
Guaranteed Learning of Latent Variable Models

through Tensor Methods

Furong Huang

University of Maryland

furongh@cs.umd.edu

ACM SIGMETRICS Tutorial 2018

1 / 75

Tutorial Topic

Learning algorithms
for latent variable models
based on decompositions of moment tensors.

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model Tensor Decomposition Inference

= + +

“Method-of-moments” (Pearson, 1894)

2 / 75

Tutorial Topic

Learning algorithms (parameter estimation)
for latent variable models
based on decompositions of moment tensors.

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model Tensor Decomposition Inference

= + +

“Method-of-moments” (Pearson, 1894)

2 / 75

Application 1: Clustering

Basic operation of grouping data points.

Hypothesis: each data point belongs to an unknown group.

3 / 75

Application 1: Clustering

Basic operation of grouping data points.

Hypothesis: each data point belongs to an unknown group.

Probabilistic/latent variable viewpoint

The groups represent different distributions. (e.g. Gaussian).

Each data point is drawn from one of the given distributions. (e.g.
Gaussian mixtures).

3 / 75

Application 2: Topic Modeling

Document modeling

Observed: words in document corpus.

Hidden: topics.

Goal: carry out document summarization.

4 / 75

Application 3: Understanding Human Communities

Social Networks

Observed: network of social ties, e.g. friendships, co-authorships

Hidden: groups/communities of social actors.

5 / 75

Application 4: Recommender Systems

Recommender System

Observed: Ratings of users for various products, e.g. yelp reviews.

Goal: Predict new recommendations.

Modeling: Find groups/communities of users and products.

6 / 75

Application 5: Feature Learning

Feature Engineering

Learn good features/representations for classification tasks, e.g.
image and speech recognition.

Sparse representations, low dimensional hidden structures.

7 / 75

Application 6: Computational Biology

Observed: gene expression levels

Goal: discover gene groups

Hidden variables: regulators controlling gene groups

8 / 75

Application 7: Human Disease Hierarchy Discovery
CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases.

” Scalable Latent TreeModel and its Application to Health Analytics ” by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun,
A. Anandkumar, NIPS 2015 MLHC workshop.

9 / 75

How to model hidden effects?

Basic Approach: mixtures/clusters

Hidden variable h is categorical.

Advanced: Probabilistic models

Hidden variable h has more general distributions.

Can model mixed memberships.

x1 x2 x3 x4 x5

h1

h2 h3

This talk: basic mixture model and some advanced models.

10 / 75

Challenges in Learning
Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model Learning Algorithm Inference

11 / 75

Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model Learning Algorithm Inference

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

11 / 75

Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent Variable model MCMC Inference

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

MCMC: random sampling, slow
◮ Exponential mixing time

11 / 75

Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model L��el�i��� ��ti��� Inference

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

MCMC: random sampling, slow
◮ Exponential mixing time

Likelihood: non-convex, not scalable
◮ Exponential critical points

11 / 75

Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model ��	el�
���
��
��� Inference

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

MCMC: random sampling, slow
◮ Exponential mixing time

Likelihood: non-convex, not scalable
◮ Exponential critical points

Efficient computational and sample complexities?

11 / 75

Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Latent variable model Tensor Decomposition Inference

= + +

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

MCMC: random sampling, slow
◮ Exponential mixing time

Likelihood: non-convex, not scalable
◮ Exponential critical points

Efficient computational and sample complexities?

Guaranteed and efficient learning through spectral methods
11 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations
4 Topic Model for Single-topic Documents

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations
4 Topic Model for Single-topic Documents

◮ Identifiability
◮ Parameter recovery via decomposition of exact moments

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations
4 Topic Model for Single-topic Documents

◮ Identifiability
◮ Parameter recovery via decomposition of exact moments

5 Error-tolerant Algorithms for Tensor Decompositions

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations
4 Topic Model for Single-topic Documents

◮ Identifiability
◮ Parameter recovery via decomposition of exact moments

5 Error-tolerant Algorithms for Tensor Decompositions
◮ Decomposition for tensors with linearly independent components
◮ Decomposition for tensors with orthogonal components

12 / 75

What this tutorial will cover

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations
4 Topic Model for Single-topic Documents

◮ Identifiability
◮ Parameter recovery via decomposition of exact moments

5 Error-tolerant Algorithms for Tensor Decompositions
◮ Decomposition for tensors with linearly independent components
◮ Decomposition for tensors with orthogonal components

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

12 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

13 / 75

Gaussian Mixture Model

Generative Model

Samples are comprised of K different Gaussians according to
Cat(π1, π2, . . . , πK)

Each sample is from one of the K Gaussians, N (µh,Σh), ∀h ∈ [K]

H ∼ Cat(π1, π2, . . . , πK)

X|H=h ∼ N (µh,Σh), ∀h ∈ [K]

14 / 75

Gaussian Mixture Model

Generative Model

Samples are comprised of K different Gaussians according to
Cat(π1, π2, . . . , πK)

Each sample is from one of the K Gaussians, N (µh,Σh), ∀h ∈ [K]

H ∼ Cat(π1, π2, . . . , πK)

X|H=h ∼ N (µh,Σh), ∀h ∈ [K]

Learning Problem

Estimate mean vector µh, covariance matrix Σh, and mixing weight
Cat(π1, π2, . . . , πK) of each subpopulation from unlabeled data.

14 / 75

Maximum Likelihood Estimator (MLE)

Data {xi}ni=1

Likelihood Prθ(data)
iid
=
∏n

i=1 Prθ(xi)

Model parameter estimation θ̂mle := argmax
θ∈Θ

log Prθ(data)

Latent variable models: some variables are hidden
◮ No “direct” estimators when some variables are hidden
◮ Local optimization via Expectation-Maximization (EM) (Dempster, Laird,

& Rubin, 1977)

15 / 75

MLE for Gaussian Mixture Models

Given data {xi}ni=1 and the number of Gaussian components K, the
model parameters to be estimated are θ = {(µh,Σh, πh)}Kh=1.

θ̂mle for Gaussian Mixture Models

θ̂mle := argmax
θ

n∑

i=1

log

(
K∑

h=1

πh

det(Σh)1/2
exp

(
−1

2
(xi − µh)

⊤
Σ

−1
h (xi − µh)

))

Solving MLE estimator is NP-hard (Dasgupta, 2008; Aloise, Deshpande,

Hansen, & Popat, 2009; Mahajan, Nimbhorkar, & Varadarajan, 2009; Vattani, 2009;

Awasthi, Charikar, Krishnaswamy, & Sinop, 2015).

16 / 75

Consistent Estimator

Definition

Suppose iid samples {xi}ni=1 are generated by distribution Prθ(xi) where

the model parameters θ ∈ Θ are unknown. An estimator θ̂ is consistent if

E‖θ̂ − θ‖ → 0 as n→∞

Spherical Gaussian Mixtures Σh = I (as n→∞)

For K = 2 and πh = 1/2: EM is consistent (Xu, H., & Maleki, 2016;

Daskalakis, Tzamos, & Zampetakis, 2016).

Larger K: easily trapped in local maxima, far from global max (Jin,

Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts, but may
take a long time to get near the global max.

17 / 75

Hardness of Parameter Estimation

Exponentially difficult computationally or statistically
to learn model parameters, even under the parametric setting.

Cryptographic hardness

E.g., Mossel & Roch, 2006

Information-theoretic hardness

E.g., Moitra & Valiant, 2010

May require 2Ω(K) running time or 2Ω(K) sample size.

18 / 75

Ways Around the Hardness

Separation conditions.

◮ E.g., assume min
i6=j

‖µi−µj‖
2

σ2
i
+σ2

j

is sufficiently large.

◮ (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

Structural assumptions.
◮ E.g., assume sparsity, separable (anchor words).
◮ (Spielman, Wang & Wright, 2012; Arora, Ge & Moitra, 2012; . . .)

Non-degeneracy conditions.
◮ E.g., assume µ1, . . ., µK span a K-dimensional space.

This tutorial: statistically and computationally efficient learning algorithms
for non-degenerate instances via method-of-moments.

19 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

20 / 75

Method-of-Moments At A Glance
1 Determine function of model parameters θ estimatable from

observable data:
◮ Moments

Eθ[f(X)]

2 Form estimates of moments using data (iid samples {xi}ni=1):
◮ Empirical Moments

Ê[f(X)]

3 Solve the approximate equations for parameters θ:
◮ Moment matching

Eθ[f(X)]
n→∞
= Ê[f(X)]

Toy Example

How to estimate Gaussian variable, i.e., (µ,Σ),
given iid samples {xi}ni=1 ∼ N (µ,Σ2)?

21 / 75

What is a tensor?

Multi-dimensional Array

Tensor - Higher order matrix

The number of dimensions is called tensor order.

22 / 75

Tensor Product

=

[a⊗ b]i1,i2
ai1

bi2

=

[a⊗ b⊗ c]i1,i2,i3

ai1

bi2
ci3

[a⊗ b]i1,i2 = ai1bi2

Rank-1 matrix

[a⊗ b⊗ c]i1,i2,i3 = ai1bi2ci3

Rank-1 tensor

23 / 75

Slices

Horizontal slices Lateral slices Frontal slices

24 / 75

Fiber

Mode-1 (column)
fibers

Mode-2 (row)
fibers

Mode-3 (tube)
fibers

25 / 75

CP decomposition

X =
R∑

h=1

ah ⊗ bh ⊗ ch

Rank: Minimum number of rank-1 tensors whose sum generates the
tensor.

26 / 75

Multi-linear Transform

Multi-linear Operation

If T =
R∑

h=1

ah ⊗ bh ⊗ ch, a multi-linear operation using matrices

(X,Y ,Z) is as follows

T (X,Y ,Z) :=
K∑

h=1

(X⊤ah)⊗ (Y ⊤bh)⊗ (Z⊤ch).

Similarly for a multi-linear operation using vectors (x,y,z)

T (x,y,z) :=

K∑

h=1

(x⊤ah)⊗ (y⊤bh)⊗ (z⊤ch).

27 / 75

Tensors in Method of Moments
Matrix: Pair-wise relationship

Signal or data observed x ∈ R
d

Rank 1 matrix: [x⊗ x]i,j = xixj

Aggregated pair-wise relationship

M2 = E[x⊗ x]

=
xi

xj[x⊗x]i,j

Tensor: Triple-wise relationship or higher

Signal or data observed x ∈ R
d

Rank 1 tensor:
[x⊗ x⊗ x]i,j,k = xixjxk

Aggregated triple-wise relationship

M3 = E[x⊗ x⊗ x] = E[x⊗3]

=

[x⊗x⊗x]i,j,k

xi
xj

xk

28 / 75

Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2 e1

e2

u1 = [
√
2
2 , −

√
2

2]

u2 = [
√
2
2 ,
√
2
2]

29 / 75

Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2

Unique with eigenvalue gap

e1

e2

u1 = [
√
2
2 , −

√
2

2]

u2 = [
√
2
2 ,
√
2
2]

29 / 75

Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2

Unique with eigenvalue gap

e1

e2

u1 = [
√
2
2 , −

√
2

2]

u2 = [
√
2
2 ,
√
2
2]

Tensor Orthogonal Decomposition (Harshman, 1970)

Unique: eigenvalue gap not needed

+=

≠
29 / 75

Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2

Unique with eigenvalue gap

e1

e2

u1 = [
√
2
2 , −

√
2

2]

u2 = [
√
2
2 ,
√
2
2]

Tensor Orthogonal Decomposition (Harshman, 1970)

Unique: eigenvalue gap not needed

Slice of tensor has eigenvalue gap

+=

29 / 75

Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2

Unique with eigenvalue gap

e1

e2

u1 = [
√
2
2 , −

√
2

2]

u2 = [
√
2
2 ,
√
2
2]

Tensor Orthogonal Decomposition (Harshman, 1970)

Unique: eigenvalue gap not needed

Slice of tensor has eigenvalue gap

+=

≠
29 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

30 / 75

Topic Modeling
General Topic Model (e.g., Latent Dirichlet Allocation)

K topics
◮ each associated with a distribution

over vocab words {ah}Kh=1

Hidden topic proportion w
◮ per document i, w(i) ∈ ∆K−1

Document
iid∼ mixture of topics

Word Count per Document

Topic Word Matrix

game

season

play

Po
li�

cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

31 / 75

Topic Modeling
Topic Model for Single-topic Documents

K topics
◮ each associated with a distribution

over vocab words {ah}Kh=1

Hidden topic proportion w
◮ per document i, w(i) ∈ {e1, . . . , eK}

Document
iid∼ ah

Word Count per Document

01.0 0 0

Topic Word Matrix

game

season

play

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

31 / 75

Model Parameters of Topic Model for Single-topic

Documents
Estimate Topic Proportion

Po
li�
cs

Scie
n
ce

Sp
o
rts

B
u
sin
ess

Topic proportion w = [w1, . . . , wK]

wh = P[topic of word = h]

Estimate Topic Word Matrix

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Topic-word matrix A = [a1, . . . ,aK]

Ajh = P[word = ej |topic = h]

Goal: to estimate model parameters {(ah, wh)}Kh=1, given iid samples
of n documents (word count {c(i)}ni=1)

Frequency vector x(i) = c
(i)

L , the length of document is L =
∑

j c
(i)
j

32 / 75

Moment Matching

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h]

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

33 / 75

Moment Matching

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h] =
∑K

h=1 whah

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h] =
∑K

h=1 whah

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

M1: Distribution of words (M̂1: Occurrence frequency of words)

M1 = E[x] =
∑

h

whah; M̂1 =
1

n

n∑

i=1

x
(i)

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h] =
∑K

h=1 whah

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

M1: Distribution of words (M̂1: Occurrence frequency of words)

M1 = E[x] =
∑

h

whah; M̂1 =
1

n

n∑

i=1

x
(i)

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

No unique decomposition of vectors

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h] =
∑K

h=1 whah

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

M2: Distribution of word pairs (M̂2: Co-occurrence of word pairs)

M2 = E[x⊗ x] =
∑

h

whah ⊗ ah; M̂2 =
1

n

n∑

i=1

x
(i) ⊗ x

(i)

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Po
li�
cs

Scie
n
ce

Sp
o
rts

game

season

play

B
u
sin
ess

Generative process:
◮ Choose h ∼ Cat(w1, . . . , wK)
◮ Generate L words ∼ ah

E[x] =
∑K

h=1 P[topic = h]E[x|topic = h] =
∑K

h=1 whah

E[x|topic = h] =
∑

j P[word = ej |topic = h]ej = ah

M2: Distribution of word pairs (M̂2: Co-occurrence of word pairs)

M2 = E[x⊗ x] =
∑

h

whah ⊗ ah; M̂2 =
1

n

n∑

i=1

x
(i) ⊗ x

(i)

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

Matrix decomposition recovers subspace, not actual model

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Find a W W⊤W⊤W⊤ such that

M2: Distribution of word pairs (M̂2: Co-occurrence of word pairs)

M2 = E[x⊗ x] =
∑

h

whah ⊗ ah; M̂2 =
1

n

n∑

i=1

x
(i) ⊗ x

(i)

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

Many such W ’s, find one such that vh = W⊤ah orthogonal

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W W⊤W⊤W⊤ such that

M3: Distribution of word triples (M̂3: Co-occurrence of word triples)

M3 = E[x⊗3] =
∑

h

whah⊗3; M̂3 =
1

n

n∑

i=1

x
(i)⊗3

= + +
campus

police

witness

cr
im
e

Sp
or
ts

Ed
uc
a�
on

ca
m
pu
s

po
lic
e

w
itn
es
s

cam
pus

police

w
itness

Orthogonalize the tensor, project data with W : M3(W ,W ,W)

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W W⊤W⊤W⊤ such that

M3: Distribution of word triples (M̂3: Co-occurrence of word triples)

M3(W ,W ,W) = E[(W⊤
x)⊗3] =

∑

h

wh(W
⊤
ah)⊗3; M̂3(W ,W ,W) =

1

n

n∑

i=1

(W⊤
x
(i))⊗3

= + +
W

W

W

Unique orthogonal tensor decomposition {v̂h}Kh=1

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W W⊤W⊤W⊤ such that

M3: Distribution of word triples (M̂3: Co-occurrence of word triples)

M3(W ,W ,W) = E[(W⊤
x)⊗3] =

∑

h

wh(W
⊤
ah)⊗3; M̂3(W ,W ,W) =

1

n

n∑

i=1

(W⊤
x
(i))⊗3

= + +
W

W

W

Model parameter estimation: âh = (W⊤)†v̂h

33 / 75

Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W W⊤W⊤W⊤ such that

M3: Distribution of word triples (M̂3: Co-occurrence of word triples)

M3(W ,W ,W) = E[(W⊤
x)⊗3] =

∑

h

wh(W
⊤
ah)⊗3; M̂3(W ,W ,W) =

1

n

n∑

i=1

(W⊤
x
(i))⊗3

= + +
W

W

W
L ≥ 3: Learning Topic Models through Matrix/Tensor Decomposition

33 / 75

Take Away Message

Consider topic models satisfying linear independent word distributions
under different topics.

Parameters of topic model for single-topic documents can be
efficiently recovered from distribution of three-word documents.

◮ Distribution of three-word documents (word triples)

M3 = E[x⊗ x⊗ x] =
∑

h

whah ⊗ ah ⊗ ah

◮ M̂3: Co-occurrence of word triples

Two-word documents are not sufficient for identifiability.

34 / 75

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

103

104

105

P
er
p
le
xi
ty

Tensor
Variational

0

2

4

6

8

10 ×104

R
u
n
n
in
g
T
im

e
(s
)

35 / 75

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

103

104

105

P
er
p
le
xi
ty

Tensor
Variational

0

2

4

6

8

10 ×104

R
u
n
n
in
g
T
im

e
(s
)

Learning Communities from Graph Connectivity

Facebook: n ∼ 20k Yelp: n ∼ 40k DBLPsub: n ∼ 0.1m DBLP: n ∼ 1m

10-2

10-1

100

101

E
rr
o
r
/
g
ro
u
p

FB YP DBLPsub DBLP 102

103

104

105

106

R
u
n
n
in
g
T
im

es
(s
)

FB YP DBLPsub DBLP

35 / 75

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

103

104

105

P
er
p
le
xi
ty

Tensor
Variational

0

2

4

6

8

10 ×104

R
u
n
n
in
g
T
im

e
(s
)

Learning Communities from Graph Connectivity

Facebook: n ∼ 20k Yelp: n ∼ 40k DBLPsub: n ∼ 0.1m DBLP: n ∼ 1m

10-2

10-1

100

101

E
rr
o
r
/
g
ro
u
p

FB YP DBLPsub DBLP 102

103

104

105

106

R
u
n
n
in
g
T
im

es
(s
)

FB YP DBLPsub DBLP

Or
de
rs

of
Mag

nit
ud
e Fa

ste
r &

More
Ac

cu
rat

e

“Online Tensor Methods for Learning Latent Variable Models”, F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14.
“Tensor Methods on Apache Spark”, by F. Huang, A. Anandkumar, Oct. 2015.

35 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

36 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

+=

≠

37 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Properties of Tensor Slices

Linear combination of slices T (I, I, c) =
∑

h < µh, c > µh ⊗ µh

+=

≠

37 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Properties of Tensor Slices

Linear combination of slices T (I, I, c) =
∑

h < µh, c > µh ⊗ µh

+=

≠
Intuitions for Jennrich’s Algorithm

37 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Properties of Tensor Slices

Linear combination of slices T (I, I, c) =
∑

h < µh, c > µh ⊗ µh

+=

≠
Intuitions for Jennrich’s Algorithm

Linear comb. of slices of a tensor share the same set of eigenvectors

37 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Properties of Tensor Slices

Linear combination of slices T (I, I, c) =
∑

h < µh, c > µh ⊗ µh

+=

≠
Intuitions for Jennrich’s Algorithm

Linear comb. of slices of a tensor share the same set of eigenvectors

The shared eigenvectors are tensor components {µh}Kh=1

37 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T (I, I, c)T (I, I, c′)†

)

38 / 75

Jennrich’s Algorithm (Simplified)

Task: Given tensor T =
∑K

h=1 µh⊗3 with linearly independent
components {µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T (I, I, c)T (I, I, c′)†

)

Consistency of Jennrich’s Algorithm?

Estimators {µ̂h}Kh=1 ≡ unknown components {µh}Kh=1 (up to scaling)?

38 / 75

Analysis of Consistency of Jennrich’s algorithm

Recall: Linear comb. of slices share eigenvectors {µh}Kh=1,

i.e.,

T (I, I, c)T (I, I, c′)†
a.s.
= UDcU

⊤(U⊤)†D−1
c′

U †
a.s.
= U(DcD

−1
c′

)U †,

where U = [µ1|. . . |µK] are the linearly independent tensor components

and Dc = Diag
(
< µ1, c >, . . . , < µK , c >

)
is diagonal.

39 / 75

Analysis of Consistency of Jennrich’s algorithm

Recall: Linear comb. of slices share eigenvectors {µh}Kh=1,

i.e.,

T (I, I, c)T (I, I, c′)†
a.s.
= UDcU

⊤(U⊤)†D−1
c′

U †
a.s.
= U(DcD

−1
c′

)U †,

where U = [µ1|. . . |µK] are the linearly independent tensor components

and Dc = Diag
(
< µ1, c >, . . . , < µK , c >

)
is diagonal.

By linear independence of {µi}Ki=1 and random choice of c and c′:
1 U has rank K;

39 / 75

Analysis of Consistency of Jennrich’s algorithm

Recall: Linear comb. of slices share eigenvectors {µh}Kh=1,

i.e.,

T (I, I, c)T (I, I, c′)†
a.s.
= UDcU

⊤(U⊤)†D−1
c′

U †
a.s.
= U(DcD

−1
c′

)U †,

where U = [µ1|. . . |µK] are the linearly independent tensor components

and Dc = Diag
(
< µ1, c >, . . . , < µK , c >

)
is diagonal.

By linear independence of {µi}Ki=1 and random choice of c and c′:
1 U has rank K;

2 Dc and Dc′ are invertible (a.s.);

39 / 75

Analysis of Consistency of Jennrich’s algorithm

Recall: Linear comb. of slices share eigenvectors {µh}Kh=1,

i.e.,

T (I, I, c)T (I, I, c′)†
a.s.
= UDcU

⊤(U⊤)†D−1
c′

U †
a.s.
= U(DcD

−1
c′

)U †,

where U = [µ1|. . . |µK] are the linearly independent tensor components

and Dc = Diag
(
< µ1, c >, . . . , < µK , c >

)
is diagonal.

By linear independence of {µi}Ki=1 and random choice of c and c′:
1 U has rank K;

2 Dc and Dc′ are invertible (a.s.);

3 Diagonal entries of DcD
−1
c′

are distinct (a.s.);

39 / 75

Analysis of Consistency of Jennrich’s algorithm

Recall: Linear comb. of slices share eigenvectors {µh}Kh=1,

i.e.,

T (I, I, c)T (I, I, c′)†
a.s.
= UDcU

⊤(U⊤)†D−1
c′

U †
a.s.
= U(DcD

−1
c′

)U †,

where U = [µ1|. . . |µK] are the linearly independent tensor components

and Dc = Diag
(
< µ1, c >, . . . , < µK , c >

)
is diagonal.

By linear independence of {µi}Ki=1 and random choice of c and c′:
1 U has rank K;

2 Dc and Dc′ are invertible (a.s.);

3 Diagonal entries of DcD
−1
c′

are distinct (a.s.);

So {µi}Ki=1 are the eigenvectors of T (I, I, c)T (I, I, c)† with distinct
non-zero eigenvalues.

Jennrich’s algorithm is consistent

39 / 75

Error-tolerant algorithms for tensor decompositions

40 / 75

Moment Estimator: Empirical Moments

41 / 75

Moment Estimator: Empirical Moments
Moments Eθ[f(X)] are functions of model parameters θ
Empirical Moments Ê[f(X)] are computed using iid samples {xi}ni=1

only

41 / 75

Moment Estimator: Empirical Moments
Moments Eθ[f(X)] are functions of model parameters θ
Empirical Moments Ê[f(X)] are computed using iid samples {xi}ni=1

only

Example

Third Order Moment: distribution of word triples
◮ E[x⊗ x⊗ x] =

∑
h whah ⊗ ah ⊗ ah

Empirical Third Order Moment: co-occurrence frequency of word
triples

◮ Ê[x⊗ x⊗ x] = 1
n

n∑
i=1

xi ⊗ xi ⊗ xi

41 / 75

Moment Estimator: Empirical Moments
Moments Eθ[f(X)] are functions of model parameters θ
Empirical Moments Ê[f(X)] are computed using iid samples {xi}ni=1

only

Example

Third Order Moment: distribution of word triples
◮ E[x⊗ x⊗ x] =

∑
h whah ⊗ ah ⊗ ah

Empirical Third Order Moment: co-occurrence frequency of word
triples

◮ Ê[x⊗ x⊗ x] = 1
n

n∑
i=1

xi ⊗ xi ⊗ xi

Inevitably expect error of order n−
1
2 in some norm, e.g.,

◮ Operator norm: ‖E[x⊗ x⊗ x]− Ê[x⊗ x⊗ x]‖ / n− 1
2

◮ where ‖T ‖ := sup
x,y,z∈Sd−1

T (x,y, z)

◮ Frobenius norm: ‖E[x⊗ x⊗ x]− Ê[x⊗ x⊗ x]‖F / n− 1
2

◮ where ‖T ‖F :=
√∑

i,j,k

T 2
i,j,k

41 / 75

Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T (I, I, c)T (I, I, c′)†

)

42 / 75

Stability of Jennrich’s Algorithm
Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T (I, I, c)T (I, I, c′)†

)

Challenge: Only have access to T̂ such that ‖T̂ − T ‖ / n−
1
2

42 / 75

Stability of Jennrich’s Algorithm
Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T̂ ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1 ?

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T̂ (I, I, c)T̂ (I, I, c′)†

)

Challenge: Only have access to T̂ such that ‖T̂ − T ‖ / n−
1
2

42 / 75

Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T̂ ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1 ?

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T̂ (I, I, c)T̂ (I, I, c′)†

)

Stability of eigenvectors requires eigenvalue gaps

42 / 75

Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T̂ ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1 ?

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T̂ (I, I, c)T̂ (I, I, c′)†

)

Stability of eigenvectors requires eigenvalue gaps

To ensure eigenvalue gaps for T̂ (·, ·, c)T̂ (·, ·, c)†,
‖T̂ (·, ·, c)T̂ (·, ·, c)† − T (·, ·, c)T (·, ·, c)†‖ ≪ ∆ is needed.

42 / 75

Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T̂ ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1 ?

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T̂ (I, I, c)T̂ (I, I, c′)†

)

Stability of eigenvectors requires eigenvalue gaps

To ensure eigenvalue gaps for T̂ (·, ·, c)T̂ (·, ·, c)†,
‖T̂ (·, ·, c)T̂ (·, ·, c)† − T (·, ·, c)T (·, ·, c)†‖ ≪ ∆ is needed.

Ultimately, ‖T̂ − T ‖F ≪ 1
poly d is required.

42 / 75

Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T =
∑K

h=1µh⊗3 with linearly independent components
{µh}Kh=1, find the components (up to scaling).

Algorithm Jennrich’s Algorithm

Require: Tensor T̂ ∈ R
d×d×d

Ensure: Components {µ̂h}Kh=1
a.s.
= {µh}Kh=1 ?

1: Sample c and c′ independently & uniformly at random from Sd−1

2: Return {µ̂h}Kh=1 ← eigenvectors of
(
T̂ (I, I, c)T̂ (I, I, c′)†

)

Stability of eigenvectors requires eigenvalue gaps

To ensure eigenvalue gaps for T̂ (·, ·, c)T̂ (·, ·, c)†,
‖T̂ (·, ·, c)T̂ (·, ·, c)† − T (·, ·, c)T (·, ·, c)†‖ ≪ ∆ is needed.

Ultimately, ‖T̂ − T ‖F ≪ 1
poly d is required. A different approach?

42 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =
K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

43 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =
K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.

43 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =
K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.
Analogous to matrix eigenvectors: Mv = M(I,v) = λv.

43 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =
K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.
Analogous to matrix eigenvectors: Mv = M(I,v) = λv.

Define orthonormal {ah}Kh=1 as eigenvectors of tensor M3.

43 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =

K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.
Analogous to matrix eigenvectors: Mv = M(I,v) = λv.

Define orthonormal {ah}Kh=1 as eigenvectors of tensor M3.

Two Problems

{ah}Kh=1 is not orthogonal in general.

How to find eigenvectors of a tensor?

43 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =

K∑

h=1

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.
Analogous to matrix eigenvectors: Mv = M(I,v) = λv.

Define orthonormal {ah}Kh=1 as eigenvectors of tensor M3.

Two Problems

{ah}Kh=1 is not orthogonal in general.

How to find eigenvectors of a tensor?

43 / 75

Whitening is the process of finding a whitening matrix W such that
multi-linear operation (using W) on M3 orthogonalize its components:

M3(W ,W ,W) =
∑

h

wh(W
⊤ah)⊗3

=
∑

h

whvh⊗3, vh ⊥⊥ vh′ , ∀h 6= h′

44 / 75

Whitening

Given
M3 =

∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

45 / 75

Whitening

Given
M3 =

∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Find whitening matrix W s.t. W⊤ah = vh are orthogonal.

45 / 75

Whitening

Given
M3 =

∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Find whitening matrix W s.t. W⊤ah = vh are orthogonal.

When {ah}Kh=1 ∈ R
d×K has full column rank, it is an invertible

transformation.

v1

v2

v3

W
a1

a2

a3

W

45 / 75

Using Whitening to Obtain Orthogonal Tensor

+ ++ +

Tensor M3 Tensor T

46 / 75

Using Whitening to Obtain Orthogonal Tensor

+ ++ +

Tensor M3 Tensor T

Multi-linear transform

T = M3(W ,W ,W) =
∑

hwh(W
⊤ah)

⊗3.

46 / 75

Using Whitening to Obtain Orthogonal Tensor

+ ++ +

Tensor M3 Tensor T

Multi-linear transform

T = M3(W ,W ,W) =
∑

hwh(W
⊤ah)

⊗3.

T =
∑

h∈[K]

wh · vh⊗3 has orthogonal components.

46 / 75

Using Whitening to Obtain Orthogonal Tensor

+ ++ +

Tensor M3 Tensor T

Multi-linear transform

T = M3(W ,W ,W) =
∑

hwh(W
⊤ah)

⊗3.

T =
∑

h∈[K]

wh · vh⊗3 has orthogonal components.

Dimensionality reduction when K ≪ d, as M3 ∈ R
d×d×d and

T ∈ R
K×K×K.

46 / 75

How to Find Whitening Matrix?
Given

M3 =
∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Goal: W such that

v1

v2

v3

W
a1

a2

a3

47 / 75

How to Find Whitening Matrix?
Given

M3 =
∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Goal: W such that

v1

v2

v3

W
a1

a2

a3

Use pairwise moments M2 to find W s.t. W⊤M2W = I.

47 / 75

How to Find Whitening Matrix?
Given

M3 =
∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Goal: W such that

v1

v2

v3

W
a1

a2

a3

Use pairwise moments M2 to find W s.t. W⊤M2W = I.

W = UDiag(λ̃−1/2), where Eigen-decomposition
M2 = UDiag(λ̃)U⊤.

47 / 75

How to Find Whitening Matrix?
Given

M3 =
∑

h

whah⊗3, M2 =
∑

h

whah ⊗ ah,

Goal: W such that

v1

v2

v3

W
a1

a2

a3

Use pairwise moments M2 to find W s.t. W⊤M2W = I.

W = UDiag(λ̃−1/2), where Eigen-decomposition
M2 = UDiag(λ̃)U⊤.
V := W⊤ADiag(w)1/2 is an orthogonal matrix.

T = M3(W ,W ,W) =
∑

h

w
−1/2
h (W⊤ah

√
wh)

⊗3

=
∑

h

λhvh⊗3, λh := w
−1/2
h .

T is an orthogonal tensor.
47 / 75

Initial Ideas
In many applications, we estimate moments of the form

M3 =
∑

h

whah⊗3,

where {ah}Kh=1 are assumed to be linearly independent.

What if {ah}Kh=1 has orthonormal columns?

M3(I,ai,ai) =
∑

hwh〈ah,ai〉2ah= wiai, ∀i.

Analogous to matrix eigenvectors: Mv = M(I,v) = λv.

Define orthonormal {ah}Kh=1 as eigenvectors of tensor M3.

Two Problems

{ah}Kh=1 is not orthogonal in general.

How to find eigenvectors of a tensor?

48 / 75

Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M =
∑K

h=1 λhvh⊗vh with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

49 / 75

Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M =
∑K

h=1 λhvh⊗vh with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Matrix Eigenvectors

Fixed point: linear transform M(I,vi) =
∑

h λh〈vi,vh〉vh = λivi

49 / 75

Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M =
∑K

h=1 λhvh⊗vh with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Matrix Eigenvectors

Fixed point: linear transform M(I,vi) =
∑

h λh〈vi,vh〉vh = λivi

Intuitions for Matrix Power Method

49 / 75

Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M =
∑K

h=1 λhvh⊗vh with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Matrix Eigenvectors

Fixed point: linear transform M(I,vi) =
∑

h λh〈vi,vh〉vh = λivi

Intuitions for Matrix Power Method

Linear transform on eigenvectors {vh}Kh=1 preserve direction

49 / 75

Orthogonal Tensor Eigen Decomposition

Task: Given tensor T =
∑K

h=1 λhvh⊗3 with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

+=

≠

50 / 75

Orthogonal Tensor Eigen Decomposition

Task: Given tensor T =
∑K

h=1 λhvh⊗3 with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Tensor Eigenvectors

Fixed point: bi-linear transform
T (I,vi,vi) =

∑
h λh〈vi,vh〉2vh = λivi

+=

≠

50 / 75

Orthogonal Tensor Eigen Decomposition

Task: Given tensor T =
∑K

h=1 λhvh⊗3 with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Tensor Eigenvectors

Fixed point: bi-linear transform
T (I,vi,vi) =

∑
h λh〈vi,vh〉2vh = λivi

+=

≠
Intuitions for Tensor Power Method

50 / 75

Orthogonal Tensor Eigen Decomposition

Task: Given tensor T =
∑K

h=1 λhvh⊗3 with orthonormal components
{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Properties of Tensor Eigenvectors

Fixed point: bi-linear transform
T (I,vi,vi) =

∑
h λh〈vi,vh〉2vh = λivi

+=

≠
Intuitions for Tensor Power Method

Bilinear transform on eigenvectors {vh}Kh=1 preserve direction

50 / 75

Orthogonal Matrix Eigen Decomposition
Task: Given matrix M =

∑K
h=1 λhvh⊗2 with orthonormal components

{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Algorithm Matrix Power Method

Require: Matrix M ∈ R
K×K

Ensure: Components {v̂h}Kh=1

w.h.p.
= {vh}Kh=1

1: for h = 1 : K do
2: Sample u0 uniformly at random from SK−1

3: for i = 1 : T do
4: ui ← M(I,ui−1)

‖M(I,ui−1)‖
5: end for
6: v̂h ← uT , λ̂h ←M(v̂h, v̂h)
7: Deflate M ←M − λ̂hv̂h⊗2

8: end for

51 / 75

Orthogonal Matrix Eigen Decomposition
Task: Given matrix M =

∑K
h=1 λhvh⊗2 with orthonormal components

{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Algorithm Matrix Power Method

Require: Matrix M ∈ R
K×K

Ensure: Components {v̂h}Kh=1

w.h.p.
= {vh}Kh=1

1: for h = 1 : K do
2: Sample u0 uniformly at random from SK−1

3: for i = 1 : T do
4: ui ← M(I,ui−1)

‖M(I,ui−1)‖
5: end for
6: v̂h ← uT , λ̂h ←M(v̂h, v̂h)
7: Deflate M ←M − λ̂hv̂h⊗2

8: end for

Consistency of Matrix Power Method?

Is there convergence? {v̂h}Kh=1 ≡ {vh}Kh=1 w.h.p.?

51 / 75

Orthogonal Matrix Eigen Decomposition
Task: Given matrix M =

∑K
h=1 λhvh⊗2 with orthonormal components

{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Algorithm Matrix Power Method

Require: Matrix M ∈ R
K×K

Ensure: Components {v̂h}Kh=1

w.h.p.
= {vh}Kh=1

1: for h = 1 : K do
2: Sample u0 uniformly at random from SK−1

3: for i = 1 : T do
4: ui ← M(I,ui−1)

‖M(I,ui−1)‖
5: end for
6: v̂h ← uT , λ̂h ←M(v̂h, v̂h)
7: Deflate M ←M − λ̂hv̂h⊗2

8: end for

Consistency of Matrix Power Method?

Is there convergence? {v̂h}Kh=1 ≡ {vh}Kh=1 w.h.p.?
Does the convergence depend on initialization?

51 / 75

Orthogonal Tensor Eigen Decomposition
Task: Given tensor T =

∑K
h=1 λhvh⊗3 with orthonormal components

{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Algorithm Tensor Power Method

Require: Tensor T ∈ R
K×K×K

Ensure: Components {v̂h}Kh=1

w.h.p.
= {vh}Kh=1

1: for h = 1 : K do
2: Sample u0 uniformly at random from SK−1

3: for i = 1 : T do
4: ui ← T (I,ui−1,ui−1)

‖T (I,ui−1,ui−1)‖
5: end for
6: v̂h ← uT , λ̂h ← T (v̂h, v̂h, v̂h)
7: Deflate T ← T − λ̂hv̂h⊗3

8: end for

52 / 75

Orthogonal Tensor Eigen Decomposition
Task: Given tensor T =

∑K
h=1 λhvh⊗3 with orthonormal components

{vh}Kh=1 (vh ⊥⊥ vh′ , ∀h 6= h′), find the components/eigenvectors.

Algorithm Tensor Power Method

Require: Tensor T ∈ R
K×K×K

Ensure: Components {v̂h}Kh=1

w.h.p.
= {vh}Kh=1

1: for h = 1 : K do
2: Sample u0 uniformly at random from SK−1

3: for i = 1 : T do
4: ui ← T (I,ui−1,ui−1)

‖T (I,ui−1,ui−1)‖
5: end for
6: v̂h ← uT , λ̂h ← T (v̂h, v̂h, v̂h)
7: Deflate T ← T − λ̂hv̂h⊗3

8: end for

Consistency of Tensor Power Method?

Is there convergence? {v̂h}Kh=1 ≡ {vh}Kh=1 w.h.p.?
Does the convergence depend on initialization?

52 / 75

Analysis of Consistency of Matrix Power Method

Order eigenvectors {vh}Kh=1 such that corresponding eigenvalues
satisfy λ1 ≥ λ2 . . . ≥ λK .

Project initial point u0 onto eigenvectors {vh}Kh=1

ch = 〈u0,vh〉, ∀h

Convergence properties

Unique (identifiable) i.f.f. {λh}Kh=1 are distinct.

If gap λ2
λ1

< 1 and c1 6= 0, matrix power method converges to v1.

Converges linearly to v1 assuming gap λ2/λ1 < 1.
◮ Linear transform permits M(I,u0) =

∑
h λh

(
v⊤
h u0

)
vh =

∑
h λhchvh,

i.e., projection in vh direction is scaled by λh.

◮ In t iterations,

(
v⊤
1 v

)2
∑

i

(
v⊤
i
v

)2 ≥ 1−K

(
λ2

λ1

)2t

.

53 / 75

Analysis of Consistency of Tensor Power Method

Project initial point u0 onto eigenvectors ch = 〈u0,vh〉, ∀h.
Order eigenvectors {vh}Kh=1 such that

λ1|c1| > λ2|c2| ≥ · · · ≥ λK |cK |.

Convergence properties

Identifiable i.f.f. {λh|ch|}Kh=1 are distinct. Initialization dependent.

If λ2|c2|
λ1|c1| < 1 and λ1|c1| 6= 0, tensor power method converges to v1.

Note v1 is NOT necessarily the largest eigenvector.

Converges quadraticly to v1 assuming gap λ2|c2|
λ1|c1| < 1.

◮ Bi-linear transform permits T (I,u0,u0) =
∑

h λh

(
v⊤
h
u0

)2
vh =

∑
h λhc

2
h
vh

i.e., projection in vh direction is squared then scaled by λh.

◮ In t iterations,

(
v⊤
1 v

)2
∑

i

(
v⊤
i

v
)2 ≥ 1− k

(
λ1

maxi6=1 λi

)2∣∣∣∣
v2c2
v1c1

∣∣∣∣
2t+1

.

54 / 75

Matrix vs. tensor power iteration

Matrix power iteration:

Tensor power iteration:

55 / 75

Matrix vs. tensor power iteration

Matrix power iteration:

1 Requires gap between largest and second-largest eigenvalue.
Property of the matrix only.

Tensor power iteration:

1 Requires gap between largest and second-largest λh|ch|.
Property of the tensor and initialization u0.

55 / 75

Matrix vs. tensor power iteration

Matrix power iteration:

1 Requires gap between largest and second-largest eigenvalue.
Property of the matrix only.

2 Converges to top eigenvector.

Tensor power iteration:

1 Requires gap between largest and second-largest λh|ch|.
Property of the tensor and initialization u0.

2 Converges to vi which is the largest vh|ch|. Not necessarily the largest
eigenvector.

55 / 75

Matrix vs. tensor power iteration

Matrix power iteration:

1 Requires gap between largest and second-largest eigenvalue.
Property of the matrix only.

2 Converges to top eigenvector.

3 Linear convergence. Need O(log(1/ǫ)) iterations.

Tensor power iteration:

1 Requires gap between largest and second-largest λh|ch|.
Property of the tensor and initialization u0.

2 Converges to vi which is the largest vh|ch|. Not necessarily the largest
eigenvector.

3 Quadratic convergence. Need O(log log(1/ǫ)) iterations.

55 / 75

Spurious Eigenvectors for Tensor Eigen

Decomposition

T =
∑

h∈[K]

λhvh ⊗3 .

Characterization of eigenvectors: T (I, v, v) = λv?

{vh}Kh=1 are eigenvectors as T (I,vh,vh) = λhvh.

56 / 75

Spurious Eigenvectors for Tensor Eigen

Decomposition

T =
∑

h∈[K]

λhvh ⊗3 .

Characterization of eigenvectors: T (I, v, v) = λv?

{vh}Kh=1 are eigenvectors as T (I,vh,vh) = λhvh.

Bad news: There can be other eigenvectors (unlike matrix case).
◮ E.g., when {λh}Kh=1 ≡ 1

v =
v1 + v2√

2
satisfies T (I,v,v) =

1√
2
v.

56 / 75

Spurious Eigenvectors for Tensor Eigen

Decomposition

T =
∑

h∈[K]

λhvh ⊗3 .

Characterization of eigenvectors: T (I, v, v) = λv?

{vh}Kh=1 are eigenvectors as T (I,vh,vh) = λhvh.

Bad news: There can be other eigenvectors (unlike matrix case).
◮ E.g., when {λh}Kh=1 ≡ 1

v =
v1 + v2√

2
satisfies T (I,v,v) =

1√
2
v.

How do we avoid spurious solutions (not components {vh}Kh=1)?

56 / 75

Spurious Eigenvectors for Tensor Eigen

Decomposition

T =
∑

h∈[K]

λhvh ⊗3 .

Characterization of eigenvectors: T (I, v, v) = λv?

{vh}Kh=1 are eigenvectors as T (I,vh,vh) = λhvh.

Bad news: There can be other eigenvectors (unlike matrix case).
◮ E.g., when {λh}Kh=1 ≡ 1

v =
v1 + v2√

2
satisfies T (I,v,v) =

1√
2
v.

How do we avoid spurious solutions (not components {vh}Kh=1)?

Optimization viewpoint of tensor Eigen decomposition will help.

56 / 75

Spurious Eigenvectors for Tensor Eigen

Decomposition

T =
∑

h∈[K]

λhvh ⊗3 .

Characterization of eigenvectors: T (I, v, v) = λv?

{vh}Kh=1 are eigenvectors as T (I,vh,vh) = λhvh.

Bad news: There can be other eigenvectors (unlike matrix case).
◮ E.g., when {λh}Kh=1 ≡ 1

v =
v1 + v2√

2
satisfies T (I,v,v) =

1√
2
v.

How do we avoid spurious solutions (not components {vh}Kh=1)?

Optimization viewpoint of tensor Eigen decomposition will help.
All spurious eigenvectors are saddle points.

56 / 75

Optimization Viewpoint of Matrix/Tensor Eigen Decomposition

57 / 75

Optimization Viewpoint of Matrix/Tensor Eigen
Decomposition

Optimization Problem
Matrix: max

v
M(v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := M(v, v) − λ(v⊤v − 1).

Tensor: max
v

T (v, v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := T (v, v, v) − 1.5λ(v⊤v − 1).

58 / 75

Optimization Viewpoint of Matrix/Tensor Eigen
Decomposition

Optimization Problem
Matrix: max

v
M(v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := M(v, v) − λ(v⊤v − 1).

Tensor: max
v

T (v, v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := T (v, v, v) − 1.5λ(v⊤v − 1).

Non-convex: stationary points = {global optima, local optima, saddle point}

58 / 75

Optimization Viewpoint of Matrix/Tensor Eigen
Decomposition

Optimization Problem
Matrix: max

v
M(v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := M(v, v) − λ(v⊤v − 1).

Tensor: max
v

T (v, v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := T (v, v, v) − 1.5λ(v⊤v − 1).

Non-convex: stationary points = {global optima, local optima, saddle point}

Stationary Points: first derivative ∇L(v, λ) = 0

∇L(v, λ) = 2(M(I, v)− λv) = 0

Eigenvectors are stationary points.

Power method v ← M(I,v)
‖M(I,v)‖

is a version

of gradient ascent.

∇L(v, λ) = 3(T (I, v, v)− λv) = 0

Eigenvectors are stationary points.

Power method v ← T (I,v,v)
‖T (I,v,v)‖

is a

version of gradient ascent.

58 / 75

Optimization Viewpoint of Matrix/Tensor Eigen
Decomposition

Optimization Problem
Matrix: max

v
M(v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := M(v, v) − λ(v⊤v − 1).

Tensor: max
v

T (v, v, v) s.t. ‖v‖ = 1.

Lagrangian:
L(v, λ) := T (v, v, v) − 1.5λ(v⊤v − 1).

Non-convex: stationary points = {global optima, local optima, saddle point}

Stationary Points: first derivative ∇L(v, λ) = 0

∇L(v, λ) = 2(M(I, v)− λv) = 0

Eigenvectors are stationary points.

Power method v ← M(I,v)
‖M(I,v)‖

is a version

of gradient ascent.

∇L(v, λ) = 3(T (I, v, v)− λv) = 0

Eigenvectors are stationary points.

Power method v ← T (I,v,v)
‖T (I,v,v)‖

is a

version of gradient ascent.

Local Optima: w⊤∇2L(v, λ)w < 0 for all w ⊥ v, at a stationary point v

v1 is the only local optimum.

All other eigenvectors are saddle points.

{vh}Kh=1 are the only local optima.

All spurious eigenvectors are saddle
points.

58 / 75

Question: What about performance under noise?

59 / 75

Tensor Perturbation Analysis

T̂ = T + E, T =
∑

h

λhvh⊗3, ‖E‖ := max
x:‖x‖=1

|E(x,x,x)| ≤ ǫ.

60 / 75

Tensor Perturbation Analysis

T̂ = T + E, T =
∑

h

λhvh⊗3, ‖E‖ := max
x:‖x‖=1

|E(x,x,x)| ≤ ǫ.

Theorem: Let T be number of iterations. If

T ≥ logK + log log λmax
ǫ , ǫ < λmin

K ,

then output (v, λ) (after polynomial restarts) satisfies

‖v − v1‖ ≤ O

(
ǫ

λ1

)
, ‖λ− λ1‖ ≤ O(ǫ),

where v1 is s.t. λ1|c1| > λ2|c2| . . . , ci := 〈vi,u0〉, and u0 is the
(successful) initializer.

60 / 75

Tensor Perturbation Analysis

T̂ = T + E, T =
∑

h

λhvh⊗3, ‖E‖ := max
x:‖x‖=1

|E(x,x,x)| ≤ ǫ.

Theorem: Let T be number of iterations. If

T ≥ logK + log log λmax
ǫ , ǫ < λmin

K ,

then output (v, λ) (after polynomial restarts) satisfies

‖v − v1‖ ≤ O

(
ǫ

λ1

)
, ‖λ− λ1‖ ≤ O(ǫ),

where v1 is s.t. λ1|c1| > λ2|c2| . . . , ci := 〈vi,u0〉, and u0 is the
(successful) initializer.

Careful analysis of deflation: avoid buildup of errors.

Implies polynomial sample complexity for learning.

60 / 75

Other tensor decomposition techniques

61 / 75

Orthogonal Tensor Decomposition

Simultaneous Power Method
(Wang & Lu, 2017)

◮ Simultaneous recovery of eigenvectors
◮ Initialization is not optimal

Orthogonalized Simultaneous Alternating Least Square
(Sharan & Valiant, 2017)

◮ Random initialization
◮ Proved convergence for symmetric tensor

Initialization

SVD based initialization (Anandkumar & Janzamin, 2014).

State-of-the-art (trace based) initialization (Li & Huang, 2018).

62 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

63 / 75

Neural Network - Nonlinear Function Approximation

Image classification

Speech recognition

Text processing

Success of Deep Neural Networks

computation power growth

enormous labeled data

64 / 75

Neural Network - Nonlinear Function Approximation

Image classification

Speech recognition

Text processing

Success of Deep Neural Networks

computation power growth

enormous labeled data

Express Power

linear composition vs nonlinear composition

shallow network vs deep structure
64 / 75

Revolution of Depth

3.57

6.7 7.3

11.7

16.4

25.8

28.2

ILSVRC'15

ResNet

ILSVRC'14

GoogleNet

ILSVRC'14

VGG

ILSVRC'13 ILSVRC'12

AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

8 layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for ImageRecognition”. CVPR 2016.

65 / 75

Revolution of Depth

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

AlexNet,	8	layers

(ILSVRC	2012)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

65 / 75

Revolution of Depth

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

AlexNet,	8	layers

(ILSVRC	2012)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG,	19	layers

(ILSVRC	2014)

GoogleNet,	22	layers

(ILSVRC	2014)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

65 / 75

Revolution of Depth

1x1	conv,	64
3x3	conv,	64

1x1	conv,	256

1x1	conv,	64

3x3	conv,	64

1x1	conv,	256

1x1	conv,	64

3x3	conv,	64

1x1	conv,	256

1x1	conv,	128,	/2

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	128

3x3	conv,	128

1x1	conv,	512

1x1	conv,	256,	/2

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	256

3x3	conv,	256

1x1	conv,	1024

1x1	conv,	512,	/2

3x3	conv,	512

1x1	conv,	2048

1x1	conv,	512

3x3	conv,	512

1x1	conv,	2048

1x1	conv,	512

3x3	conv,	512

1x1	conv,	2048

ave 	pool,	fc	1000

7x7 	conv,	64,	/2,	pool/2

AlexNet,	8	layers

(ILSVRC	2012)

ResNet,	152	layers

(ILSVRC	2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG,	19	layers

(ILSVRC	2014)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

65 / 75

Revolution of Depth

34

58
66

86

HOG,	DPM Ale�Net

(RCNN)

VGG

(RCNN)

ResNet

(Faster	RCNN)*

P�SC�L	V�C	2007	Object Detection	m�P (%)

shallow
8	layers

16	layers

101	layers

*w/	other	improvements	&	more	data

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

Engines	of

visual	recognition

65 / 75

Challenges For Large Deep Neural Network

Learning

Learning takes longer, might not converge, susceptible to
vanishing/exploding gradients, etc

One-time cost.

66 / 75

Challenges For Large Deep Neural Network

Learning

Learning takes longer, might not converge, susceptible to
vanishing/exploding gradients, etc

One-time cost.

Test

Requires large amount of computation and memory storage.
◮ Ill-suited for smart phones or IoT device.

Repeated cost.

66 / 75

Challenges For Large Deep Neural Network

Learning

Learning takes longer, might not converge, susceptible to
vanishing/exploding gradients, etc

One-time cost.

Test

Requires large amount of computation and memory storage.
◮ Ill-suited for smart phones or IoT device.

Repeated cost.

How to compress the neural network without much performance loss?

66 / 75

Common Types of Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1

67 / 75

Common Types of Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1

CANDECOMP/PARAFAC (CP) Decomposition

Factorize a tensor into sum of rank-1 tensors

Rank-1 tensor is defined as outer product of multiple vectors

T i0,··· ,im−1
=
∑R−1

r=0 M
(0)
r,i0
· · ·M (m−1)

r,im−1

67 / 75

Common Types of Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1

CANDECOMP/PARAFAC (CP) Decomposition

Factorize a tensor into sum of rank-1 tensors

Rank-1 tensor is defined as outer product of multiple vectors

T i0,··· ,im−1
=
∑R−1

r=0 M
(0)
r,i0
· · ·M (m−1)

r,im−1

Tucker (TK) Decomposition

More general than CP decomposition

Multilinear operation on a core tensor C: C(M (0), . . . ,M (m−1))

T i0,··· ,im−1
=
∑R0−1

r0=0 · · ·
∑Rm−1−1

rm−1=0 Cr0,...,rm−1
M

(0)
r0,i0
· · ·M (m−1)

rm−1,im−1

67 / 75

Common Types of Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1

CANDECOMP/PARAFAC (CP) Decomposition

Factorize a tensor into sum of rank-1 tensors

Rank-1 tensor is defined as outer product of multiple vectors

T i0,··· ,im−1
=
∑R−1

r=0 M
(0)
r,i0
· · ·M (m−1)

r,im−1

Tucker (TK) Decomposition

More general than CP decomposition

Multilinear operation on a core tensor C: C(M (0), . . . ,M (m−1))

T i0,··· ,im−1
=
∑R0−1

r0=0 · · ·
∑Rm−1−1

rm−1=0 Cr0,...,rm−1
M

(0)
r0,i0
· · ·M (m−1)

rm−1,im−1

Tensor-Train (TT) Decomposition

Factorize a tensor into a number of interconnected lower-order tensors

T i0,...,im−1
=
∑R0−1

r0=1 · · ·
∑Rm−2−1

rm−2=1 T
(0)
i0,r0

T
(1)
r0,i1,r1

· · ·T (m−1)
rm−2,im−1

67 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

68 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

Filter height/width H/W , No. of input/output channels S/T .

68 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

Filter height/width H/W , No. of input/output channels S/T .

Map an input tensor U ∈ R
X×Y×S to an output tensor V ∈ R

X′×Y ′×T .

68 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

Filter height/width H/W , No. of input/output channels S/T .

Map an input tensor U ∈ R
X×Y×S to an output tensor V ∈ R

X′×Y ′×T .

Kernel CP Decomposition

CP: Decompose kernel K into 3 factor tensors

Ki,j,s,t =
R−1∑
r=0

K
(0)
s,r K

(1)
i,j,r K

(2)
r,t

No. of param.: HWST → (HW + S + T)R CP decomposition

H W

R
R

R

S T

68 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

Filter height/width H/W , No. of input/output channels S/T .

Map an input tensor U ∈ R
X×Y×S to an output tensor V ∈ R

X′×Y ′×T .

Kernel TK Decomposition

TK: Decompose K into 1 core tensor, 2 factor tensors

Ki,j,s,t =
Rs−1∑
rs=0

Rt−1∑
rt=0

K
(0)
s,rs K

(1)
i,j,rs,rt

K
(2)
rt,t

No. of param.: HWST → SRs +HWRsRt +RtT

TK decomposition

H

W

RsRs RtRtS T

68 / 75

Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: tensor K ∈ R
H×W×S×T

Filter height/width H/W , No. of input/output channels S/T .

Map an input tensor U ∈ R
X×Y×S to an output tensor V ∈ R

X′×Y ′×T .

Kernel TT Decomposition

TT: Decompose K into 4 factor tensors

Ki,j,s,t =
Rs−1∑
rs=0

R−1∑
r=0

Rt−1∑
rt=0

K
(0)
s,rsK

(1)
rs,i,r

K
(2)
r,j,rt

K
(3)
rt,t

No. of param.: HWST→SRs+HRsR+WRtR+RtT
TT decomposition

H W

Rs R Rt

S T

68 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

Input tensor U ∈ R
X×Y×S tensorized to U ′ ∈ R

X×Y×S0×···×Sm−1 .

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

Input tensor U ∈ R
X×Y×S tensorized to U ′ ∈ R

X×Y×S0×···×Sm−1 .

Output reshaped V ∈ R
X×Y ×T to V ′ ∈ R

X′×Y ′×T0×···×Tm−1 .

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

Input tensor U ∈ R
X×Y×S tensorized to U ′ ∈ R

X×Y×S0×···×Sm−1 .

Output reshaped V ∈ R
X×Y ×T to V ′ ∈ R

X′×Y ′×T0×···×Tm−1 .

Tensorized Kernel CP Decomposition

...

CP tensorized CP

replacements

H
H

W

W

R

R
R

R

R
R

R

S T
S

1
m

T
1
m S

1
m

T
1
m

S
1
m

T
1
m

Param. No.: HWST → (HW + S + T)R → (m(ST)
1
m +HW)R

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

Input tensor U ∈ R
X×Y×S tensorized to U ′ ∈ R

X×Y×S0×···×Sm−1 .

Output reshaped V ∈ R
X×Y ×T to V ′ ∈ R

X′×Y ′×T0×···×Tm−1 .

Tensorized Kernel TK Decomposition
...

...

TK tensorized TK

HH

WW

RR
RR

R
RR

R
RsRs RtRtS T

S
1
m T

1
m

S
1
m T

1
m

Param. No.: HWST→SRs+HWRsRt +RtT→m(S
1
m+T

1
m)R+HWR2m

69 / 75

Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: K ∈ R
H×W×S×T tensorized to

K′ ∈ R
H×W×S0×···×Sm−1×T0×···×Tm−1

Tensorization: kernel reshaped to higher order tensor.

S =
∏m−1

i=0 Si and T =
∏m−1

i=0 Ti.

Input tensor U ∈ R
X×Y×S tensorized to U ′ ∈ R

X×Y×S0×···×Sm−1 .

Output reshaped V ∈ R
X×Y ×T to V ′ ∈ R

X′×Y ′×T0×···×Tm−1 .

Tensorized Kernel TT Decomposition

...

TT tensorized TT

H

H WW

R RRRs R Rt

S T

S
1
m

T
1
m

S
1
m

T
1
m

S
1
m

T
1
m

Param. No.:HWST→SRs+HRsR+WRtR+RtT→(m(ST)
1
mR+HW)R

69 / 75

Experiments - Compress CIFAR10 Resnet-34

Successful Compression of CIFAR10 Resnet-34 Network (Su, Li,

Bhattacharjee & Huang, 2018)

Compression rate: SPC, E2E Compression rate: t-SPC, Seq.
Method 5% 10% 20% 40% 2% 5% 10% 20%
CP 84.02 86.93 88.75 88.75 85.7 89.86 91.28 -
TK 83.57 86.00 88.03 89.35 61.06 71.34 81.59 87.11
TT 77.44 82.92 84.13 86.64 78.95 84.26 87.89 -

Testing accuracies of tensor methods under compression rates.

The uncompressed network achieves 93.2% accuracy.

CIFAR10 Resnet-34 has 4× 105 parameters that have to be trained
and retained during testing.

70 / 75

Experiments - Compress ImageNet Resnet-50

Successful Compression of ImageNet Resnet-50 Network (Su, Li,

Bhattacharjee & Huang, 2018)

Uncompressed SPC-TT t-SPC-TT

Epochs (E2E) (Seq.)

0.2 4.22 0.66x 10.51x
0.3 6.23 0.64x 7.54x
0.5 9.01 0.83x 5.54x
1.0 17.3 0.74x 3.04x
2.0 30.8 0.59x 1.75x

Testing accuracy of tensor methods compared to the uncompressed
ImageNet Resnet-50.

The accuracy of the tensor method results (both non-tensorized and
tensorized) are shown normalized to the uncompressed network’s
accuracy.

71 / 75

Outline

1 Introduction

2 Motivation: Challenges of MLE for Gaussian Mixtures

3 Introduction of Method of Moments and Tensor Notations

4 Topic Model for Single-topic Documents

5 Algorithms for Tensor Decompositions

6 Tensor Decomposition for Neural Network Compression

7 Conclusion

72 / 75

Conclusion

Method-of-moments can efficiently estimate parameters for many
latent variable models.

◮ Exploit distributional properties, multi-view structure, and other
structure to determine usable moments tensors.

◮ Some efficient algorithms for carrying out the tensor decomposition to
obtain parameter estimates.

Tensor decomposition of neural network kernels/weights effectively
compresses the network.

Many issues to resolve
◮ Handle model misspecification, increase robustness.
◮ Learning deep neural network parameters using tensor decomposition?

73 / 75

A Short List of Related Papers to Today’s Talk

“A Method of Moments for Mixture Models and Hidden Markov Models”, by Anima
Anandkumar, Daniel Hsu and Sham Kakade. In Conference on Learning Theory, 2012.

“Tensor Decompositions for Learning Latent Variable Models”, by Anima Anandkumar,
Rong Ge, Daniel Hsu, Sham Kakade and Matus Telgarsky. In Journal of Machine Learning
Research, 2014.

“Escaping from saddle pointsonline stochastic gradient for tensor decomposition”, Rong
Ge, Furong Huang, Chi Jin and Yang Yuan. In Conference on Learning Theory, 2015.

“Online tensor methods for learning latent variable models”, Furong Huang, Niranjan U.
N., Mohammad Umar Hakeem and Anima Anandkumar. The Journal of Machine
Learning Research, 2016.

“Guaranteed Simultaneous Asymmetric Tensor Decomposition via Orthogonalized
Alternating Least Squares”, by Jialin Li and Furong Huang, 2018.

“Tensorized Spectrum Preserving Compression for Neural Networks”, by Jiahao Su,
Jingling Li, Bobby Bhattacharjee and Furong Huang, 2018.

74 / 75

Tensor Softwares

Spark implementation of method of moments to learn Latent
Dirichlet Allocation available at
https://github.com/FurongHuang/spectrallda-tensorspark.

Tensorly: Simple and Fast Tensor Learning in Python available at
http://tensorly.org/stable/home.html.

A general library with higher order tensor operations is coming soon.

75 / 75

	Introduction
	Motivation: Challenges of MLE for Gaussian Mixtures
	Introduction of Method of Moments and Tensor Notations
	Topic Model for Single-topic Documents
	Algorithms for Tensor Decompositions
	Tensor Decomposition for Neural Network Compression
	Conclusion

