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A Stability Analysis of Incomplete LU Factorizations

By Howard C. Elman*

Abstract. The combination of iterative methods with preconditionings based on incomplete

LU factorizations constitutes an effective class of methods for solving the sparse linear

systems arising from the discretization of elliptic partial differential equations. In this paper,

we show that there are some settings in which the incomplete LU preconditioners are not

effective, and we demonstrate that their poor performance is due to numerical instability. Our

analysis consists of an analytic and numerical study of a sample two-dimensional non-self-

adjoint elliptic problem discretized by several finite-difference schemes.

1. Introduction. The preconditioned conjugate gradient method [3], [4] and precon-

ditioned iterative methods for nonsymmetric linear systems [1], [6], [18], [23] are

effective methods for solving the large sparse linear systems arising from the

discretization of elliptic partial differential equations. Two good preconditioners are

the incomplete LU factorization (ILU) [16] and the modified incomplete LU

factorization (MILU) [5], [11], each of which makes use of an approximate factoriza-

tion of the coefficient matrix into the product of a sparse lower triangular matrix, L,

and a sparse upper triangular matrix, U. For the symmetric positive-definite systems

derived from the finite-difference discretization of self-adjoint elliptic problems on a

uniform n X n grid, it is known that the MILU preconditioning produces a

reduction of the condition number from 0(n2) to O(n). The ILU preconditioning

does not improve the conditioning in this way, but it has been observed empirically

to generate a linear system most of whose eigenvalues are clustered near one. The

effectiveness of both techniques for the nonsymmetric linear systems derived from

non-self-adjoint elliptic problems has been demonstrated in many numerical experi-

ments [2], [7], [8], [21], although the analysis from the symmetric case has not been

generalized.

Let A denote the coefficient matrix, let Q = LU denote the approximate factori-

zation of A, and let R = Q - A. Loosely speaking, the analysis for symmetric

discretized elliptic equations examines the effect of R on vectors u whose values

come from a smooth function evaluated at the mesh points. In particular, a heuristic

explanation of the difference between the MILU and ILU factorizations is that the

individual entries of the vector Ru satisfy [Ru]j = 0(1/«) for the MILU factoriza-

tion, whereas [Ru]j = 0(1) for the ILU factorization [11]. The MILU factorization
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192 HOWARD C. ELMAN

has a higher order of accuracy as an approximation to A than the ILU factorization

(see also [19]). In this sense, the analysis is reminiscent of the notion of "consistency"

of difference schemes for ordinary differential equations [10]. The notion of order of

accuracy also extends to the nonsymmetric case (see, e.g., [14]). In this regime, the

MILU factorization is also of higher order of accuracy, and it has been demon-

strated to be more effective in many numerical experiments [7], [8].

In this paper, we show that stability can also play a role in the performance of the

incomplete LU preconditioners when they are applied to discretized non-self-adjoint

elliptic equations. We show, using a model problem, that there are nonsymmetric

linear systems that can cause difficulty for either the ILU preconditioning or the

MILU preconditioning, and that the source of this difficulty is instability of the

computations involving the triangular factors. Our analysis is similar to stability

analysis of methods for ordinary differential equations [10]. It shows that the

performance of incomplete factorizations is sensitive to both the values of the

coefficients of the elliptic operator and the choice of difference scheme used to

discretize the problem. In Section 2, we present the model problem and give

examples of numerical difficulties exhibited by both preconditioners. In Section 3,

we construct constant-coefficient approximations to the two factorizations based on

an asymptotic analysis of the values of their coefficients, and in Section 4, we

present the stability analysis for these simplified factorizations. In Section 5, we

demonstrate with numerical experiments that the presence of instability correlates

with a degradation of the performance of the preconditioners.

2. The Model Problem and Some Numerical Examples. In this section, we present

a model problem and briefly discuss some numerical experiments that demonstrate

some difficulties encountered by the ILU and MILU preconditioners. Consider the

constant-coefficient elliptic equation

(2.1) -Au + 2Pxux + 2P2uy = f

on the unit square £2 = {(x,j>)|0 < x,y < 1}, with Dirichlet boundary conditions

u = f on 3Í2. Discretizing (2.1) on an « X « grid gives rise to a sparse linear system

of equations

(2.2) Au = g,

of order N = n2. We consider two difference schemes for approximating the first

derivatives in (2.1). In the first scheme, we use second-order centered differences

Ui + l,j ~ Ui-l,j Ui.j+1 ~ Ui,j-1

"*Ä       ~2h '       "v* 2Ä

where h = \/(n + 1). In the second scheme, we use first-order upwind differences,

i.e., backward differences if the coefficient is positive, forward differences if the

coefficient is negative. For the upwind scheme, we restrict our attention to the case

Px, P2> 0, so that the differences are given by
»ij- »i-ij u,j- u,,j-i

Uxa h ",* h

For both schemes, we use standard second-order centered differences for the

Laplacian [9],

"t + ij - 2"ij + "<-i.j  ,   uij+i - 2u,j + «1,7-1
A« ~-T-- + —-■/■-—.
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A STABILITY ANALYSIS OF INCOMPLETE LU FACTORIZATIONS 193

Unless otherwise specified, we order the unknowns along lines in the ^-direction,

i.e., the indices {ij} are ordered so that for each j, contiguous unknowns correspond

to points whose /'-indices vary from 1 to n. The coefficient matrix has the form

lade \
bad

bad
b    a

c ad

bad

(2-3) bad
b    a

e

a    d
bad

bad
c b    a,

After scaling the matrix and right-hand side by h2, the matrix entries are given by

a = A,    b= -(1 +px),    c= -(1 +p2),

d= -1 + />,,    e = -1 + p2,

for the centered-difference scheme, where px = Pxh, p2 = P2h, and by

a = A + 2(px+p2),    b=-(\ + 2px),    c=-(l + 2p2),

d= -1,    e= -1,

for the upwind scheme.

We note that, in practice, the choice of mesh size h may be affected by accuracy

considerations and the sizes of the coefficients Px and P2. In particular, if the

solution contains a boundary layer, then with too coarse a mesh the centered-dif-

ference scheme will produce an oscillatory solution and the upwind scheme may not

resolve the boundary layer. See, e.g., [20] for a discussion of these issues.** Our

focus in this paper is on the algebraic properties of the matrix equation rather than

the accuracy of the discrete solution. In making this study, we will have occasion to

consider some large values of P¡h that may not be practical in applications. (See

Section 5.)

We will give precise definitions of the two incomplete factorizations under

consideration in Section 3. As evidence that their performance on similar looking

problems can vary greatly, we consider here three instances of Eq. (2.1):

Problem 1: Px = 0, P2 = 50,

Problem 2: Px * P2 « 50,

Problem 3: Px = -50, P2 = 50.

In each case, the right-hand side / of (2.1) is determined so that the solution is

(2.4) u(x,y) = xexy sin(TTx)sin(Tty).

**Two techniques for improving accuracy are global mesh refinement and local mesh refinement; see

[20]. The analysis of this paper shows that with sufficiently fine global refinement, the preconditioner

instability discussed below would disappear. We do not know how the preconditioners would perform on

linear systems derived from local mesh refinement.
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194 HOWARD C. ELMAN

Table 1

Number of iterations of Orthomin(l) to convergence

Problem 1.

Problem 2.

Problem 3.

ILU

21

x

32

MILU

IX

7

X

Table 2

Two leftmost and two rightmost eigenvalues of the symmetric

parts of the coefficient matrices

ILU MILU

Problem 1.

Problem 2.

Problem 3.

Leftmost

0.172, 0.196
-49.3, -12.6

0.043, 0.075

Rightmost

1.31,1.32

18.2,56.1
1.56, 1.57

Leftmost

0.240, 0.247

0.681,0.681
-2.90E10, -4.36E8

Rightmost

2.589, 2.593
1.02,1.03

4.36E8. 2.90E10

We discretize on a 31 X 31 grid using centered differences for the first derivatives.

The preconditioning is applied from the right, i.e., given the incomplete factorization

Q = LU, the preconditioned problem to be solved is

(2.5) AQ 1Û = u = Q  'w.

Using Orthomin(l) [6] as the basic iterative method, we attempt to solve each of the

three problems with both the ILU and the MILU preconditioning. Table 1 contains

the number of iterations of Orthomin(l) needed to satisfy the stopping criterion of

IkiH/lkoll < 10~6 (where ||c;|| denotes the Euclidean norm (v,v)1/2). The symbol oo

indicates that the residual norms {||r,-||} stopped decreasing at some point of the

iteration, i.e., that the iteration failed to converge to the solution.

Note that if the symmetric part, (AQ'1 + (AQ~l)T)/2, of the coefficient matrix

in (2.5) is positive-definite, then Orthomin(l) is guaranteed to generate a sequence of

iterates whose residual norms are strictly decreasing [6], [7]. The symmetric part is

indefinite if and only if it has both nonpositive and nonnegative eigenvalues. In

Table 2, we list the two leftmost and two rightmost eigenvalues of the symmetric

parts of the six coefficient matrices tested. This data confirms that the problems in

which the failures occurred have indefinite symmetric parts. Taken together, the

results from the two tables also indicate that, at least when centered differences are

used for the discretization of (2.1), the performance of the incomplete factorization

preconditionings is very sensitive to the values of the coefficients of the first

derivatives. (We remark that the symmetric part of the original matrix A is the

discrete negative Laplacian, which is positive-definite [9].)

3. The Incomplete Factorizations. In this section, we define the ILU and MILU

factorizations and construct simpified constant-coefficient approximations to each

of them that will lend themselves to a stability analysis. We consider incomplete

factorizations in which the lower and upper triangular factors, L and U, have the

same sparsity structure as the lower and upper parts of A, respectively, and U is unit
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A STABILITY ANALYSIS OF INCOMPLETE LU FACTORIZATIONS 195

diagonal. For the five-diagonal matrix of (2.3), the factors have the form

l*i

ß2       a2

L = Y« + i

Yn + 2

lN-l

yN   ßN      « NI

u =

1

Vi

Vi

1

VN-n

SN-l

1

The ILU factorization is defined so that the entries in the product matrix LU are

equal to entries of A whenever the latter are nonzero [16]. Multiplying L and U, and

setting the coefficients of the product equal to the appropriate nonzero entries of A,

gives the following defining equations for the nonzero entries of L and U:

(3.1)

ßj

S,=

ta

o- ßfij-l,

a - yjVj-n,

a- ßj8j_x -Y,T}y_„,

b,    j' i= 1 mod«,

0,    otherwise,

d/cij,    j =* Omodrt,

0, otherwise,

j = h
2 < j < n,

n + 1 < j < N and j = 1 mod n,

n + 1 < j < N and j # 1 mod N,

yj =

Vj

n + 1 < _/' ̂  N,

otherwise,

e/oLj,    1 <j <N - n,

0, otherwise.

The MILU factorization is defined so that the nonzero off-diagonal entries of A are

equal to the corresponding entries of LU, and the sum of the entries of each row of

R = LU -A is rh2, t > 0. We restrict our attention to t = 0. (This has been

observed to be a good choice in practice [3], [7], [12], although the analysis of MILU

is only known to hold for t > 0 [5], [11].) The zero row-sum condition is imposed for

the jth row by subtracting the error occurring in row j of R from the y'th diagonal,

a¡. The defining equations are as in (3.1), except the diagonal entries are given by

a,        y = l,

a- ßj8j_x- ßjT}j-X,       2<7<w,

a - ßj8j_x - Y/Tíy_„ - ßjVj-X,       n + \ ^j ^N - n

and 7 = 0 mod n,

a - ßj8j_x - yjVj_n - yj8j_n,        N - n<j < N,

a - Yyrj7_n - yj8j_n,       n + 1 <y < N and ; = 1 modn,

a-ß]8J_x -y,v„,       J = N>

[a - ßj8j_x - YyT?,-,, - ßjVj-i - Y78,-«'        otherwise.

For the I LU factorization, all but 2n - 1 of the diagonals {a;} satisfy the last

(3.2) «/ =
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196 HOWARD C. ELMAN

recurrence of (3.1). For the MILU factorization, all but An - A diagonals satisfy the

last recurrence of (3.2).*** To facilitate an analysis, we construct constant-coeffi-

cient ILU and MILU factorizations based on an asymptotic analysis of these two

recurrences. We make use of a relationship between the recurrences for {a,} and

continued fractions.

As motivation, consider the first block (i.e., the first n  rows) of the ILU

factorization, whose diagonal entries satisfy

(3.3) ax = a,       ay = a - bd/ctj_x,       2 <;'<«.

Expanding for the jth value gives

(3.4) otj = a-r-j->    j — 1 divides.

a -
'. a - bd/a

In the language of continued fractions, a, is the (j — l)st approximant of the

continued fraction [22, p. 14]

bd
a -

bd
a —

The convergence of continued fractions (i.e., of the approximants) of this form is

well understood. We state without proof the result we need, which is taken

essentially verbatim from [22, Theorem 8.2, p. 39].

Theorem 3.1. The continued fraction

(3.5) 1 +-
1+       <

1 + •.

converges for any (complex) number £, except when £ is real and satisfies £ < — ¿.

For real £ > - %, the limiting value is (1 + Jl + 4£)/2.

To use Theorem 3.1  to examine the convergence of (3.3) or (3.4), consider

â • = a ¡/a. These quantities satisfy

,      bd/a2 „      .
a, = 1,        oij:= 1-;-,       2<y<«.

aj-i

With £ = -bd/a2, the approximant for âj analogous to (3.4) is the (j — l)st

approximant of a continued fraction of the form (3.5). The convergence result

requires that £ > - \, which follows for both the centered- and upwind-difference

schemes by direct computation. Hence, {ô,} converges to

a =
1 + v'l - Abd/a2

and {<Xj} converges to

ii c\                                     a)       -      a + ]/a2 - Abd
(3.6) er ' = aa =-r-

***Actually, with the convention that the off-diagonal entries are zero in the appropriate indices, all

the diagonal entries satisfy the last recurrences (3.1) or (3.2). We specify the exceptions explicitly to

emphasize that there are exceptions.
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For the centered-difference scheme, the limiting value is 2 + ^3 + p\, and for the

upwind scheme, it is 2 + px + p2 + y (2 + px + p2)2 - (1 + 2px). We remark that

the limiting value (3.6) is equal to the larger root obtained by formally substituting a

constant value a(1) in place of a^ and aj_x in (3.3) and solving the resulting

quadratic equation for e*(1).

This argument establishes the convergence of the sequence defined by (3.3) as

j -* oo, although it does not prove that the first n values are near the limiting value.

Moreover, most of the diagonal entries of L outside of the first block satisfy the

more complicated recurrence given by the last of the defining equations for {otj},

which for the ILU factorization can be written as

(3.7) otj; = a - bd/aj_x - ce/aj_n.

We attempt to gain some insight into this recurrence by examining a simplified

version of it. By analogy with the result for the first block, let

a + ]Ja2 - A(bd + ce)
(3.8) a =-L

2
which is the larger root obtained from formally substituting the constant a in place

of a -, a _! and o_B in (3.7) and solving for a. Consider the alternative recurrence

(3.9) ax = a - ce/ct,       otj = a — ce/a — bd/ctj_x,       j > 2,

which is a simplification of (3.7) in which ay_„ is replaced by a of (3.8).

Theorem 3.2. Let a be given by (3.8). Then for the values of a, b, c, d and e of either

difference scheme, the sequence defined by (3.9) is convergent with limit a. The limiting

values are

a = 2 + y 2 -I- p\ 4- p\ for centered differences,

a = 2 + px + p2 + y 1 + (1 + px + p2)      for upwind differences.

Proof. The values of a for the two schemes are obtained by substituting into (3.8)

the values of a, b, c, d and e from Section 2. The simplified recurrence (3.9) has the

same form as the recurrence of (3.3), with a replaced by a - ce/a. For both

schemes, a straightforward computation shows that a - ce/a is greater than

zero and hence nonzero. We apply Theorem 3.1 in the same manner as above:

if £ = -bd/(a - ce/a)2 is greater than or equal to - J, then the sequence

{aj/(a - ce/a)} converges to

1 + /l - Abd/(a - ce/a)2

2 '

and {aj} converges to

.     (a - ce/a) + ]/(a- ce/a)2 - Abd
(3.10) a =-j-•

The condition £ > - \ is equivalent to bd < - \(a - ce/a)2. To see that the

latter inequality holds for both schemes, first note that a > 2 + /2 > 0. For the

centered scheme, we wish to show that

(3.1.) .-rf^-^.lf1-^
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198 HOWARD C. ELMAN

If p\ > 1, then (3.11) holds trivially, if p\ < 1, then 0 < 1 - p2 < 1, and the

right-hand side of (3.11) is greater than 4 - 2/(2 + ^2 ) > 3, from which the

inequality follows. For the upwind scheme, the condition £ > - \ is equivalent to

(3.12) 1 + 2px < 1(4 + 2(Px+p2) - 1-í^)2.

But (1 + 2p2)/a < 2/(2 + ]/2) + p2. Inequality (3.12) then follows from direct

computation.

It remains to show that à = a, i.e., that

(a - ce/a) + y (a — ce/a)   — Abd
«= -j-'

or, equivalently, that

(3.13) -¡(a - ce/a)2 - Abd =2a-(a- ce/a).

Rewriting the right-hand side of (3.13) as (2a2 - aa + ce)/a, it can be shown by

direct computation that this quantity is positive for both schemes. Hence, it suffices

to show that the square of both sides of (3.13) are equal, which simplifies to

a2 - aa +(bd + ce) = 0.

The solution to this equation is a of (3.8), which completes the proof.   D

Note that we made use of three inequalities in this proof:

1. a - ce/a > 0, which ensures that £ is well defined, and figures in the choice of

the positive square root of (a - ce/a)2 in (3.10);

2. 2a - (a — ce/a) > 0, which allows us to square both sides of (3.13);

3. £ > - \, so that Theorem 3.1 can be applied.

For the MILU factorization, we rewrite the last recurrence of (3.2) as

(3.14) a,. = a - b(d + e)/«,_! - c(d + e)/aJ_n.

The roots of the quadratic equation obtained by substituting a for ay, aj_x and a]_n

in (3.14) are

a ± Ja2 - A(b + c)(d + e)
(3.15) -!-y---.

Let a denote the root with larger modulus. As above, we examine the simpler

recurrence derived by replacing {a-_„} with a:

(3 16) ax=a-c(d+ e)/a,

aj = (a - c(d + e)/a) - b(d + e)/aj_x,    j > 2.

We have the following convergence result:

Theorem 3.3. For either difference scheme, let a denote the larger root given by

(3.15) and let £ = -b(d + e)/(a - c(d + e)/a)2. For the values of a, b,c, d and e

of the upwind scheme, the sequence (3.16) is convergent with limit a. For the values of

the centered-difference scheme, the sequence (3.16) is convergent to a provided that

£ > - \, a — c(d + e)/a > 0 and 2a - a + c(d + e)/a > 0. The limiting values

are

a = 2 + | px + p21       for centered differences,

a = 2(1 + px + p2)    for upwind differences.
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A STABILITY ANALYSIS OF INCOMPLETE LU FACTORIZATIONS 199

Proof. The values of a for the two schemes are obtained by substituting into (3.15)

the values of a, b,c, d and e from Section 2. For the upwind scheme, as in the proof

of Theorem 3.2, a - c(d + e)/a > 0 follows from direct substitution. The condi-

tion £ > - \ is equivalent to

-vi ^    \^1(aj.->     xo          2(l + 2p2)\2     I                        l + 2p2\2
2(1 + 2Px) < -\A + 2px + 2p2-j   =\2+px+p2-j .

But a > 2, so that

\ + 2p2      3
2 + Pi + P2-— >2+Pv

Consequently, it suffices to show that (§ + px)2 ^ 2(1 + 2px), which follows di-

rectly. For the centered scheme, we are only concerned with values of px and p2 for

which a - c(d + e)/a > 0 and £ > - \.

Applying Theorem 3.1 to both difference schemes, the sequence defined by (3.16)

is convergent with limit

(a - c(d + e)/a) + ]J(a - c(d + e)/af - Ab(d + e)

The proof that à = a is identical to the analogous proof of Theorem 3.2. The

condition 2a - a + c(d + e)/a > 0 again follows for the upwind scheme from

direct computation.   D

The extra assumptions made for the centered-difference scheme in Theorem 3.3

are not valid for all real px and p2. The following result gives sufficient conditions

for the inequalities to hold. We defer a proof to the Appendix. An illustration of

these values is shown in Figure 1. Note that for most values where Lemma 3.1 does

not hold, either px or p2 is large, and these values are of somewhat limited practical

interest [20]. See the Appendix for some other comments on these values.

I - ;«**

Figure 1

Values of px and p2 where Theorem 3.3 holds for

centered differences and MILU.
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200 HOWARD C. ELMAN

Lemma 3.1. For the values of a, b, c, d and e of the centered-difference scheme, the

inequalities £> - \, a — c(d + e)/a > 0, and 2a — a + c(d + e)/a > 0 hold for

all px andp2 satisfying

1. 3 < p2 < 8 andpx > -1; or

2. — 1 < p2 < 3 andpx arbitrary; or

3. p2 < -1 and either px < ^(1 - p2) orpx > 2 - p2.

b. atacK i       c. bucks 3-15
B.   BUCK 2 -1  RLPHfl ■ 4.62

Figure 2

Convergence of diagonal values, Px = P2 = 25,

h = fa, centered differences, I LU factorization.

J WO 15
Hi   BUCK 1 Ci BUCKS 4-14
B.  BUCK 2 D,  BUCK 15
-,  HLW* = 5.125

Figure 3

Convergence of diagonal values, Px = P2 = 25,

h = fa, centered differences, MILU factorization.
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We define the constant-coefficient ILU and MILU factorizations as in (3.1),

except we take the diagonal entries {ay} to have the limiting values {a} of

Theorems 3.2 and 3.3. We denote the off-diagonal entries ßjy y,, 8j and tj7 of the

constant-coefficient factorizations by ß, y, 8 and tj, respectively.

The results of the theorems do not rigorously prove that the true factors converge

in any sense to the constant-coefficient factors. The simplifying assumptions that the

diagonal values from the previous blocks are constant and that they take on the

values derived from solving the specified quadratic equations are not true. (For

example, the limiting values for the first block are, in general, different from the

quadratic roots used in the theorems.) Moreover, the convergence results do not say

anything about how close the first n values are to the limits, which is the only useful

information in this context. Nevertheless, our numerical experience supports the idea

that the constant-coefficient factors are reasonable approximations. In Figure 2, we

graph the computed values of the ILU diagonals {ct,} and the limiting value a of

Figure 4

Convergence of diagonal values, Px = -50, P2 = 50,

h = $¡, centered differences, MILU factorization.
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202 HOWARD C. ELMAN

Theorem 3.2, for a 15 X 15 grid (h = fa) and Px = P2 = 25 (so that px = p2 =

1.5625). As expected, the limiting value for the first block is different from a, but

starting from the third block, most of the subsequent diagonal values are virtually

indistinguishable from a. Figure 3 graphs the analogous data for the same problem

and difference scheme with the MILU factorization. In this case, the values from the

last block and the last values within the other blocks differ from the limit because

they satisfy a different recurrence (see (3.2)). For the same problem with the upwind

schemes, both factorizations show the same qualitative behavior. Similarly, for

centered differences on a finer grid with the same values of px and p2 (h = ^ and

Px = P2 = 50), the qualitative behavior is identical.

We have not seen any examples in which the sequences (3.9) and (3.16) are

convergent, but the true diagonal sequences {et,-} are not convergent. However, we

do have cases where convergence of the diagonal sequence is slower than in the

examples above. For example, Figure 4 graphs the computed and limiting values for

Px = -50, P2 = 50, h = jï, centered differences with the MILU factorization, from

four blocks of the factorization. Within each block, the diagonal values approach a

limit, and as the factorization proceeds, the limit for each block gets closer to the

limit of Theorem 3.3. However, the initial values within each block oscillate, and

these oscillations are both larger in magnitude and occur at higher indices (mod«)

within the block at the later stages of the factorization.

4. Stability Analysis. In this section, we examine the numerical stability of the

lower triangular and upper triangular solves performed with the constant-coefficient

factorizations introduced in Section 3. An alternative analysis using Fourier tech-

niques in a slightly different setting is given in [15]. Given an incomplete factoriza-

tion LU, the preconditioning operation consists of a pair of triangular solves of the

form

(4.1) Lv = w,        Uv = w.

Typically these operations are performed once each per iteration of the basic

iterative method.

Consider the lower triangular solve. The typical computation for the jih entry of

v has the form

vj= -(wJ-ßvJ-i-yüJ-«)>

where v,_x and v,H have been previously computed. Equivalently, most entries of v

satisfy the n th order inhomogeneous recurrence relation

(4.2) avj + ßVj_x + yVj_„ = Wj.

Our stability analysis is based on an analysis of this recurrence, whose solution is

uniquely defined once n initial values, say vx,...,vn, are given. (We note that as in

computation of the factors, not every step of the backsolve satisfies this recurrence,

since there are 2n - 1 cases corresponding to grid points next to the boundary

where the computation of v¡ is simpler.) We will define the stability of the lower

triangular solve in terms of properties of the characteristic polynomial associated

with (4.2), which is given by

\n(z) = azn + ßz"~l + y.
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Consider the homogeneous case, w = 0. If Xn has n distinct roots {z,,..., z„), then

it is well known (see, e.g., [13]) that for j > n the homogeneous solution of (4.2) is

(4.3) Vj = cxz{+ ■■■ +c„zi,

where cx,...,cn are determined by the initial values vx,..., vn. If some root zs of a„

has modulus greater than 1, then z{ will grow as j increases, and any error in cs

(caused, say, by an error in the initial conditions) will result in increasing errors in

the solution (4.3). If a root zs has multiplicity m, then the homogeneous solution

also contains linear combinations of

(4.4) j(j-l)---(j-t+\)z¡-',        t=\,...,m-\,

as components; if zs has modulus greater than or equal to 1, then any errors in the

coefficients of (4.4) will also be enhanced with increasing j. Therefore, we say that

the lower triangular solve is stable if all the roots of its characteristic polynomial are

less than or equal to 1 in modulus and no root with unit modulus has multiplicity

greater than 1. It is unstable otherwise.

The typical computation in the upper triangular solve is

Vj + 8vj+x +TJl>/+„= Wj,

where vj+x and vj+n are given. To fit this computation into the setting of recur-

rences, we renumber the unknowns so that they are computed in order of increasing

indices, i.e., let ù, = vN_j. Then, the upper triangular computation has the form

ùj + 8vj_x + t]vJ_n = wN_j,

and the associated characteristic polynomial is

(4.5) ii„(z) = z" + 8z"-1 + t) = 0.

We say that the upper triangular solve is stable if all the roots of its characteristic

polynomial have modulus less than or equal to 1, and no root with unit modulus has

multiplicity greater than 1. It is unstable otherwise.

We first note that for the ILU factorization and for the MILU factorization with

the upwind scheme, there are no multiple roots of unit modulus. Any multiple root

of A„(z) must also be a root of X'„(z) = z"~2(naz + (n — l)/3). Thus, the only

possibility for a nonzero multiple root is z* = —(n - \)ß/na. For ILU and the

centered-difference scheme,

iz*i<i£i =_%±a_<i.
a        2+ /2 + p\ + p\

The same argument works for the upwind scheme, for both ILU and MILU. For ¡in,

the only possibility for a nonzero multiple root is z** = -(n - 1)0/«, and the

identical argument shows that |z**| < 1. For MILU and centered differences, the

same reasoning shows that there are no multiple roots if px and p2 have the same

sign, or if either \px\ < 1 or \p2\ < 1. There can be multiple roots otherwise.

However, we will show at the end of this section that such roots play no role, so in

the following we will ignore the possibility of multiple roots.

It is sufficient, then, to examine the moduli of the largest roots of the two

characteristic polynomials. For Xn, we distinguish among four cases:

1. j8<0, y<0;       3.    ß>0, y < 0;

2. /3 > 0, y > 0;       4.    ß < 0, y > O.
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Figure 5

Shape of characteristic polynomials, ß < 0, y < 0.

Left side: n odd. Right side: n even.

For Case 1 and nonzero ß and y, it can be shown using elementary calculus that the

graph of the real values of X„ has one of the two shapes given in Figure 5,

depending on whether « is odd or even. In particular, a„(0) = y < 0, \„(t) has a

local minimum at tm = -((« - \)/n)(ß/a) > 0, and X„(t) is strictly decreasing for

t between 0 and tm and strictly increasing for t > tm. Therefore, A„ has precisely

one positive real root, r, and \„(t) > 0 for all / > r. The same argument works for

ß < 0, y = 0. If ß = 0 and y < 0, then X„(t) is strictly increasing for t > 0 and

again has precisely one positive real root, r. (When ß = y = 0, 0 is an «-fold root of

X„ and the solve is stable. In this trivial case, the lower triangular matrix is actually a

diagonal matrix and we will not discuss it further.)

We claim that the largest positive root r is a root with largest modulus. For if re'9

is any root with largest modulus, then by definition r > r and

arne'"9 = — ßr"~le^"~l)9 — y.

Taking the modulus of both sides and applying the triangle inequality,

aï" =\-ßr"-V{"-l)9 -y\ ^Ir""1 +|Y|,

i.e., X„(r) < 0. Since f > 0, it follows that r < r. Consequently, r = r. Whether or

not r is greater than 1 can be determined from the sign of a„(1). For if a„(1) < 0,

then since 1 is a positive number, it follows that 1 must lie to the left of r, i.e., r > 1.

Conversely, if A.„(l) > 0, then r < 1. Hence, for Case 1, the lower triangular solve is

stable if and only if a„(1) > 0.

For Cases 2-4, we can only give a partial analysis, which characterizes stability

only for certain parities of «. Consider Case 2 and « odd. Then,

(4.6) A„(-z) = ~(az" - ßz"-1 -y)= -(az" + ßz"~l + y),

where ß and y are less than or equal to 0. Up to a sign, the polynomial on the right

of (4.6) has the form considered for Case 1. Hence, the analysis for Case 1 implies

that for odd n, the lower triangular solve is stable if and only ifXn(-l)<0.

Similarly, for Case 3, when n is even,

X„(-z) = azn+(-ß)z"-l + y,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A STABILITY ANALYSIS OF INCOMPLETE LU FACTORIZATIONS 205

which again has the form studied for Case 1. Thus, in Case 3 with « even, the lower

triangular solve is stable if and only ifX„(-l)>0.

Finally, for Case 4, we consider a recurrence analogous to (4.2) corresponding to a

reordering of unknowns. Recall that in Section 2 we assumed that the unknowns are

ordered by lines along the x-direction. For the lower triangular solve of (4.1), the

computations for the unknowns v¡ are unchanged (except for the order in which they

are done) if the unknowns are computed along the lines in the j'-direction. If we

renumber the unknowns for the lower triangular solve according to this ordering,

then the typical recurrence in the new ordering is

aVj + yVj_x + ßvj_„ = Wj,

and the corresponding characteristic polynomial is

X„(z) = az" + yz"-1 + ß.

Hence, with the alternative ordering, Case 4 is equivalent to Case 3 with the roles of

ß and y interchanged. The lower triangular solve is stable for even « if and only if

a„(-1) > 0. (The proof that X„ also has no multiple roots is the same as that for

X„; we omit the details.)

We summarize these observations as follows:

Theorem 4.1. Necessary and sufficient conditions for the lower triangular solve to be

stable are:

1. forß < 0, y < 0: X„(l) = a + ß + y > 0;

2. for ß > 0, y > 0 and n odd: X„( -1) = - a + ß + y < 0;

3. forß > 0, y < 0 and n even: X„(-l) = a - ß + y > 0;

4. forß < 0, y > 0 and n even: X„(-l) = a - y + ß > 0.

The identical analysis can be used to determine the stability of the upper

triangular solve, based on the largest characteristic root of ¡j.„ in (4.5). We again

distinguish among four cases, depending on the signs of Ô and rj.

Theorem 4.2. Necessary and sufficient conditions for the upper triangular solve to be

stable are:

1. for 8 < 0, rj « 0: ju„(l) = 1 + 8 + rj > 0;

2. for 8 > 0, 7) > 0 and « odd: n„(-l)= -1 + S + tj < 0;

3. for 8 > 0, rj < 0 and « even: fx„( — 1)=1-5 + tj>0;

4. for 8 < 0, rj > 0 and « even: ¡ti„(-l) =1-tj + ô>0, where £„(z) = z" +

f]z"-x + 8.

Given values of px and p2 (determined by Px, P2 and h) and choice of difference

scheme, Theorems 4.1 and 4.2 can be used to determine whether the ILU or MILU

factorization results in a stable preconditioner. We now characterize some particular

classes of problems and factorizations. As we will show in Section 5, the conclusions

of the theorems also appear to hold for the parities of « not covered by the analysis.

Hence, in the following we do not limit our conclusions to particular parities. Recall
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that for centered-difference discretization, ß = -(1 + px), y = -(1 + p2), 8 =

(- 1 + px)/a and 17 = (-1 + p2)/a.

1. Centered Differences, px, p2 > 0, ILU. By Theorem 3.2, a = 2 + y2 + p\ + /?2.

For the lower triangle, ß < 0 and y < 0, so that Case 1 of Theorem 4.1 applies. The

lower triangular solve is stable if and only if

(4.7) \n(l) = p+p2 + p22-(px+p2)^0.

After simplifying, (4.7) reduces to pxp2 ^ 1, which is the necessary and sufficient

condition for stability of the lower triangular solve.

For the upper triangle, all four cases of Theorem 4.2 can occur, with 5 < 0 if and

only if px < 1 and tj < 0 if and only if p2 < 1. We examine Case 2 in detail, noting

without proof that the upper triangular solve is stable for the other three cases. Case

2 corresponds to {(px, p2) \ px, p2> 1}. By Theorem 4.2, the solve is stable for odd

« when jurt( — 1) < 0. After scaling by a, this is equivalent to

(4.8) Px + p2 - A < p + p\ + p\ .

There are now three main subcases. For Case 2a, if px + p2 - A < 0, then (4.8) is

trivially true. Otherwise, squaring both sides and simplifying gives p2(px - A) < Apx

- 7 as the condition for stability. This is trivially true when px = 4. Cases 2b and 2c

are determined by the two branches of the hyperbola p2 = (Apx - l)/(px - A).

Case 2b consists of the set of points (px, p2) in the upper right quadrant of R2 for

which px < A and p2 > (Apx - l)/(px - A). Case 2c consists of the points in the

upper right quadrant for which px > 4 and p2 < (Apx - l)/(px - A). A diagram of

the stability region in the px - p2 plane for the upper solve, with labels for the

various cases and subcases, is given in Figure 6. (The hyperbola branch for Case 2b

is not shown.)

15

10

5

0

0 5 10 11

Pi

Figure 6

Labeled stability regions, px, p2 ^ 0, upper triangle, ILU.

2b

2a\
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r,

Figure 7

Stability regions for the ILU factorization.

The stability region for this problem class is the intersection of the regions for the

lower and upper triangular solves. This region is shown in the first quadrant in

Figure 7. The dashed curve is the boundary of the stability region for the upper

triangle, showing that the lower solve has more stringent stability restrictions than

the upper solve. In the simple case of px = p2 = p, the stability bound is p < 1.

2. Centered Differences, px < 0, p2 Ss 0, ILU. The analysis for both the lower

triangle and the upper triangle is essentially the same as that given for the upper

triangle in the previous example. For both solves, the stability region consists of the

set of points ( px, p2) in the second quadrant of R2 satisfying

This region is shown in the second quadrant of Figure 7. In the case of -px = p2 = p,

the stability bound is p < 2 4- J3.

3. Centered Differences, px, p2 ^ 0, MILU. For the lower triangle, Case 1 of

Theorem 4.1 applies, and X„(l) = 0. Hence, the lower triangular solve is always

stable. For the upper triangle, all four cases can occur, and the solve is stable in each

case. The analysis for all four cases is straightforward. We present Case 3 as

representative: fi > 0 (/>, > 1) and tj < 0 (0 < p2 < 1). The solve is stable for even

n if and only if ¡i„( -1) > 0. But

aM„(-l) = 2(l+/>2)>2>0.

4. Centered Differences, px < 0, p2 > 0, MILU. For this class of problems, y < 0,

and either ß < 0 for -1 < px < 0 and Case 1 of Theorem 4.1 applies; or ß > 0 for

px < -1 and Case 3 applies. In the first instance,

X„(l) = a + ß + y = {     „, .      .„
"W \-2(Px+p2)     dp2<-Pv
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Figure 8

Stability regions for the MILU factorization.

X„(-l) = «-/? +Y =

Both  these expressions are nonnegative, so that the lower solve is stable for

- 1 < px < 0. In the second instance,

2(1 + px)    úp2> -px,

2(1 - p2)     if/72< -px.

The first expression is negative for px < -1, and the second expression is nonnega-

tive for 0 < p2 < 1. Thus, the lower solve is stable for — 1 < px < 0 or 0 < p2 < 1.

The analysis for the upper triangle is similar and gives the same stability region.

The stability regions for problem classes 3 and 4 are shown in the first and second

quadrants of Figure 8. For both ILU and MILU, the stability regions in the third

quadrant are the reflections over the diagonal line p2= -px of the regions in the

first quadrant, and the stability regions in the fourth quadrant are the reflections

over the line p2 = px of the regions of the second quadrant. This can be seen by

replacing px and p2 by -qx and -q2, respectively, in the analysis of the four

examples above. Figures 7 and 8 show the full stability regions.

We return to the question of multiple roots for MILU and centered differences.

Recall that the characteristic polynomials may have multiple roots in the second or

fourth quadrants for some choices of px and p2 for which both have modulus

greater than one. However, as we have just shown, the requirement that the maximal

root be bounded by one is also violated for these values of px and p2, so that the

presence of multiple roots does not affect the stability analysis.

5. Upwind Differences. By assumption, we are examining the upwind scheme only

for px > 0, p2 > 0. For the lower triangle of both the ILU and MILU factoriza-

tions, ß = -(1 + 2px), y = -(1 + 2p2). Both these quantities are negative, so that

Case 1 of Theorem 4.1 applies. For ILU, a = l+£+yl+£2, where £ = 1 + px

+ p2 > 1, and X„(l) = 1 - £ + yl + £2 > 1. Hence, the lower triangular solve is

always stable. For MILU, a = 2£, so that X„(l) = 0 and the lower triangular solve

is also always stable. For the upper triangle of both factorizations, 8 = -1/a,
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i} = — f/a, so that Case 1 of Theorem 4.2 applies. But

11-2, > 1-^-= > 0    for ILU,
m     .      2 l+£+/rT7 2 + v^

ju,„(l) = 1 - - = <

1 - ^ >0 for MILU.

Hence, for the upwind scheme, both upper triangular solves are always stable.

5. Correlation of Numerical Performance and Stability. In this section, we show

that there is a correlation between the numerical properties of the true precondi-

tioned operators and the stability of the constant-coefficient preconditioning solves.

Let A denote the preconditioned operator, AQ~l. For various values of the

parameters px and p2 (determined by Px, P2 and «), we examine four properties of

the preconditioned matrix and linear system:

1. The extreme eigenvalues of the symmetric part (A + AT)/2;

2. The extreme real parts of the eigenvalues of A ;

3. The performance of Orthomin(l) with preconditioning by the incomplete LU

factorizations;

4. The performance of GMRES(20) [18] with preconditioning by the incomplete

LU factorizations.

All computations were performed on a VAX11-780 in double precision (55-bit

mantissa).

The eigenvalues were computed by Arnoldi's method with Chebyshev accelera-

tion, which can compute eigenvalues with algebraically largest or smallest real parts

efficiently if these eigenvalues are well separated from the interior eigenvalues [17].

This method repeatedly computes matrix-vector products of the form AQ~\> and,

for the symmetric part, (AQ~l)Tv, so that the preconditioning triangular solves

figure prominently in the computations. (The transpose operations L~Tv and U~Tv

have the same stability properties as L~\) and U~\>, respectively.) The stopping

criterion for the eigenpair estimates (X,v) is \\Av — Xv\\ < 10~6, where ||u|| = 1.

(For entries in the tables below marked with an asterisk (*), convergence of the

eigenvalue computations was slow and the stopping criterion was not satisfied. In

these cases, the extreme eigenvalues are not well separated, but the values shown give

a reasonable idea of the approximate values of the set of extreme eigenvalues [17].)

For positive integer k, Orthomin(A:) and GMRES(/c) generate a sequence of

approximate solutions {Xj} to (2.2) that minimize \\g — Axj\\ over a space of

dimension at most k + 1 [6], [18]. Recall that Orthomin(A;) is known to converge

only when the coefficient matrix has positive-definite symmetric part [6]. In our

experience, Orthomin(Ä;) is more robust when more directions are used; we use

k = 1 to try to identify when a preconditioning is weak. GMRES(A:) will solve

arbitrary nonsingular problems for large enough k, although for any given value of

k it is only guaranteed to compute a sequence of iterates with nonincreasing

residuals. For testing these methods, the right-hand side of (2.1) was chosen so that

(2.4) is the continuous solution, and the initial guess for the discrete solution was

zero, as in Section 2. In the examples below, we allowed these methods to run for at

most 100 iterations, and oo indicates that the residual norms {\\r¡\\} stopped

decreasing at some point during the run.
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Table 3

Eigenvalues and performance of iterative solvers, centered differences,

Px = P2 = P, h = j2, ILU. Predicted stability boundp = 1.

Eigenvalues of

SymmetriePart

Leftmost Rightmost

Real Parts of Eigenvalues

of Operator

Leftmost Rightmost

Iterations of

Orthomin(l)

Iterations of

GMRES(20)

20

30
41)

50

60

100
150
175

200
225

.625

.9375

1.25
1.5625

1.875
2.1875
4.6875

5.4688

6.25
7.0313

.159E0

.696E0

148E1
.493E2

.393E3

.393E5

520E6
115E7

- .223E7
-.495E7

111E1
.102E1

548E1
561E2

401E3
.393E5

520E6
115E7

.222E7

.477E7

694E0

.949E0

.939E0*

.866E0*

.800E0*
-621E0*

466E0*
989E2

- .775E4

177E6

110E1
.102E1
119E1

138E1
152E1
219E1
.702E1
445E1

.553E1
Overflow

19
6

17

11

6

8

11

13
27
74

100
100

We first consider examples from the four classes of problems derived from

centered differences at the end of Section 4. In Table 3, we treat the first class:

centered differences, px, p2 > 0, ILU preconditioning. For fixed « = ¿, we ex-

amine various values of P = Px = P2 > 0, with p = Ph. The stability boundary for

this set of problems is p = 1. The most dramatic correlation between stability and

performance is in the eigenvalues of the symmetric part. As p increases through 1,

the leftmost computed eigenvalues change from positive to negative, and both

extreme eigenvalues grow rapidly as p increases. Failure of Orthomin(l) to converge

to the correct solution coincides almost exactly with the set of values p giving

negative eigenvalues for the symmetric part. The eigenvalue computations for the

matrix AQ~l itself appear to be less sensitive to stability, although for p » 1, the

leftmost real parts also become large and negative. Similarly, the performance of

GMRES(20) degrades for large values of p, but it is less sensitive than that of

Orthomin(l).

In Table 4, we consider examples from the second class of problems of Section 4:

centered differences, px < 0, p2 ^ 0, ILU preconditioning. Again, we fix « = j¡

and vary P = - Px = P2 > 0. The stability bound for this set of problems is

p = Ph = 2 + \[3= 3.732. The results are similar to those of the previous example.

As p increases through the stability bound, the leftmost eigenvalues of the symmet-

ric part change in sign, and the performance of Orthomin(l) degrades. The di-

minished effectiveness of GMRES(20) coincides more closely with instability of the

preconditioning than in the previous example, although the eigenvalues of A again

appear to be less sensitive than those of the symmetric part.1'

Tables 5 and 6 show the results for problems from the third and fourth classes,

respectively: centered differences, MILU preconditioning, and either px = p2 = p >

0 or p = —px = p2 > 0. For all the values considered, Theorem 3.3 holds. The

analysis of Section 4 predicts that there are no stability restrictions for the problems

of Table 5. The numerical results are consistent with this: all of the extreme

eigenvalues vary smoothly with p, and neither iterative method has difficulty solving

'Of course, the real parts are not the only indicators of large eigenvalues. Although the Chebyshev-

Arnoldi method is not specifically designed to find eigenvalues with large imaginary parts, the Arnoldi

computation does compute a set of estimates whose real parts lie between the extreme real parts. We did

not observe any such eigenvalue estimates with imaginary parts that were significantly larger than their

extreme real parts for either of the first two examples.
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Table 4

Eigenvalues and performance of iterative solvers, centered differences,
-P, P2 = P,h= ±, ILU. Predicted stability boundp = 3.732.

Eigenvalues of

Symmetric Part

Leftmost Rightmost

Real Parts of Eigenvalues

of Operator

Leftmost Rightmost

Iterations of

Orthomin(l)

Iterations of

GMRES(20)

50

60

100
110

120

130
140

15(1

175

200

225

1.5625

1.875
2.1875
3.4375

3.75

4.0625

4.375
4.6875

5.4688

6.25
7,0313

433E -
.415E -

340E -
-320E -
.289E -
176E1
999E1

.481E2

261E4
764E5

.125E7

.156E1

.177E1

.380E1
512E1

744E1

.121E2

.242E2

.681E2

.251E4

.687E5

.107E7

.863EO

.807EO*

.562E0*

.575EO«

.527E0*

.547E0*

.554E0*
399E0*

989E2
.775E4

.177E6

.135E1*

.129E1*

.219E1

.264E1

327E1
418E1

.548E1

.702E1
445E1

.553E1
Overflow

32
32

43

14

63
81

19
19

31
13
55
76

98
100
Kill

100
100

Table 5

Eigenvalues and performance of iterative solvers, centered differences,

p.=P2 = P,h = 32 > MILU. No stability bound.

Eigenvalues of

Symmetric Part

Leftmost Rightmost

Real Parts of Eigenvalues

of Operator

Leftmost Rightmost

Iterations of

Orthomin(l)

Iterations of

GMRES(20)

30

50
100
150

2(H)

225

.9375

1.5625

2.1875
4.6875

6.25
7.0313

996E0

681EO

370EO
.141E0

100E-

663E -

106E1

103E1

.121E1

1.36E1

.146E1

.150E1

.100E1

.780EO

.479E0*

352E0

.251E0

.215E0

104E1

100E1

100E1

100E1*
100E0
978E0*

4

7

12

16

19

21)

4

7

12
15
IS

19

Table 6

Eigenvalues and performance of iterative solvers, centered differences,
-P, P2 = P,h = 32 i MILU. Predicted stability boundp = 1.

Eigenvalues of

Symmetric Part

Leftmost Rightmost

Real Parts of Eigenvalues

of Operator

Leftmost Rightmost

Iterations of

Orthomin(l)

Iterations of

GMRES(20)

30

31

32

33

34

36
50

.9375

.9688

1
1.0313
1.0625

1.125
1.5625

.845E0
834E0*
819E0»
134E4
138E4

.287E3

.290E11

.149E2

.138E2

.134E2

159E3

138E4
299E3

.290E11

.100E1

100E1

100E1

.708E0

112E3
112E2

343E2

323E1

364E1

.395E1

.874E1

675E1

.442E1

.567E3

52

51

35
35
36

55
> 100

> 100

the preconditioned problem. (We will comment below on the change in sign of the

leftmost eigenvalue of the symmetric part at p = 6.25.) The stability bound for the

problems of Table 6 is p = 1. For this set of problems, all four performance

indicators change dramatically when p increases through 1. (Note in particular that

the values of p are significantly higher in Table 5 than in Table 6.)

As we noted in Section 4, some of the stability analysis of Theorems 4.1 and 4.2

applies only for certain parities of «, but the numerical performance seems indepen-

dent of parity. As an example, consider the case of ILU preconditioning with

centered differences in the second quadrant (see Figure 7). The analysis at the

stability boundary makes use of Case 3 of Theorem 4.1 and Case 4 of Theorem 4.2,

both of which require « to be even. The performance of ILU shown in Table 4 is for

n = 31, i.e., « odd, suggesting that parity plays no role. Further evidence is given in

Table 7, which shows that for values of p near the stability boundary the perfor-

mance for « = 32 (« = yj) is essentially the same.
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Table 7

Check on effect of parity of n. Eigenvalues and performance of iterative solvers.

centered differences, —Px = P2 = P,h i
33 ■ ILU.

Eigenvalues of

Symmetric Part

Leftmost Rightmost

Real Parts of Eigenvalues

of Operator

Leftmosl Rightmost

Iterations of

Orthomin(l)

Iterations of

GMRES(20)

110

120

130

140

3.33
3.64

3.94
4.24

.309E - 1

.287E - 1

506E1
.591E1

.468E1
659E1

.102E2

.187E2

.582E0*

.555EO*

590E0*
.631EO*

.249E1

305E1
.385E1

.500E1

4S

5S

S6

100

38
55

75
si

Table 8

Performance when only one first derivative term is present.

Eigenvalues of the symmetric part, centered differences, Px = 0, h = y%.

Pi = P2h

ILU

Leftmost Rightmost

MILU

Leftmost Rightmost

30

50
100
150

200
225

.9375
1.5625
2.1875
4.6875

6.25
7.0313

.858E - 1

.172E0

.386E1

.437E0

.477E0

.494E0*

.123E0

.132E1

.147E1*

.152E1*

.153E1*

.152E1

.242E0

.24OE0

.322E0

.398E0

.455E0*

.477E0

.305E1

.259E1

.213E1*

.192E1*

.178E1

.173E1*

Table 9

Performance for upwind differencing. Eigenvalues of the symmetric part,

upwind differences, Px = P2 = P>0,h = 32 ■

30
50

100
150

200
225

Ph

.9375
1.5625
2.1875
4.6875

6.25
7.0313

ILU

Leftmost Rightmost

.553E - 1

.803E - 1

.150E0

.218E0

.281E0

.309E0

.118E1

.115E1

.111E1

.109E1

.107E1

.106E1

MILU
Leftmost Rightmost

.629E0

.846E0

.951EO

.973E0

.980E0

.983EO

.254E1

.198E1

.151E1

.135E1

.126E1

.124E1

Our previous experience with these preconditionings has been on problems with

just one first derivative term present, for which the coefficient is positive. Both

preconditioners have been very successful in solving such problems [7], [8]. The

stability analysis of Section 4 suggests that neither preconditioning suffers from

instability in these cases, or for problems where upwind differences are used. Tables

8 and 9 show that the extreme eigenvalues of the symmetric parts for some problems

of these types are well behaved, as expected.

Note that we are not addressing the question of accuracy of the incomplete

factorization, and we cannot be certain that it is instability rather than inaccuracy

that is causing the difficulties exhibited in Tables 3, 4, and 6. However, only in cases

in which at least one of the triangular solves is unstable in the sense of Section 4 do

the computed eigenvalues increase dramatically as they do in these three tables. We

have encountered problems with unfavorable eigenvalue distributions that appear to

be due to inaccuracy of the incomplete factorization. One such case is the example of

Table 5: the eigenvalues of the symmetric part turn negative when p > 6.25, but

they do not change dramatically in magnitude with small changes in p. Another
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Table 10

Inaccuracy vs. instability. Eigenvalues of the symmetric part

centered differences, P2 = 100, h = ¿, MILU. Stability boundpx = -1.

-10
-20
-40
-60
-64
-68
-72

-76

Pi = A*
-.1563
-.3125
-.625

-.9375
-1.0
-1.0625
-1.125
-1.1875

Leftmost

- .633E0

- .992E0
-.196E1

- .955E1
- .282E2
- .463E3
- .715E6
-.152E9

Rightmost

.402E1

.509E1

.886E1

.221E2

.546E2

.529E9

.716E6

.152E9

example is as follows: we let « = ¿ and P2 = 100 be fixed so that p2 = 1.5625, we

vary Px < 0, and we use centered differences and the MILU factorization. (This

problem is a member of the fourth class of problems analyzed at the end of Section

4.) The extreme eigenvalues of the symmetric part are shown in Table 10. The

leftmost eigenvalues are negative for all values of p x considered, but they are fairly

well behaved until the stability bound of px = -1 is reached, after which they

quickly diverge.

We conclude with two observations that we have been unable to explain. First, in

Tables 3 and 4, the extreme real parts of the eigenvalues of the operator AQ~l are

the same for large p, although the signs of px are opposite. Indeed, we have

observed in some other tests with centered differences and ILU that for large px and

p2, the extreme eigenvalues of AQ~l appear to be independent of the signs of px

and p2.% Second, for very large values of the parameters px and p2 in Tables 3, 6,

and 10, the computed extreme eigenvalues of the symmetric part are opposite in sign

but nearly equal in magnitude. We do not have good explanations for these

phenomena.

6. Appendix. In this section we prove Lemma 3.1. To simplify notation, in the

proof we use the symbols "x" and "y" instead of "px" and "p2". The three

inequalities to be considered are then:

<«>«>-*' o+^-(^^))<^-(1+^ViV7)))'

(6.2) c(d+ e)/a > 0:    4-
(l+y)(2-(x+y))

2 + \x+y\
>0;

(6.3)    2a - a + c(d + e)/a > 0:    2\x + y\ +

We partition the plane into five regions:

l.x+y^O;
2. 0 < x + y < 2 and 1 + y > 0;

3. 0 < x + y < 2 and 1 + y < 0;

(l+y)(2-(x+y))

2 + \x+y\
>0.

*We can show that if |/j,| = \p\\, \p2\ = \p'2\, then the error matrices R = Q - A and R' = Q' - A'

for the constant-coefficient factorizations are similar under a diagonal similarity transformation. This

result holds for both the ILU and MILU factorizations, but we have not been able to make use of this

observation.
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4. 2 < x + y and 1 + y ^ 0;

5. 2 < x + y and 1 + y < 0.

These regions are depicted in Figures 9-11. Note that in Region 1,

(2-(x+y))/(2 + \x+y\)=\,

so that all three inequalities are simpler in this case.

In Region 1, (6.1) is equivalent to

<t>(x, y)= \ - x-hx1 + xy + \y2 > 0.

It is straightforward to show that <j3 = 0 and V<i> = 0 on the line y = I - 2x, and

V 2</> is positive semidefinite everywhere. But <f> is quadratic, so for any X = (x, y)T

and X0 = (x0, j0)rsuch that y0 = I - 2x0,

4>(x) = \(X- X0)T(v2<}>)(X- X0) > 0.

In Region 2, the right-hand side of (6.1) is greater than

4 -(l+>0(2 -(*+>-)),

which can be seen to be greater than or equal to (1 + x)(2 - (x + y)) by direct

computation. In Region 4, the left-hand side of (6.1) is negative when x ^ —1, so

that the inequality holds trivially. The same argument works for (all of) Region 5.

We have not been able to establish (6.1) for Region 3 or for Region 4 with x < — 1,

although numerical tests suggest that it also holds in these regions. The shaded area

in Figure 9 shows the set of points in the plane for which we have demonstrated that

(6.1) holds.

Inequality (6.2) holds immediately in Regions 3 and 4, since the quantity sub-

tracted is negative. The inequality reduces to y < 3 in Region 1, and for Region 2,

using the fact that (2 - (x + y))/(2 + \x + y\) < 1, the same condition is sufficient.

10

5

0

-5

Figure 9

Values of x and y where inequality (6.1) holds.
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Figure 10

Values of x and y where inequality (6.2) holds.

For Region 5, after being scaled by 2 + x + y, the right-hand side of (6.2) can be

shown to be greater than

8 + 3x + y = 8 + x + y + 2x > 10 + 2x > 13,

since x + y > 2,  -y > 1 and x ^ 2 - y ^ 3. Figure 10 shows the set of points

where (6.2) holds.

Inequality (6.3) holds trivially in Regions 2 and 5. In Region 1, the inequality

reduces to y < 1 - 2x. In Region 3, the fact that (2 - (x + y))/(2 + \x + y\) < 1

makes the right-hand side greater than 2x + 3y + 1, which is greater than 0 for

y > - j(\ + 2x). This determines a small subset of the region. Finally, in Region 4,

2 + \x + y\ > A, so that if -1 < ¿> < 7, then

2 + |x+.H
<2.

Consequently, the right-hand side of (6.3) is greater than

2(x+y) + 2(2-(x+ _>>)) = 4>0.

Hence, (6.3) holds in the shaded region of Figure 11.

The region specified by Lemma 3.1 and Figure 1 is the intersection of the regions

of Figures 9-11. Recall that the inequalities of the lemma give sufficient conditions

for the convergence result in Theorem 3.3 for MILU and centered differences.

Numerical evidence suggests that conditions (6.2) and (6.3) are also necessary for the

diagonal sequences in the (true) MILU factorization to be convergent. For example,

the values px = -A and p2 = 4 violate condition (6.2), and with these values (from

h = jj, Px = -128 and P2 = 128), the MILU diagonal sequence appears not to be

convergent. Similarly, the values px = 2 and p2 — —2 violate condition (6.3), and

the MILU sequence is also not convergent for them (from « = ¿, Px = 64 and

P2 = -64).
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Figure 11

Values of x and y where inequality (6.3) holds.
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