RawBench

A Comprehensive Benchmarking Framework for Raw Nanopore Signal Analysis Techniques

Furkan Eris

Ulysse McConnell Can Firtina Onur Mutlu

Outline

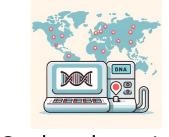
Background

Motivation and Goal

RawBench

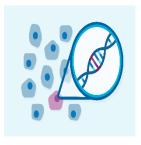
Evaluation

Conclusion



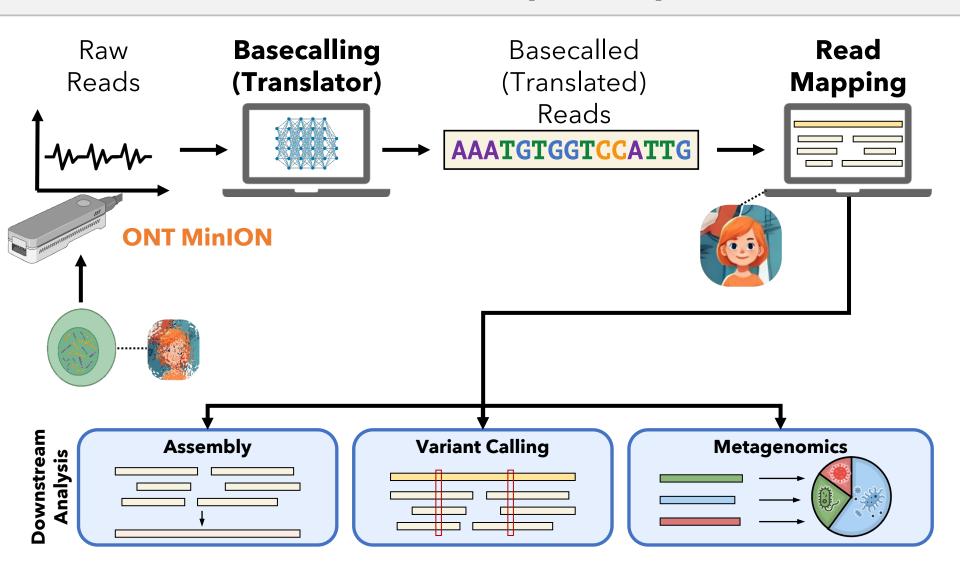
Genomic Data Analysis

• Study of genomics through the lens of **growing sequencing data** has shaped groundbreaking advances in

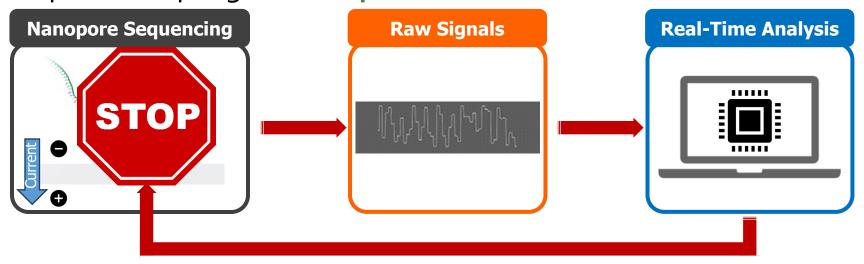

Evolutionary biology

Outbreak tracing

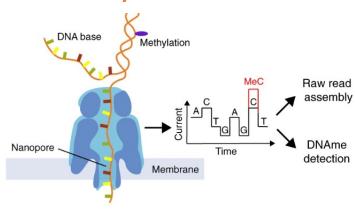
Personalized medicine


Novel mutation identification

Gene editing



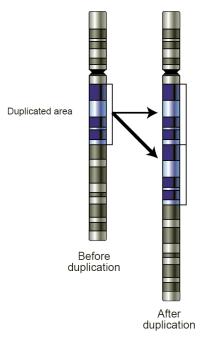
A Common Genome Analysis Pipeline


Benefits of Nanopore Sequencing

Adaptive sampling as a unique feature

Raw nanopore signals are inherently rich

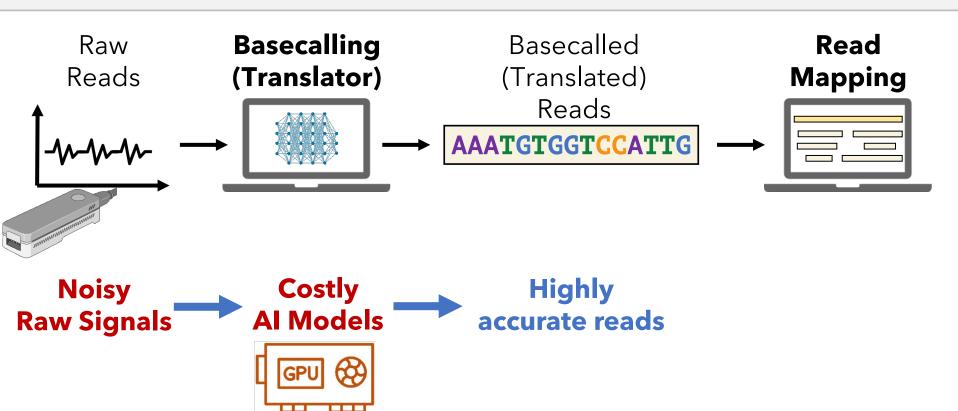
Methylation detection



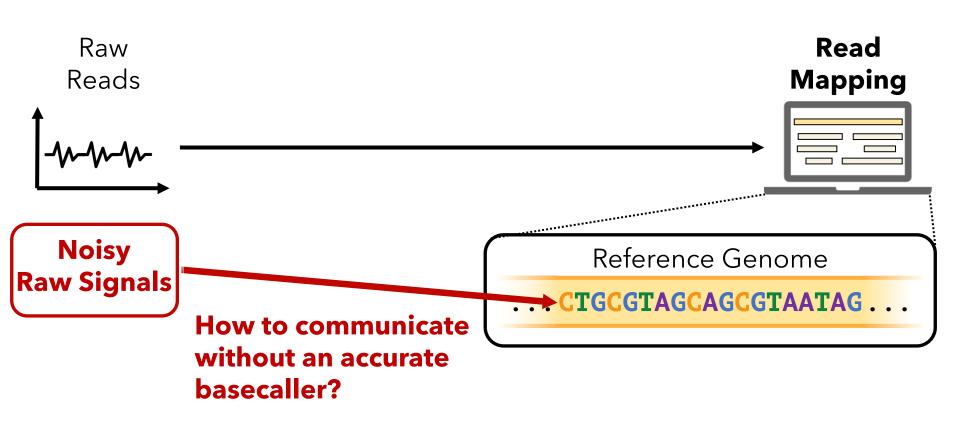
Benefits of Nanopore Sequencing

Ultra-long reads (up to 4 million bases)

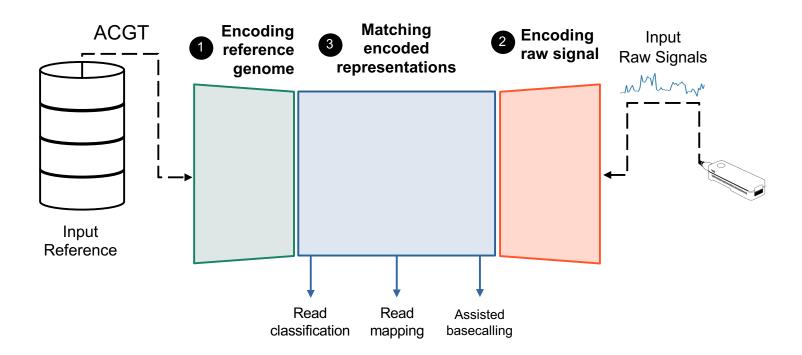
Copy number variant detection


Portable sequencing (enables field deployment)

ONT MinION



Basecalling is Accurate yet Costly


Can We Manage without Basecalling?

Raw Signal Analysis (RSA) Overview

- **First**, the reference genome is encoded into a comparable representation
- Second, raw signals are encoded similarly
- Third, these representations are matched

Outline

Background

Motivation and Goal

RawBench

Evaluation

Conclusion

Motivation

Traditional pipelines struggle with increasing real-time requirements RSA techniques emerged as competitive alternatives

Existing benchmarking frameworks overlook RSARSA techniques differ in quality, speed and resource usage

There is a critical need for fair and extensive comparison of emerging RSA techniques

Goal: Compare quality and performance for different RSA techniques Target different downstream tasks and organism complexities

Problems of Existing Works

Do not include raw signal analysis (RSA) tools

Lack the flexibility to incorporate newly developed methods

Lack access to standardized datasets from latest chemistry

Our Goal

Design a comprehensive, extensible and up-todate benchmarking framework for RSA

Outline

Background

Motivation and Goal

RawBench

Evaluation

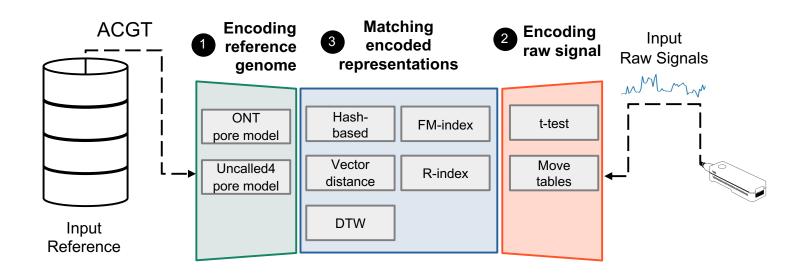
Conclusion

RawBench: Comprehensive Benchmarking for RSA

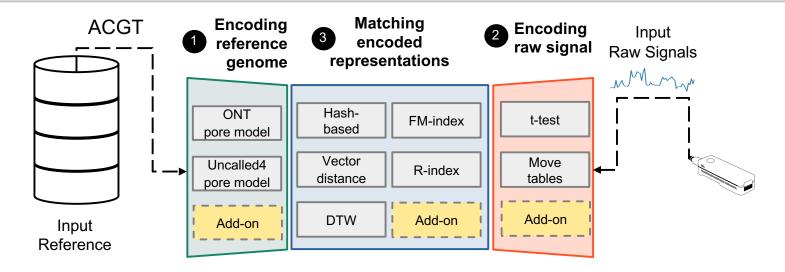
- First Benchmarking Framework for RSA
- **Key Idea:** Enable systematic evaluation of existing and future RSA techniques in a flexible, comprehensive and up-to-date framework.
- Holistic design combining a modular structure for different RSA stages and different nanopore sequencing datasets

Modular RSA stages to increase resolution of RSA benchmarking

• Allows better exploring quality and performance trends

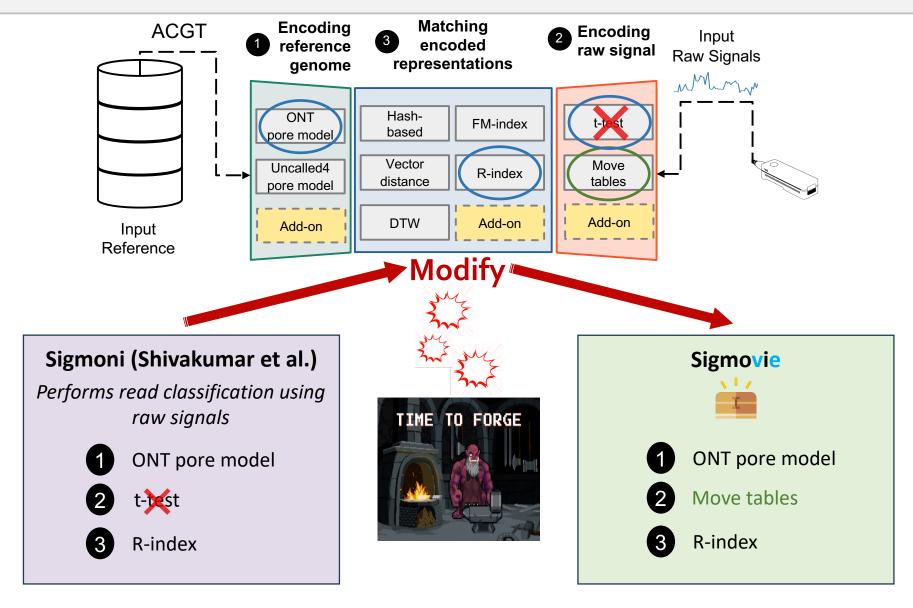

Wide range of datasets for a fair and comprehensive evaluation of RSA techniques on **multiple downstream tasks**

- Covers a spectrum of datasets from different genome complexities
- Includes datasets from the latest nanopore chemistry


Towards a Modular RawBench

Aim: Break RSA down to different stages for in-depth benchmarking of different RSA techniques

<u>Challenge</u>: Preserve applicability for a wide range of existing (e.g., Sigmap and Uncalled) and future RSA tools



Closer Look at RawBench Pipeline

- 1 Encoding Reference Genome
 - Uses learned pore models by ONT and community
- **2** Encoding Raw Signal
 - Utilizes statistical and ML-based encoding techniques
- **3** Matching Encoded Representations
 - Compares representations that are now encoded into the same space

A RawBench Example

RawBench Datasets

Insight: Datasets from different chemistries and genomic complexities is a prerequisite for comprehensive and future-proof analysis.

Dataset	$\begin{array}{c} \textbf{Genome Size} \\ \textbf{(Mbp)} \end{array}$	Downstream Task	Nanopore Chemistry
E. coli	4.6	Read Mapping	R10.4
D. melanogaster	143.7	Read Mapping	R10.4
H. sapiens	$3,\!200$	Read Mapping	R10.4
$Zymo\ mock$	65.4	Read Classification	R9.4

These are all real datasets. We intend to release simulated data for new downstream tasks.

Mapping any RSA Workflow to RawBench

- Break down RSA tool into three RSA stages
 - Encoding of both reference genome and raw signal and matching these encoded representations
- 9 Implement RSA stages as C++ modules
 - More details on the implementation

can be found in the paper

- and downstream tasks
 - New datasets and tasks can be integrated
 - e.g., simulated data and structural variant calling

Outline

Background

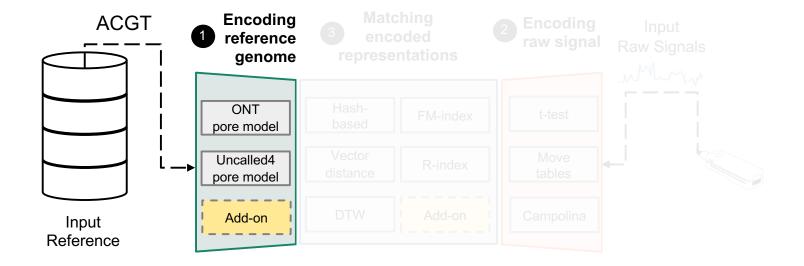
Motivation and Goal

RawBench

Evaluation

Conclusion

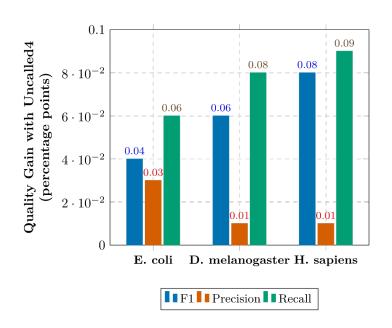
Evaluation Methodology


- Experimental Setup
 - CPU baseline: Intel Xeon Gold 6226R @2.90GHz
 - 64 threads for each analysis
 - GPU baseline: NVIDIA A6000

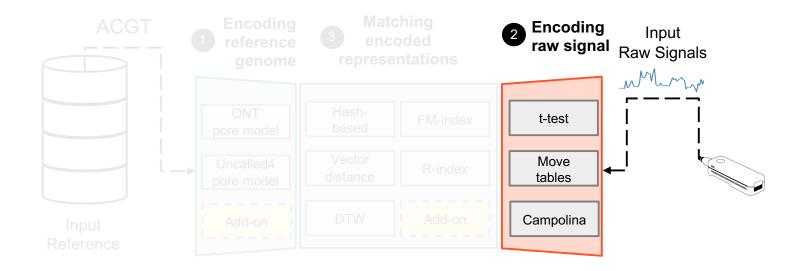
- Currently available downstream analysis tasks
 - Read mapping
 - Read classification
 - RSA-assisted basecalling

Evaluation Methodology

- Evaluation metrics
 - **Performance** (runtime and memory footprint)
 - Coverage statistics
 - Quality
 - Baseline: Mapping basecalled reads using Dorado SUP + minimap2
 - Precision, recall and F1 scores
- 4 real datasets with
 - Various coverage (0.11x-225x) and
 - **Genome complexities** (bacterial to human genomes)


Encoding Reference Genome

Encoding Reference Genome – Quality


Read Mapping							
Pore Model	F 1	Precision	Recall				
	E. coli						
ONT	0.79	0.88	0.71				
Uncalled4	0.83	0.91	0.77				
\overline{D}	$\overline{D.\ melanogaster}$						
ONT	0.66	0.93	0.51				
Uncalled4	0.72	0.94	0.59				
H. sapiens							
ONT	0.58	0.86	0.44				
Uncalled4	0.66	0.87	0.53				

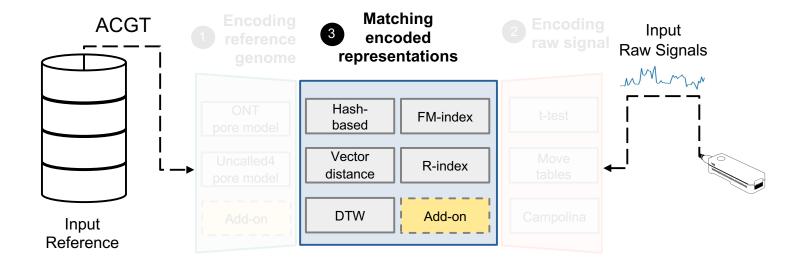
Uncalled4 provides the **best quality** in all metrics, with increasing benefits in recall **for larger genomes**

Encoding Raw Signal

Encoding Raw Signal – Quality

Read Mapping							
Segmentation Method	F 1	Precision	Recall				
$oldsymbol{E}.$	E. coli						
t-test	0.83	0.91	0.77				
Move tables	0.07	0.07	0.06				
Campolina	0.89	0.94	0.85				
$D.\ melanogaster$							
t-test	0.72	0.94	0.59				
Move tables	0.05	0.23	0.03				
Campolina	0.72	0.95	0.57				
$H.\ sapiens$							
t-test	0.66	0.87	0.53				
Move tables	0.01	0.11	0.01				
Campolina	0.79	0.96	0.67				

Campolina enables **better quality**, resulting in


1.07 \times - **1.2** \times improvement in F_1 score

Move tables perform poorly, pointing out to the need for

more intelligent use of intermediate basecalling output

Matching Encoded Representations

Matching Encoded Representations – Quality

Read Mapping						
Matching Method	F1	Precision	Recall			
E. coli						
Hash-based	0.83	0.91	0.77			
FM-index	0.23	0.13	0.80			
Vector distances	0.83	0.84	0.82			
R-index	0.67	0.79	0.58			
DTW	0.86	0.99	0.75			
D. melanogaster						
Hash-based	0.72	0.94	0.59			
FM-index	0.02	0.17	0.01			
Vector distances	0.80	0.94	0.69			
R-index	0.59	0.96	0.42			
DTW	0.75	0.94	0.62			
H. sapiens						
Hash-based	0.66	0.87	0.53			
FM-index	0.01	0.05	0.01			
Vector distances	0.26	0.57	0.16			
R-index	0.66	0.85	0.54			
DTW	0.75	$\boxed{0.94}$	0.62			

Read Classification			
		Zymo	
Matching Method	F1	Precision	Recall
Hash-based	0.95	0.92	0.97
FM-index	0.62	0.45	0.99
Vector distances	0.96	0.97	0.95
R-index	0.96	1.0	0.93
DTW	0.98	0.99	0.97

DTW-based matching shows a **consistently strong F1 score** while **vector distances** remains a competitive approach **for smaller genomes**

R-index and hash-based methods catch up in read classification, trends indicate that matching should be designed on a **case-by-case basis**

Matching Representations – Performance

Read Mapping								
Matching Method	Elapsed time	CPU time	Peak					
	(hh:mm:ss)	(sec)	Mem. (GB)					
	E. coli							
Hash-based	0:05:51	5,730	4.36					
FM-index	6:57:45	$1,\!603,\!653$	1.09					
Vector distances	0:20:10	54,310	54.32					
R-index	0:04:25	$4,\!224$	1.4					
DTW	0:09:23	$6,\!128$	4.43					
	D. melanogaster							
Hash-based	2:07:02	462,608	9.6					
FM-index	3:56:13	892,824	1.49					
Vector distances	3:22:15	823,117	255.97					
R-index	1:22:30	310,695	3.1					
DTW	0:24:02	88,044	10.46					
H. sapiens								
Hash-based	0:53:03	186,301	91.96					
FM-index	0:08:44	$32,\!808$	7.52					
Vector distances	5:59:29	1,238,190	265.16					
R-index	0.35.02	131,095	29.43					
DTW	0:46:35	158,289	116.2					

FM-index enables read mapping in **resource-constrained** settings despite its **existing headroom for quality**

RSA-assisted Basecalling

- Running RSA as a pre-filter to basecalling
 - Discard reads unmapped by a RSA pipeline
 - Reduce the expensive basecalling load

Basecalled Read Mapping					
		Average Depth of Cov. (\times)			
E. coli					

More details on the results can be found in the paper

Basecalling load is reduced by 17-39% using a lightweight RSA pre-filter with only 0.07-0.09% drop in genome completeness

Outline

Background

Motivation and Goal

RawBench

Evaluation

Conclusion

Conclusion

RawBench

The *first* benchmarking framework for **raw signal analysis** (**RSA**) enabling *end-to-end* fair and systematic evaluation of different raw signal analysis techniques

Currently supports

30 different RSA combinations

4 different raw nanopore signal datasets from 2 different nanopore chemistries 2 different downstream tasks and 2 RSA-assisted basecalling tasks

High modularity

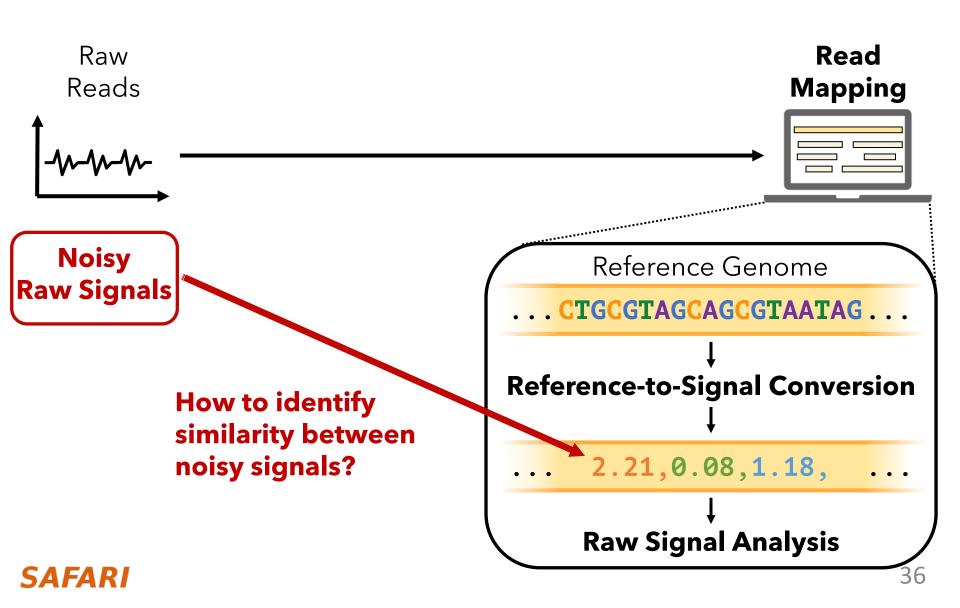
combination of existing and new RSA techniques from across the RSA literature integration of new datasets and downstream tasks fair comparison of newly developed methods

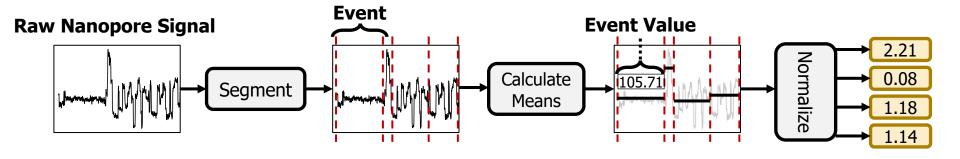
RawBench

A Comprehensive Benchmarking Framework for Raw Nanopore Signal Analysis Techniques

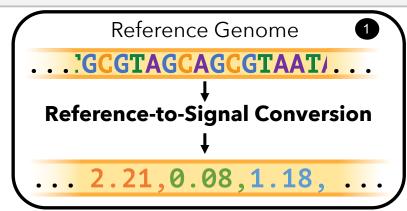
Furkan Eris

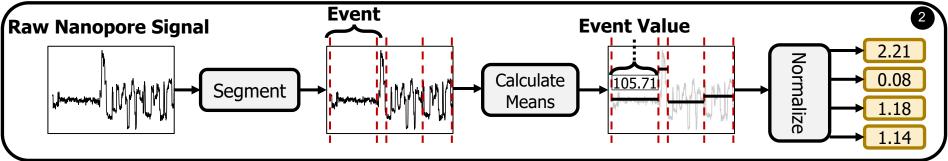
Ulysse McConnell Can Firtina Onur Mutlu

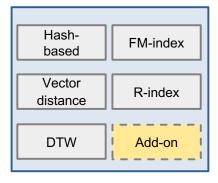



Backup Slides

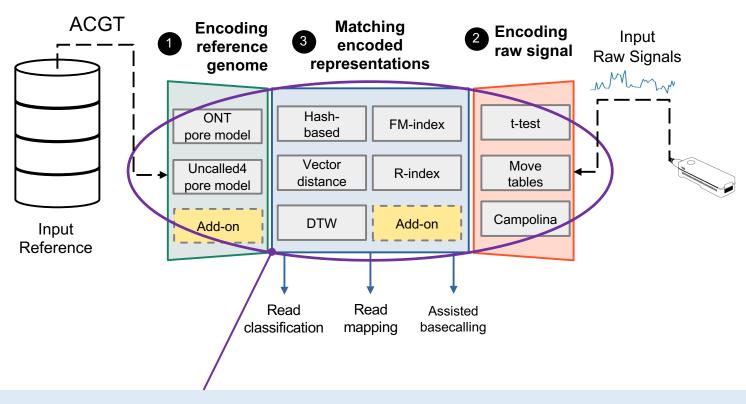
Encoding the Reference Genome


Dealing with Noisy Signals


- Signal regions corresponding to specific k-mers are identified
- Consecutive events → consecutive k-mers


Can we match events (k-mers) between reference genome and raw signals?

Matching Encoded Representations



Matching encoded representations

Existing Benchmarking Frameworks

Few existing works do not benchmark RSA techniques at all – let alone in an extensive and extensible manner