) Laplace noise that
is added in order to guarantee differential privacy. In this
section, we show the effect of these errors when running
logistic regression and k-means on the life sciences dataset.

GUPT can be used to run existing programs with no mod-
ifications, thus drastically reducing the overhead of writing
privacy preserving programs. Analysts using GUPT are free
to use their favorite software packages written in any lan-
guage. To demonstrate this property, we evaluate black box

0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0

Privacy Budget (ε)

0

20

40

60

80

100

N
or

m
al

iz
ed

In
tra

C
lu

st
er

Va
ria

nc
e

Baseline ICV
GUPT-loose

GUPT-tight

Figure 4: Intra-cluster variance for k-means cluster-
ing on the life sciences dataset

implementations of logistic regression and k-means cluster-
ing on the life sciences dataset.

Logistic Regression: The logistic regression software pack-
age from Microsoft Research (Orthant-Wise Limited-memory
Quasi-Newton Optimizer for L1-regularized Objectives) was
used to classify the compounds in the dataset as carcinogens
and non-carcinogens. Figure 3 shows the accuracy of GUPT
for different privacy budgets.

When the package was run on the dataset directly, a base-
line accuracy of 94% was obtained. The same package when
run using the GUPT framework classified carcinogens with
an accuracy between 75 ∼ 80%. To understand the source
of the error, when the non-private algorithm was executed
on a data block of size n

n0.4 records, the accuracy reduced
to 82%. It was thus determined that much of the error
stems from the loss of accuracy when the algorithm is run
on smaller blocks of the entire dataset reduced. For datasets
of increasingly large size, this error is expected to diminish.

k-means Clustering: Figure 4 shows the cluster variance
computed from a k-means implementation run on the life
sciences dataset. The x-axis is various choices of the pri-
vacy budget ε, and the y-axis is the normalized Intra-Cluster
Variance (ICV) defined as 1

n

∑K
i=1

∑
~x∈Ci |~x−~ci|

2
2, where K

denotes the number of clusters, Ci denotes the set of points
within the ith cluster, and ~ci denotes the center of the ith

cluster. A standard k-means implementation from the scipy
python package is used for the experiment.

The k-means implementation was run using GUPT with
different configurations for calculating the output range (Sec-
tion 4.1). For GUPT-tight, a tight range for the output is
taken to be the exact minimum and the maximum of each
attribute (for all 10 attributes). For GUPT-loose, a loose
output range is fixed as [min ∗2,max ∗2], where min and
max are the actual minimum and maximum for that at-
tribute. Figure 4 shows that with increasing privacy budget
ε, the amount of Laplace noise added to guarantee differ-
ential privacy decreases, thereby reducing the intra-cluster
variance, i.e. making the answer more accurate. It can also
be seen that when GUPT is provided with reasonably tight
bounds on the output range (GUPT-tight), the output of the
k-means experiment is very close to a non-private run of the
experiment even for small values of the privacy budget. If
only loose bounds are available (GUPT-loose), then a larger
privacy budget is required for the same output accuracy.

7.1.2 Budget Distribution between Operations
In GUPT, the program is treated as a black box and

noise is only added to the output of the entire program.

http://komarix.org/ac/ds

20 80 200
k-means iteration count

0

20

40

60

80

100

120

N
or

m
al

iz
ed

In
tra

C
lu

st
er

Va
ria

nc
e

PINQ-tight ε=2
PINQ-tight ε=4
GUPT-tight ε=1
GUPT-tight ε=2

Figure 5: Total perturbation introduced by GUPT
does not change with number of operations in the
utility function

Thus the number of operations performed in the program
itself is irrelevant. A problem with writing specialized dif-
ferentially private algorithms such as in the case of PINQ is
that given a privacy budget ε for the task, it is difficult to
decide how much ε to spend on each query, since it is diffi-
cult to determine the number of iterations needed ahead of
time. PINQ requires the analyst to pre-specify the number
of iterations in order to allocate the privacy budget between
iterations. This is often hard to do, since many data analy-
sis algorithms such as PageRank [20] and recursive relation
queries [2] require iterative computation until the algorithm
reaches convergence. The performance of PINQ thus de-
pends on the ability to accurately predict the number of
iterations. If the specified number of iterations is too small,
then the algorithm may not converge. On the other hand,
if the specified number of iterations is too large, then much
more noise than is required will be added which will both
slow down the convergence of the algorithm as well as harm
its accuracy. Figure 5 shows the effect of PINQ on accu-
racy when performing k-means clustering on the dataset.
In this example, the program output for the dataset con-
verges within a small number of iterations, e.g., n = 20.
Whereas if a larger number of iterations (e.g., n = 200) was
conservatively chosen, then PINQ’s performance degrades
significantly. On the other hand, GUPT produces the same
amount of perturbation irrespective of the number of iter-
ations in k-means. Further, it should be noted that PINQ
was subjected to a weaker privacy constraint (ε = 2 and 4)
as compared to GUPT (ε = 1 and 2).

7.1.3 Scalability

20 80 100 200
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Non Private
GUPT-helper

GUPT-loose

Figure 6: Change in computation time for increased
number of iterations in k-means

Using a server with two Intel Xeon 5550 quad-core CPUs
and the entire dataset loaded in memory, we compare the

0 20 40 60 80 100
Portion of queries (%)

80

85

90

95

100

R
es

ul
ta

cc
ur

ac
y

(%
)

GUPT-helper constant ε=1
GUPT-helper constant ε=0.3
GUPT-helper variable ε
Expected Accuracy

Figure 7: CDF of query accuracy for privacy budget
allocation mechanisms

execution time of an unmodified (non-private) instance and
a GUPT instance of the k-means experiment.

If tight output range (i.e. , GUPT-tight) is not available,
typically, the output range estimation phase of the sample
and aggregate framework takes up most of the CPU cy-
cles. When only loose range for the input is available (i.e. ,
GUPT-helper), a differentially private percentile estimation
is performed on all of the input data. This is a O(n lnn)
operation, n being the number of data records in the origi-
nal dataset. On the other hand, if even loose range for the
output is available (i.e. , GUPT-loose), then the percentile
estimation is performed only on the output of each of the
blocks in sample and aggregate framework, which is typically
around n0.4. This results in significantly reduced run-time
overhead. The overhead introduced by GUPT is irrespec-
tive of the actual computation time itself. Thus as the com-
putation time increases, the overhead introduced by GUPT
diminishes in comparison. Further, there is an additional
speed up since each of the computation instances work on a
smaller subset of the entire dataset. It should be noted that
the reduction in computation time thus achieved could also
potentially be achieved by the computational task running
without GUPT. Figure 6 shows that the overall completion
time of the private versions of the program increases slowly
compared to the non-private version as we increase the num-
ber of iterations of k-means clustering.

7.2 Using Aged Data
GUPT uses an aged dataset (that is no longer considered

privacy sensitive) drawn from a similar distribution as the
real dataset. Section 4.3 describes the use of aged data to
estimate an optimal block size that reduces the error in-
troduced by data sampling. Section 5.1 describes how data
analysts who are not privacy experts can continue to only de-
scribe their accuracy goals yet achieve differentially private
outputs. Finally, Section 5.2 uses aged data to automati-
cally distribute a privacy budget between different queries
on the same data set. In this section, we show experimental
results that support the claims made in Sections 4.3 and 5.1.

7.2.1 Privacy Budget Estimation
To illustrate the ease with which GUPT can be used by

data analysts, we evaluate the efficiency of GUPT by ex-
ecuting queries that are not provided with a privacy bud-
get. We use a census income dataset from the UCI machine
learning repository [7] which consists of 32561 entries. The
age data from this dataset is used to calculate the aver-
age age. A reasonably loose range of [0, 150] was enforced

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

pr
iv

ac
y

bu
dg

et
lif

et
im

e

GUPT-helper constant ε=1
GUPT-helper variable ε
GUPT-helper constant ε=0.3

Figure 8: Increased lifetime of total privacy budget
using privacy budget allocation mechanism

0 10 20 30 40 50 60 70
Block size (β)

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

R
M

S
E

Median ε=2
Median ε=6
Mean ε=2
Mean ε=6

Figure 9: Change in error for different block sizes

on the output whose true average age is 38.5816. Initially,
the experiment was run with a constant privacy budgets of
ε = 1 and ε = 0.3. GUPT allows the analyst to provide
looser constraints such as “90% result accuracy for 90% of
the results” and allocates only as much privacy budget as is
required to meet these properties. In this experiment, the
10% of the dataset was assumed to be completely privacy in-
sensitive and was used to estimate ε given a pre-determined
block size. Figure 7 shows the CDF of the output accuracy
both for constant privacy budget values as well as for the ac-
curacy requirement. Interestingly, not only does the figure
show that the accuracy guarantees are met by GUPT, but
also it shows that if the analyst was to define the privacy
budget manually (as in the case of ε = 1 or ε = 0.3), then
either too much or too little privacy budget is used. The
privacy budget estimation technique thus has the additional
advantage that the lifetime of the total privacy budget for a
dataset will be extended. Figure 8 shows that if we were to
run the average age query with the above constraints over
and over again, GUPT will be able to run 2.3 times more
queries than using a constant privacy budget of ε = 1.

7.2.2 Optimal Block Size Estimation
Section 4.3 shows that the estimation error decreases with

an increase in data block size, whereas the noise decreases
with an increased number of blocks. The optimal trade off
point between the block size and number of data blocks
would be different for different queries executed on the dataset.
To illustrate the tradeoff, we show results from queries ex-
ecuted on an internet advertisement dataset also from the
UCI machine learning repository [7]. Figure 9 shows the
normalized root mean square error (from the true value) in
estimating the mean and median aspect ratio of advertise-
ments shown on Internet pages with privacy budgets ε of 2
and 6. In the case of the “mean” query, since the averaging
operation is already performed by the sample and aggre-
gate framework, smaller data blocks would reduce the noise

GUPT PINQ Airavat

Works with unmodified Yes No No
programs
Allows expressive programs Yes Yes No
Automated privacy budget Yes No No
allocation
Protection against privacy Yes No Yes
budget attack
Protection against state Yes No No
attack
Protection against timing Yes No No
attack

Table 1: Comparison of GUPT, PINQ and Airavat

added to the output and thus provide more accurate results.
As expected, we see that the ideal block size would be one.

For the “median” query, it is expected that increasing the
block size would generate more accurate inputs to the av-
eraging function. Figure 9 shows that when the “median”
query is executed with ε = 2, the error is minimal for a
block size of 10. With increasing block sizes, the noise added
to compensate for the reduction in number of blocks would
have a dominating effect. On the other hand, when execut-
ing the same query with ε = 6, the error continues to drop
for increased block sizes, as the estimation error dominates
the Laplace noise (owing to the increased privacy budget).
It is thus clear that GUPT can significantly reduce the to-
tal error by estimating the optimal block size for the sample
and aggregate framework.

7.3 Qualitative Analysis
In this section, GUPT is contrasted with both PINQ and

Airavat on various fronts (see Table 1 for a summary). We
also list the significant changes introduced by GUPT in or-
der to mold the sample and aggregate framework (SAF) [24]
into a practically useful one.

Unmodified programs: Because PINQ [16] is an API that
provides a set of low-level data manipulation primitives, ap-
plications will need to be re-written to perform all operations
using these primitives. On the other hand, Airavat [22] im-
plements the Map-Reduce programming paradigm [4] and
requires that the analyst splits the user’s data analysis pro-
gram into an “untrusted” map program and a reduce aggre-
gator that is “trusted” to be differentially private.

In contrast, GUPT treats the complete application pro-
gram as a black box and as a result the entire application
program is deemed untrusted.

Expressiveness of the program: PINQ provides a lim-
ited set of primitives for data operations. However, if the
required primitives are not already available, then a privacy
unaware analyst would be unable to ensure privacy for the
output. Airavat also severely restricts the expressiveness of
the programs that can run in it’s framework: a) the “un-
trusted” map program is completely isolated for each data
element and cannot save any global state and b) it restricts
the number of key-value pairs generated from the mapper.
Many machine learning algorithms (such as clustering and
classification) require global state and complex aggregation
functions. This would be infeasible in Airavat without plac-
ing much of the logic in the “trusted” reducer program.

GUPT places no restriction on the application program,
and thus does not degrade the expressiveness of the program.

Privacy budget distribution: As was shown in Section

7.1.2, PINQ requires the analyst to allocate a privacy budget
for each operation on the data. An inefficient distribution of
the budget either add too much noise or use up too much of
the budget. Like GUPT, Airavat spends a constant privacy
budget on the entire program. However, neither Airavat nor
PINQ provides any support for distributing an aggregate
privacy budget across multiple data analysis programs.

Using the aging of sensitivity model, GUPT provides an
mechanism for efficiently distributing an aggregate privacy
budget across multiple data analysis programs.

Side Channel Attacks: Current implementation of PINQ
lays the onus of protecting against side channel attacks on
the program developer. As was noted in [10], although Aira-
vat protects against privacy budget attacks, it remains vul-
nerable to state attacks. GUPT defends against both state
attacks and privacy budget attacks (see Section 6.2).

Other differences: GUPT extends SAF to use a novel
data resampling mechanism to reduce the variance in the
output induced via data sub-sampling. Using the aging of
sensitivity model, GUPT overcomes a fundamental issue in
differential privacy not considered previously (to the best of
our knowledge): for an arbitrary data analysis application,
how do we describe an abstract privacy budget in terms of
utility? The model also allows us to further reduce the error
in SAF by estimating a reasonable block size.

8. DISCUSSION
Approximately normal computation: GUPT does not
provide any theoretical guarantees on the accuracy of the
outputs, if the applied computation is not approximately
normal, or if the data entries are not independently and
identically distributed (i.i.d). However, GUPT still guaran-
tees that the differential privacy of individual data records
is always maintained. In practice, GUPT provides reason-
ably accurate results for a lot of queries that do not satisfy
approximate normality.

For some real world datasets, such as sensing and stream-
ing data that have temporal correlation and do not satisfy
the i.i.d property, the current implementation of GUPT fails
to provide reasonable output. In our future work we intend
to design GUPT for catering to these kind of datasets.

Ordering of multiple outputs: When data analysis pro-
gram yields multi-dimensional outputs, the program may
not be able to guarantee the same ordering of outputs for
different data blocks. In this case, we have to sort the out-
puts according to some canonical form before applying the
averaging operation. For example, in the case of k-means
clustering, each block can yield different ordering of the k
cluster centers. In our experiments, the cluster centers were
sorted according to their first coordinate.

8.1 Limitations
Foreknowledge of output dimension: GUPT assumes
that the output dimensions are known in advance. This may
however not always be true in practice. For example, Sup-
port Vector Machines (SVM) output an indefinite number
of support vectors. Unless the dimension is fixed in advance,
private information may leak through the dimensionality it-
self. Another problem is that if the output dimensions for
different blocks are different, then performing an average of
the outputs will not be meaningful. A partial solution is to

clamp or pad the output dimension to a predefined number.
We note that this limitation is not unique to GUPT. For
example, Airavat [22] also suffers from the same problem in
the sense that their mappers have to output a fixed number
of (key, value) pairs.

Inherits limitations of differential privacy: GUPT in-
herits some of the issues that are common to many differ-
ential privacy mechanisms. For high dimensional data out-
puts, the privacy budget needs to be split across the multiple
outputs. The privacy budget also needs to be split across
multiple data mining tasks and users. Given a fixed total
privacy budget, the more tasks and queries we divide the
budget over, the more noise there is – and at some point, the
magnitude of noise may cause the data analysis to become
unusable. In Section 5.2, we outlined a potential method for
managing privacy budgets. Alternative approaches such as
auctioning of privacy budget [9] can also be used.

While differential privacy guarantees the privacy of indi-
vidual records in the dataset, many real world application
will want to enforce higher level privacy concepts such as
user-level privacy [6]. In cases where multiple records may
contain information about the same user, user-level privacy
needs to be accounted for accordingly.

9. CONCLUSION AND FUTURE WORK
GUPT makes privacy-preserving data analytics easy for

privacy non-experts. The analyst can upload arbitrary data
mining programs and GUPT guarantees the privacy of the
outputs. We propose novel improvements to the sample and
aggregate framework to enhance the usability and accuracy
of the data analysis. Through a new model that reduces the
sensitivity of the data over time, GUPT is able to represent
privacy budgets as accuracy guarantees on the final output.
Although this model is not strictly required for the default
functioning of GUPT, it improves both usability and accu-
racy. Through the efficient distribution of the limited pri-
vacy budget between data queries, GUPT is able to ensure
that more queries that meet both their accuracy and pri-
vacy goals can be executed on the dataset. Through exper-
iments on real-world datasets, we demonstrate that GUPT
can achieve reasonable accuracy in private data analysis.

Acknowledgements
We would like to thank Adam Smith, Daniel Kifer, Frank
McSherry, Ganesh Ananthanarayanan, David Zats, Piyush
Srivastava and the anonymous reviewers of SIGMOD for
their insightful comments that have helped improve this
paper. This project was funded by Nokia, Siemens, Intel
through the ISTC for Secure Computing, NSF awards (CPS-
0932209, CPS-0931843, BCS-0941553 and CCF-0747294) and
the Air Force Office of Scientific Research under MURI Grants
(22178970-4170 and FA9550-08-1-0352).

10. REFERENCES
[1] N. Anciaux, L. Bouganim, H. H. van, P. Pucheral, and

P. M. Apers. Data degradation: Making private data
less sensitive over time. In CIKM, 2008.

[2] F. Bancilhon and R. Ramakrishnan. An amateur’s
introduction to recursive query processing strategies.
In SIGMOD, 1986.

[3] M. Barbaro and T. Zeller. A face is exposed for aol
searcher no. 4417749. The New York Times, Aug.
2006.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Operating Systems
Design and Implementation, October 2004.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC, 2006.

[6] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum.
Differential privacy under continual observation. In
STOC, 2010.

[7] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[8] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith.
Composition attacks and auxiliary information in data
privacy. In KDD, 2008.

[9] A. Ghosh and A. Roth. Selling privacy at auction.
http://arxiv.org/abs/1011.1375.

[10] A. Haeberlen, B. C. Pierce, and A. Narayan.
Differential privacy under fire. In USENIX Security,
2011.

[11] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private
histograms through consistency. Proc. VLDB Endow.,
3:1021–1032, September 2010.

[12] V. Karwa, S. Raskhodnikova, A. Smith, and
G. Yaroslavtsev. Private analysis of graph structure.
In VLDB, 2011.

[13] D. Kifer. Attacks on privacy and definetti’s theorem.
In SIGMOD, 2009.

[14] C. Li, M. Hay, V. Rastogi, G. Miklau, and
A. McGregor. Optimizing linear counting queries
under differential privacy. In PODS, 2010.

[15] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[16] F. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In
SIGMOD, 2009.

[17] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, 2007.

[18] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, 2008.

[19] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
STOC, 2007.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[21] V. Rastogi and S. Nath. Differentially private
aggregation of distributed time-series with
transformation and encryption. In SIGMOD, 2010.

[22] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: security and privacy for
mapreduce. In NSDI, 2010.

[23] A. Serjantov and G. Danezis. Towards an information
theoretic metric for anonymity. In PET, 2002.

[24] A. Smith. Privacy-preserving statistical estimation
with optimal convergence rates. In STOC, 2011.

[25] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 2002.

[26] H. H. van, M. Fokkinga, and N. Anciaux. A
framework to balance privacy and data usability using
data degradation. In CSE, 2009.

[27] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. In USENIX
Security, 2002.

[28] X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct:
differential privacy with reduced relative errors. In
SIGMOD, 2011.

APPENDIX
A. THEORETICAL GUARANTEES

We combine the privacy guarantees of the different pieces
used in the system to present a final privacy guarantee. We
provide three different privacy guarantees based on how the
output range is being estimated.

Theorem 1 (Privacy Guarantee for GUPT). Let
T ∈ Rk×n be a dataset and f : Rk×n → Rp be the query.
GUPT is ε-differentially private if the following holds:

1. GUPT uses GUPT-helper with loose range for the
input: Execute percentile estimation algorithm defined
in [24] for each of the k input dimensions with privacy
parameter ε/(2k) and then run the sample and aggre-
gate framework (SAF) with privacy parameter ε/(2p)
for each output dimension.

2. GUPT uses GUPT-tight: Run SAF with privacy pa-
rameter ε/p for each output dimension.

3. GUPT uses GUPT-loose: For each output dimension,
run the percentile estimation algorithm defined in [24]
with privacy parameter ε/(2p) and then run SAF with
privacy parameter ε/(2p).

The proof of this theorem directly follows from the pri-
vacy guarantees for each of the module of GUPT and the
composition theorem of [5]. In terms of utility, we claim the
following about GUPT.

Theorem 2 (Utility Guarantee for GUPT). Let
f : Rk×n → Rp be a generic asymptotically normal statistic
(see Definition 2 in [24]). Let T be a dataset of size n drawn

i.i.d. from some underlying distribution F . Let f̂(T) be the
statistic computed by GUPT.

1. If GUPT uses GUPT-tight, then f̂(T) converges to
f(T) in distribution.

2. Let f be a statistic which differ by at most γ (un-
der some distance metric d) on two datasets T and

T̃ , where T̃ is obtained by clamping the dataset T on
each dimension by the 75-th percentile and the 25-th
percentile for that dimension. If GUPT uses GUPT-

helper with loose input range, then we have

d(f̂(T̃), f(T)) ≤ γ as n→∞.

3. If GUPT uses GUPT-loose, then f̂(T) converges in
distribution to f(T) as n → ∞ as long as k, 1

ε
and

log(|max−min |) are bounded from above by sufficiently
small polynomials in n, where |max−min | is the loose
output range provided.

The proof follows using a similar analysis used in [24].

http://arxiv.org/abs/1011.1375

	Introduction
	Contributions

	Background
	Sample and Aggregate
	Related Work

	Problem Setup
	GUPT Overview
	Privacy and Utility Guarantees
	Aging of Sensitivity

	Accuracy Improvements
	Output Range Estimation
	Resampling
	Selecting the Optimal Block Size

	Privacy Budget Management
	Estimating Privacy Budget for Accuracy Goals
	Automatic Privacy Budget Distribution

	System Security
	Access Control
	Protection against side-channel attacks

	Evaluation
	Case Study: Life Sciences dataset
	Output Accuracy
	Budget Distribution between Operations
	Scalability

	Using Aged Data
	Privacy Budget Estimation
	Optimal Block Size Estimation

	Qualitative Analysis

	Discussion
	Limitations

	Conclusion and Future Work
	References
	Theoretical Guarantees

