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Tutorial Topic

Learning algorithms
for latent variable models

based on decompositions of moment tensors.
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Tutorial Topic

Learning algorithms (parameter estimation)
for latent variable models
based on decompositions of moment tensors.
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Application 1: Clustering

@ Basic operation of grouping data points.

@ Hypothesis: each data point belongs to an unknown group.
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Application 1: Clustering

@ Basic operation of grouping data points.

@ Hypothesis: each data point belongs to an unknown group.

Probabilistic/latent variable viewpoint

@ The groups represent different distributions. (e.g. Gaussian).

@ Each data point is drawn from one of the given distributions. (e.g.

Gaussian mixtures).
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Application 2: Topic Modeling

Document modeling
@ Observed: words in document corpus.
@ Hidden: topics.

@ Goal: carry out document summarization.
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Application 3: Understanding Human Communities
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@ Observed: network of social ties, e.g. friendships, co-authorships

Social Networks

@ Hidden: groups/communities of social actors.



Application 4: Recommender Systems
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Recommender System

@ Observed: Ratings of users for various products, e.g. yelp reviews.

o Goal: Predict new recommendations.
@ Modeling: Find groups/communities of users and products.
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Application 5: Feature Learning

Label Features
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Feature Engineering

@ Learn good features/representations for classification tasks, e.g.
image and speech recognition.

@ Sparse representations, low dimensional hidden structures.
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Application 6: Computational Biology

RPL2A

ReSOA

Gasch et al. Aol Diol G=il 2000.

@ Observed: gene expression levels
@ Goal: discover gene groups

@ Hidden variables: regulators controlling gene groups

RPL2ZA
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Application 7: Human Disease Hierarchy Discovery
CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases.
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" Scalable Latent TreeModel and its Application to Health Analytics ” by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun,

A. Anandkumar, NIPS 2015 MLHC workshop.
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How to model hidden effects?

Basic Approach: mixtures/clusters

@ Hidden variable h is categorical.

Advanced: Probabilistic models
@ Hidden variable h has more general distributions. ho | hs

@ Can model mixed memberships.

1 T2 X3 T4

This talk: basic mixture model and some advanced models.
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Challenges in Learning
Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.
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Challenges in Learning — find hidden structure in data
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Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?
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Challenge: Efficient Learning of Latent Variable Models

@ MCMC: random sampling, slow
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Challenges in Learning — find hidden structure in data
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Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models
@ MCMC: random sampling, slow

Exponential mixing time
@ Likelihood: non-convex, not scalable
Exponential critical points

o Efficient computational and sample complexities?
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Challenges in Learning — find hidden structure in data
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Unlabeled data Latent variable model Tensor Decomposition Inference

Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models
@ MCMC: random sampling, slow
Exponential mixing time
@ Likelihood: non-convex, not scalable
Exponential critical points
o Efficient computational and sample complexities?

Guaranteed and efficient learning through spectral methods
11/75



What this tutorial will cover

QOutline

© Introduction
© Motivation: Challenges of MLE for Gaussian Mixtures
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What this tutorial will cover

QOutline

© Introduction

© Motivation: Challenges of MLE for Gaussian Mixtures

© Introduction of Method of Moments and Tensor Notations
@ Topic Model for Single-topic Documents

> Identifiability
» Parameter recovery via decomposition of exact moments

© Error-tolerant Algorithms for Tensor Decompositions

» Decomposition for tensors with linearly independent components
» Decomposition for tensors with orthogonal components

@ Tensor Decomposition for Neural Network Compression

@ Conclusion
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Outline

© Motivation: Challenges of MLE for Gaussian Mixtures
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Gaussian Mixture Model

Generative Model
@ Samples are comprised of K different Gaussians according to
Cat(my, 7o, ..., TK)
@ Each sample is from one of the K Gaussians, N (up, Xp), Vh € [K]

H ~ Cat(my,m9,...,TK) "
Xl ~ N(un, Bn), Vh € K]
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Gaussian Mixture Model

Generative Model
@ Samples are comprised of K different Gaussians according to
Cat(my, mo, ..., TK)
@ Each sample is from one of the K Gaussians, N (up, Xp), Vh € [K]

H ~ Cat(ﬂl,ﬂ’g,...,ﬂ’}()
X‘H:h ~ N(I”’ha 2h)7 Vh e [K]

Learning Problem

Estimate mean vector (1}, covariance matrix X, and mixing weight
Cat(my, o, ..., k) of each subpopulation from unlabeled data.

14 /75



Maximum Likelihood Estimator (MLE)

Data {x;}],

Likelihood Prg(data) td [T, Pro(x;)

Model parameter estimation §m|e := argmax log Prg(data)
0cO

Latent variable models: some variables are hidden

» No “direct” estimators when some variables are hidden
» Local optimization via Expectation-Maximization (EM)

15/75



MLE for Gaussian Mixture Models

Given data {z;}!" ; and the number of Gaussian components K, the
model parameters to be estimated are 8 = {(pp,, Xp, 75) HE .

o~

0, for Gaussian Mixture Models

n K
2y Th 1 Ty—1
Ormle := 1 E T~ 173 —5(®i — Y i — Hh
le arggnax E 0g< det(=5) 172 eXP( 2(~’13 pn) ' 3y (s — )))

i=1 h=1

o Solving MLE estimator is NP-hard (Dasgupta, 2008; Aloise, Deshpande,
Hansen, & Popat, 2009; Mahajan, Nimbhorkar, & Varadarajan, 2009; Vattani, 2009;
Awasthi, Charikar, Krishnaswamy, & Sinop, 2015).
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Consistent Estimator

Definition
Suppose iid samples {x;}I" ; are generated by distribution Prg(z;) where
the model parameters 8 € ® are unknown. An estimator 0 is consistent if

E|6 -6 -0 as n— oo

Spherical Gaussian Mixtures ¥, = I (as n — 00)

@ For K =2 and 7, = 1/2: EM is consistent (Xu, H., & Maleki, 2016;
Daskalakis, Tzamos, & Zampetakis, 2016).

@ Larger K: easily trapped in local maxima, far from global max (Jin,
Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

@ Practitioners often use EM with many (random) restarts, but may
take a long time to get near the global max.

17 /75



Hardness of Parameter Estimation

Exponentially difficult computationally or statistically
to learn model parameters, even under the parametric setting.

Cryptographic hardness Information-theoretic hardness

E.g., Mossel & Roch, 2006 E.g., Moitra & Valiant, 2010

May require 29(K) running time or 22UK) sample size.
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Ways Around the Hardness

@ Separation conditions.

;— : 2 . ..
E.g., assume Hin % is sufficiently large.
]

i J

@ Structural assumptions.
E.g., assume sparsity, separable (anchor words).

@ Non-degeneracy conditions.
E.g., assume p1, ..., g span a K-dimensional space.

This tutorial: statistically and computationally efficient learning algorithms
for non-degenerate instances via method-of-moments.

19/75



Outline

© Introduction of Method of Moments and Tensor Notations
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Method-of-Moments At A Glance
© Determine function of model parameters 6 estimatable from
observable data:
» Moments
Eol/(X)]
@ Form estimates of moments using data (iid samples {x;}" ;):
» Empirical Moments R
E[f(X)]
© Solve the approximate equations for parameters 6:
» Moment matching

Toy Example

How to estimate Gaussian variable, i.e., (¢, %),
given iid samples {x;}7, ~ N (u, X2)?
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What is a tensor?

Multi-dimensional Array
@ Tensor - Higher order matrix
@ The number of dimensions is called tensor order.
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Tensor Product

[a & b]il,iQ a®b® c]ilﬂ'e,iz
a/i/l ci:&i biQ
= =EDZI
° [a ® b]i17i2 = ailbiz ° [a ®b® c]ihiz,i:s = ailbiz Cig
@ Rank-1 matrix @ Rank-1 tensor

23 /75



Slices

H

@ Horizontal slices

@ Lateral slices

Frontal slices




Fiber

@ Mode-1 (column)
fibers

@ Mode-2 (row)
fibers

@ Mode-3 (tube)
fibers



CP decomposition

a; a ap

R
o X = Zah®bh®ch
h=1

@ Rank: Minimum number of rank-1 tensors whose sum generates the
tensor.
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Multi-linear Transform

Multi-linear Operation

R
If T = > ap® by ® cp, a multi-linear operation using matrices
h=1
(X,Y,Z) is as follows

(XTah) ® (YTbh) ® (ZTCh).

M=

T(X,Y,Z) =

i
L

Similarly for a multi-linear operation using vectors (x,y, 2)

(x"an) @ (y'by) @ (2" cp).

M=

T(x,y,2) =

>
Il
—
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Tensors in Method of Moments
Matrix: Pair-wise relationship

[xex];; Xj

X; Hl:l:.

@ Signal or data observed x € R?

@ Rank 1 matrix: [x ® z]; ; = x;x; —

o Aggregated pair-wise relationship

M; =E[x ® x]

Tensor: Triple-wise relationship or higher

[xexex];

X
@ Rank 1 tensor: ¥ W X
N, - ZEIZIZI

o Aggregated triple-wise relationship

@ Signal or data observed x € R¢

Mz =E[z®z® x| = Ezo?]

28 /75



Why are tensors powerful?

Matrix Orthogonal Decomposition
@ Not unique without eigenvalue gap

[ (1) (1) } :elelT—I—eQeQT:uluI—i—ugu;r
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Why are tensors powerful?

Matrix Orthogonal Decomposition

@ Not unique without eigenvalue gap

[ (1) (1) } :elelT—I—eQeQT:uluI—i—ugu;r

@ Unique with eigenvalue gap

Tensor Orthogonal Decomposition (Harshman, 1970)

@ Unique: eigenvalue gap not needed

= © + o

Tensor = u;@u;@u;tu,@u,@y,
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Outline

@ Topic Model for Single-topic Documents
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Topic Modeling
General Topic Model (e.g., Latent Dirichlet Allocation)

I I | I|I o K topics
I I » each associated with a distribution
il g

over vocab words {a;}X_;

@ Hidden topic proportion w
|III!III I | | » per document i, w9 € AK-1
nes

iid . .
@ Document ~ mixture of topics

Eg., r/\o\
~iid 0.6- II||||||II+O'3' II|||||I.|+0'1 ) ||||||||||+o' IIIIlII"I
o sports science politics  business
Topic Word Matrix
la ‘5%%/%-
PV Pry[“play” | sports] = 0.0002 8 %%

game [ Pr,[“game” | sports] = 0.0003  P&Y[ [T ]
seasonll Pry[“season” | sports] = 0.0001 game [}

season

Word Count per Document
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Topic Modeling
Topic Model for Single-topic Documents

I I I I|I o K topics
I I » each associated with a distribution
il | g

over vocab words {a;} ¥ |

@ Hidden topic proportion w
|III III I | | » per document i, w'") € {e;,...,ex}
nes!

) 1ics iid
@ Document ~ ay,

~iid 1.0 |||||||||I+ 0 “Illllluﬁ 0'||||||||||+0' IIIIlII"I

s sports science politics  business
Topic Word Matrix

PYL] pr,[“play” | sports] = 0.0002 %,
game | pr [“game” | sports] = 0.0003 P[] L]
season@l Pr,[“season” | sports] = 0.0001 game [

season

Word Count per Document
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Model Parameters of Topic Model for Single-topic

Documents
Estimate Topic Proportion

I... @ Topic proportion w = [wy,...,wk]
%%&%@% wy, = P[topic of word = h|

O @ Topic-word matrix A = [a4,...,ak]

P'aVﬁ Ajp, = Plword = ej|topic = h]
game

@ Goal: to estimate model parameters {(ay, w;)}_,, given iid samples
of n documents (word count {c("}7_)

@ Frequency vector (") = %) the length of document is L = Zj cg.i)
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Moment Matching

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

""%A"?;*” ghoosehNCat(wl,...,wK)

4%, enerate L words ~ ap,

play ® E[z] = 3K | Pltopic = h]E[x|topic = h]

game 9 E[z|topic = k] =| >, P[word = e;|topic = hle; | = ay,

season
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Moment Matching

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

""%A"?;*” ghoosehNCat(wl,...,wK)

4%, enerate L words ~ ap,

play @ E[z] = 3K | Pltopic = h]E[w|topic = h] = K whan
game 9 E[z|topic = k] =| >, P[word = e;|topic = hle; | = ay,

season
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

£a2 Choose h ~ Cat(wi,...,wk)

3%0%

%3, Generate L words ~ ap,

play @ E[z] = 3K | Pltopic = h]E[w|topic = h] = K whan
game @ E[x|topic = h] = ‘ >_; Plword = e;topic = hle; ‘ =ay

season

M : Distribution of words (ﬁl: Occurrence frequency of words)

— 1 .
My =E[z] = : == ()
1 [x] thaha M,y . Zw
h =1
campus
policeE = ﬁ + ﬁ + E
witness
5
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

£a2 Choose h ~ Cat(wi,...,wk)

3%0%

%3, Generate L words ~ ap,

play @ E[z] = 3K | Pltopic = h]E[w|topic = h] = K whan
game @ E[x|topic = h] = ‘ >_; Plword = e;topic = hle; ‘ =ay

season

M : Distribution of words (ﬁl: Occurrence frequency of words)

1 :
M, =E[z] = thah; M; = - Zw(l)
h i=1

campus|
police - + +
witness o
0

&F & <&
& <« &

‘ No unique decomposition of vectors‘
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

XY Choose h ~ Cat(wi,...,wk)
| "f%%g& Generate L words ~ ay,
play @ E[z] = X5 | Pltopic = h|E[z|topic = h] =K  wyay

game @ E[x|topic = h] = ‘ >_; Plword = e;topic = hle; ‘ =ay

season

M, Distribution of word pairs (Maz: Co-occurrence of word pairs)
M, =Elz Qx| = thah R ap; 1/\/1\2 = 1 Zw(i) ® x®
h "

campus|
police

witness
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

@ Generative process:

26 2% Choose h ~ Cat(wi,...,wk)
9%*%& Generate L words ~ ay,
play @ E[z] = 3K | Pltopic = h]E[w|topic = h] = K whan
game @ E[x|topic = h] = ‘ >_; Plword = e;topic = hle; ‘ =ay

season

M,: Distribution of word pairs (Mo: Co—occurrence of word pairs)
Mo =]E[:l:®:l:]=Z’whah®ah; ]/W\Q Zil? ®$l)
h

campus|
police + +
witness . o°
) %Qoé‘o é \&e

\ ef’ c
z‘(& \ %b\)

Matrix decomposition recovers subspace, not actual model
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Find a W ﬁ»i i»i E»ﬁ such that i-Li-LE

M, Distribution of word pairs (Mg Co- occurrence of word pairs)
M =Ejz® x| = thah®ah, M, = Zw ® x®
h

campus|
police E = + +
witness

S ]
& \\ ef’ & & ]
& O & <« &€

Many such W's, find one such that v;, = W " a;, orthogonal
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W ﬁ»i i»i E»ﬁ such that i-Li-LE

M3 Distribution of word triples (./\/23: Co-occurrence of word triples)
_ 3) _ 5. e = LN ()0
M3—E[:E® }—thah(@ ;o Ms = n;w &

£, h =
o, oy, L
/b C‘@ 7 2 27 7
'oo\y 7 4 7 4
campus ” ’
e sm w = + +
police 71 BT | ¢
witness| [ | | .”
B | &
3> > (2
C

Orthogonalize the tensor, project data with W: Mg(W W W) ‘
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

Know a W [ﬁ»i i»i E—»ﬁ]such that i-Li-LE

M 3: Distribution of word triples (./\/23: Co-occurrence of word triples)

Ms(W, W W) =E[(W 2)@%] =Y wy (W a,)@% Ms(W, W, W) = % > (wia®)e?
h =1

. g

Unique orthogonal tensor decomposition {o, }1
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

KnowaW[ i i -ﬁ i E—»ﬁ]suchthat FLEL

Ms: Distribution of word trlples (M3 Co-occurrence of word trlples)
Mz(W, W, W) =E[(W ") th W Ta,)®% Ms(W, W, W) Z(WT N

F'+?'+?'

Model parameter estimation: a;, = (W ')},
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Identifiability: how long must the documents be?

Nondegenerate model (linearly independent topic-word matrix)

KnowaW[ i i -ﬁ i E—»ﬁ]suchthat FLEL

M 3: Distribution of word triples (.//\\/13: Co-occurrence of word triples)

Ms(W, W W) =E[(W 2)@%] =Y wy (W a,)@% Ms(W, W, W) = % > (wia®)e?
h 1=1

‘S S

L > 3: Learning Topic Models through Matrix/Tensor Decomposition
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Take Away Message

@ Consider topic models satisfying linear independent word distributions
under different topics.

@ Parameters of topic model for single-topic documents can be
efficiently recovered from distribution of three-word documents.

» Distribution of three-word documents (word triples)

My=Elz@r@a] =) wya,®a,®a,
h
> M\gi Co-occurrence of word triples

@ Two-word documents are not sufficient for identifiability.
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

4
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

4
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W Tensor
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Running Time (s)
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Learning Communities from Graph Connectivity
Facebook: n ~ 20k Yelp: n ~ 40k DBLPsub: n ~ 0.1m DBLP: n ~ 1m
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

4
108 10 x10

W Tensor
W Variational

®

Perplexity

%
%

Running Time (s)
°

(o)

10° o

Learning Communities from Graph g@ir%ctivity
?
Facebook: n ~ 20k Yelp: n ~ 4Ql€°¢®BBLPsub: n ~ 0.1m DBLP: n ~ 1m

N\ 6
%‘“ "7)\10
210! ) O
° & 8 10°
I o g
)
100 E
» "
£ 0 =
f c
« 10" g S
E 10
2 2
10 Su 10 s

“Online Tensor Methods for Learning Latent Variable Models”, F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14.
“Tensor Methods on Apache Spark”, by F. Huang, A. Anandkumar, Oct. 2015.
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Outline

© Algorithms for Tensor Decompositions
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Jennrich’s Algorithm (Simplified)

Task: Given tensor T = Zthl pn @3 with linearly independent
components {p; }_,, find the components (up to scaling).

=@? + @f

Tensor = u;@u;@u;tu,@u,@y,
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Jennrich’s Algorithm (Simplified)

Task: Given tensor T = Zthl pn @3 with linearly independent
components {p; }_,, find the components (up to scaling).

Properties of Tensor Slices
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Jennrich’s Algorithm (Simplified)

Task: Given tensor T = Zthl pn @3 with linearly independent
components {p; }_,, find the components (up to scaling).

Properties of Tensor Slices

@ Linear combination of slices T(I,I,¢c) =), < pn,c > pp @ pp,

Intuitions for Jennrich’s Algorithm

Linear comb. of slices of a tensor share the same set of eigenvectors‘

The shared eigenvectors are tensor components {p; }_
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Jennrich’s Algorithm (Simplified)

Task: Given tensor T = ZhK:1 w1, @3 with linearly independent
components {u, < |, find the components (up to scaling).

Algorithm Jennrich's Algorithm

Require: Tensor 7~ € R4xdxd
Ensure: Components {fi; } /5 = {1

1: Sample ¢ and ¢ independently & uniformly at random from S¢—1
2: Return {fi,}/ | « eigenvectors of (7(I,I,¢)T(I,1,c)")
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Jennrich’s Algorithm (Simplified)

Task: Given tensor T = Zthl w1, @3 with linearly independent
components {u, < |, find the components (up to scaling).

Algorithm Jennrich's Algorithm

Require: Tensor 7~ € R4xdxd

Ensure: Components {fi; } /5 = {1
1: Sample ¢ and ¢ independently & uniformly at random from S¢—1
2: Return {fi,}/ | « eigenvectors of (7(I,I,¢)T(I,1,c)")

Consistency of Jennrich's Algorithm?

Estimators {11, }/_ | = unknown components {;,}2 | (up to scaling)?
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Analysis of Consistency of Jennrich’s algorithm
Recall: Linear comb. of slices share eigenvectors {5,
i.e.,
T(I,1,e)T(I,1,¢)'"*2UuDU"(U")'D'U'"2U(D.D_")U",

where U = [p1]. .. |k ] are the linearly independent tensor components

and D, = Diag( < pr,ec>, .., < pg,C > ) is diagonal.
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Analysis of Consistency of Jennrich’s algorithm
Recall: Linear comb. of slices share eigenvectors {p }H-,,
i.e.,

T(I,1,e)T(I,1,¢)'"*2UuDU"(U")'D'U'"2U(D.D_")U",

where U = [p1]. .. |pk] are the linearly independent tensor components
and D, = Diag( < pr,ec>, .., < pg,C > ) is diagonal.

By linear independence of {u;}!£, and random choice of ¢ and ¢’:
O U has rank K;
© D, and D, are invertible (a.s.);
© Diagonal entries of D.D_,! are distinct (a.s.);
So {p;}X | are the eigenvectors of T (I,I,¢)T (I,I,c)! with distinct
non-zero eigenvalues.
Jennrich's algorithm is consistent‘
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Error-tolerant algorithms for tensor decompositions
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Moment Estimator: Empirical Moments
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Moment Estimator: Empirical Moments
® Moments Eg[f(X)] are functions of model parameters 6
@ Empirical Moments E[f(X)] are computed using iid samples {z;}}_,
only
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Example

@ Third Order Moment: distribution of word triples
Exrxz]=),w,a,a, ®ay
@ Empirical Third Order Moment: co-occurrence frequency of word
triples
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Moment Estimator: Empirical Moments
® Moments Eg[f(X)] are functions of model parameters 6

@ Empirical Moments E[f(X)] are computed using iid samples {z;}}_,

only

Example

@ Third Order Moment: distribution of word triples
Exrxz]=),w,a,a, ®ay

@ Empirical Third Order Moment: co-occurrence frequency of word
triples

E[m®m®m]=%2xi®xi®xi

1

@ Inevitably expect error of order n™ 2 |n some norm, e.g.,
Operator norm: |Elx ® x @ x] — [ ®xQ x| én’%

where [T := sup T (xz,v,2)

x,y,z€S871
Frobenius norm: |[Ez @ z @ ] —Ez @z @ x]|r Sn?
where ||T||F := Z Tfj7k

.5,k

41
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Stability of Jennrich’s Algorithm

Recall Jennrich’s algorithm

Given tensor T = Z}Ile pn,®3 with linearly independent components
{pr}_,, find the components (up to scaling).

Algorithm Jennrich's Algorithm

Require: Tensor 7~ € R¥xdxd

Ensure: Components {fi;}5X | = {p,}
1: Sample ¢ and ¢’ independently & uniformly at random from S%-!
2: Return {fi,}_, « eigenvectors of (T (I,1,¢)T (I,1,c)T)
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Recall Jennrich’s algorithm

Given tensor T = Z}Ile 1, ®3 with linearly independent components
{pp Y |, find the components (up to scaling).

Algorithm Jennrich's Algorithm

Require: Tensor 7~ € R¥xdxd

Ensure: Components {fin | = {un} 5,
1: Sample ¢ and ¢’ independently & uniformly at random from S%-!
2: Return {fi,} | « eigenvectors of (T (I,1,¢)T (I,1,c)T)
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Stability of Jennrich’s Algorithm
Recall Jennrich's algorithm

Given tensor T = K: @3 with linearly independent components
h=1
{pp |, find the components (up to scaling).

Algorithm Jennrich's Algorithm
Require: Tensor T ¢ Rdxdxd

Ensure: Components {fis }X_ | 2 {p, 1 7
1: Sample ¢ and ¢ independently & uniformly at random from S¢—1

2: Return {11}, + eigenvectors of (7A'(I,I, e)T (1,1, c’)T)

Challenge: Only have access to 7 such that |7 — T S n"z
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Ensure: Components {fin | = {pn} | 7
1: Sample ¢ and ¢’ independently & uniformly at random from S%-!
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Recall Jennrich’s algorithm

Given tensor T = Z}Ile pn,®3 with linearly independent components
{pr}_,, find the components (up to scaling).

Algorithm Jennrich's Algorithm
Require: Tensor 7 € Rdxdxd
Ensure: Components {fin | = {pn} | 7
1: Sample ¢ and ¢’ independently & uniformly at random from S%-!

2: Return {fi}5_| < eigenvectors of (’i’(I,I7 e)T (1,1, c’)T)

Stability of eigenvectors requires eigenvalue gaps
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Stability of Jennrich’s Algorithm
Recall Jennrich’s algorithm

Given tensor T = Z}Ile pn,®3 with linearly independent components
{pr}_,, find the components (up to scaling).

Algorithm Jennrich's Algorithm
Require: Tensor 7 € Rdxdxd
Ensure: Components {fin | = {pn} | 7
1: Sample ¢ and ¢’ independently & uniformly at random from S%-!

2: Return {fi}5_| < eigenvectors of (’?(I,I, e)T (1,1, c’)T)

Stability of eigenvectors requires eigenvalue gaps

@ To ensure eigenvalue gaps for ’?(, ° c)’?(', e,
1T e)T(e)t =T, e)T (- e)f|| < Ais needed.
o Ultimately, |7 — 7| < pled is required. ‘A different approach?
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Initial ldeas

In many applications, we estimate moments of the form

K
M3: E whah®3,
h=1

where {ah}hK:1 are assumed to be linearly independent.

What if {ay,}}_, has orthonormal columns?
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Initial ldeas
In many applications, we estimate moments of the form

K
M3: E whah®3,
h=1

where {a,}X_, are assumed to be linearly independent.

What if {a;}X , has orthonormal columns?
h=1

Ms(1,a;,a;) =, wyan, a;)’an= w;a;, Vi.
@ Analogous to matrix eigenvectors: Mv = M (I,v) = \v.

o Define orthonormal {a;,}* | as eigenvectors of tensor Ms.

Two Problems
o {a,}X_| is not orthogonal in general.

@ How to find eigenvectors of a tensor?
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Initial ldeas
In many applications, we estimate moments of the form

K
M3: E whah®3,
h=1

where {a,}X_, are assumed to be linearly independent.

What if {a, thl has orthonormal columns?

Ms(1,a;,a;) =, wyan, a;)’an= w;a;, Vi.
@ Analogous to matrix eigenvectors: Mv = M (I,v) = \v.

o Define orthonormal {a;,}* | as eigenvectors of tensor Ms.

Two Problems
o {a,}X | is not orthogonal in general.

43 /75



Whitening is the process of finding a whitening matrix W such that
multi-linear operation (using W) on M3 orthogonalize its components:

MW, W W) =D wy(W ' a,)@”
h

= thvh®3, v Lwvy, Yh#1
h
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Whitening

Given
M; = thah®3, M, = Z Whap & Ap,
h h
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Whitening

Given

M; = thah®3, M, = thah ® ap,
h h

@ Find whitening matrix W s.t. W Tay, = vy, are orthogonal.

@ When {ah}{le € R¥K has full column rank, it is an invertible
transformation.

(21
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Using Whitening to Obtain Orthogonal Tensor

- o
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Using Whitening to Obtain Orthogonal Tensor

Multi-linear transform
o T = Mg(W, W, W) = Zh wh(WTah)®3.
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- o

Multi-linear transform
o T = Mg(W, W, W) = Zh wh(WTah)®3.

e 7= 5 wy- v,®° has orthogonal components.
he[K)
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Using Whitening to Obtain Orthogonal Tensor

Multi-linear transform
o T = Mg(W, W, W) = Zh wh(WTah)®3.
e 7= 5 wy- v,®° has orthogonal components.
he[K)
@ Dimensionality reduction when K < d, as Mz € R?*¥*4 and
T € RKXKXK_
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How to Find Whitening Matrix?

Given
M = thah®3, M, = Z WhAK @ Qp,
h h

al U1

w
é? oy o
as

Goal: W such that U3
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How to Find Whitening Matrix?

Given
M = thah®3, M, = Z WhAK @ Qp,
h h

al U1
w
éf g v2
Goal: W such that a3 U3
@ Use pairwise moments My to find W s.t. W' M, W = 1.

o W = UDiag(;\~_1/2), where Eigen-decomposition
M, = UDiag AU ™.
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How to Find Whitening Matrix?
Given
Mz = thah®3, M, = thah ® ap,
h

h
al U1
w
éf ’ v2
Goal: W such that a3 U3

@ Use pairwise moments My to find W s.t. W' M, W = 1.
o W = UDiag(;\_1/2), where Eigen-decomposition

M, = UDiag( AU ".
o V := W' ADiag(w)'/? is an orthogonal matrix.

T =MW W W)= w, AW ay/wy)®?

h
= Z )\hvh®3, Ap = w;l/Q.
h

T is an orthogonal tensor.
47 /75



Initial Ideas
In many applications, we estimate moments of the form

M3 = E whap®>,
h
where {ah/},[f:l are assumed to be linearly independent.

What if {ay,}}_; has orthonormal columns?

Ms(1,a;,a;) =, wplan, a;)’an= w;a;, Vi.

@ Analogous to matrix eigenvectors: Mv = M (I,v) = \v.

@ Define orthonormal {ay}X_, as eigenvectors of tensor M
Two Problems

® {a,}5_| is not orthogonal in general.

@ How to find eigenvectors of a tensor?

DA
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Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M = Z}Ile ARV ® vy, with orthonormal components
{vp HE | (vn L vy, YA # 1), find the components//eigenvectors.
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Review: Orthogonal Matrix Eigen Decomposition

Task: Given matrix M = Z}Ile ARV ® vy, with orthonormal components
{vp HE | (vn L vy, YA # 1), find the components//eigenvectors.

Properties of Matrix Eigenvectors

o Fixed point: linear transform M (I,v;) = 3, Ap(vs, Vp)Vp = Nv;

Intuitions for Matrix Power Method

Linear transform on eigenvectors {vj,}X_ | preserve direction
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Orthogonal Tensor Eigen Decomposition

Task: Given tensor T = Zthl Anv,®2 with orthonormal components
{vp | (vp L vy, VA # 1), find the components /eigenvectors.

= 9 + o

Tensor = u;@u;@u;tu,@u,@y,
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Orthogonal Tensor Eigen Decomposition

Task: Given tensor T = Zthl Anv,®2 with orthonormal components
{vp | (vp L vy, VA # 1), find the components /eigenvectors.

Properties of Tensor Eigenvectors

@ Fixed point: bi-linear transform
T, vi,v:) = >, An(vi, vp)?vp = N

=@? + @f

Tensor = u;@u;@u;tu,@u,@y,

Intuitions for Tensor Power Method

Bilinear transform on eigenvectors {v),}}< | preserve direction
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Orthogonal Matrlx Elgen Decomposition
Task: Given matrix M = Zh 1)\h’0h® with orthonormal components

{vp}E_ | (vp L vy, VR # R'), find the components/eigenvectors.

Algorithm Matrix Power Method
Require: Matrix M € REXK

Ensure: Components {ﬁh}{lewgp'{vh}{le

1: forh=1: K do

2. Sample ug uniformly at random from S&—1
33 fori=1:Tdo
5. end for
6
7
8

’U}L <~ ur, /\h <— M(vh,'vh)
. Deflate M + M — \,0;,®?
: end for
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Orthogonal Matrlx Elgen Decomposition
Task: Given matrix M = Zh 1)\h’0h® with orthonormal components

{vp}E_ | (vp L vy, VR # R'), find the components/eigenvectors.

Algorithm Matrix Power Method
Require: Matrix M € REXK

Ensure: Components {6h}}llew'lp'{vh}{f:1

1: forh=1: K do

2. Sample ug uniformly at random from S&—1
33 fori=1:Tdo
5. end for
6
7
8

B, < ur, A, < M (%, 1)
. Deflate M <+ M — \,0,®?
: end for

Consistency of Matrix Power Method?

Is there convergence? {'T);,/}ff:] = {'vh/}ff:] w.h.p.?
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Orthogonal Matrlx Eigen Decomposition
Task: Given matrix M = Zh 1 A\Lvp®? with orthonormal components

{vp}E_ | (vp L vy, VR # R'), find the components/eigenvectors.

Algorithm Matrix Power Method
Require: Matrix M € REXK

Ensure: Components {6h}}llew'gp'{vh}{f:1
1: forh=1: K do
2. Sample ug uniformly at random from
33 fori=1:Tdo
I Rl (¢ ey
5:  end for
6
7
8

SK_l

’Uh <~ ur, /\h <— M(vh,vh)
. Deflate M + M — M\, 0,22
: end for

Consistency of Matrix Power Method?

Is there convergence? {'T);,/}ff:] = {'vh/}ff:] w.h.p.?

Does the convergence depend on initialization?
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Orthogonal Tensor Elgen Decomposition
Task: Given tensor T = Zh 1 Apvp®° with orthonormal components

{vp}E_ | (vp L vy, VR # R'), find the components/eigenvectors.

Algorithm Tensor Power Method
Require: Tensor T~ € REXKXK

Ensure: Components {ﬁh}{lewgp'{vh}{le
1: forh=1: K do
2. Sample ug uniformly at random from
33 fori=1:T do
5:  end for
6
7
8

SK—l

B, < up, A T (n, v, Uh, V)
: Deflate 7 + T — )\hvh®
: end for
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Orthogonal Tensor E|§en Decomposition
Task: Given tensor T = Zh 1 Apvp®° with orthonormal components

{vp}E_ | (vp L vy, VR # R'), find the components/eigenvectors.

Algorithm Tensor Power Method
Require: Tensor T~ € REXKXK

Ensure: Components {6h}}llew'lp'{vh}{f:1
1: forh=1: K do
2. Sample ug uniformly at random from
33 fori=1:T do
5:  end for
6
7
8

SK_l

’Uh —ur, /\h “— T(’Uh, ’Uh, ’Uh)
. Deflate T+ T — \0,@3
: end for

Consistency of Tensor Power Method?

Is there convergence? {'T);,/}ff:] = {'vh/}ff:] w.h.p.?
Does the convergence depend on initialization?
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Analysis of Consistency of Matrix Power Method

@ Order eigenvectors {vh}}fle such that corresponding eigenvalues
satisfy A1 > Ag... > Ak.

@ Project initial point ug onto eigenvectors {v}5_,
Ch = <U0,Uh>, Vh
Convergence properties

@ Unique (identifiable) i.f.f. {\,}2 | are distinct.
o If gap i—f < 1 and ¢; # 0, matrix power method converges to v;.

@ Converges linearly to vy assuming gap A2/A\ < 1.
» Linear transform permits M (I,uo) = >_, A (v wo)vs = 3., Ancavn,
i.e., projection in vy, direction is scaled by Ap.

. . (va)2 \ 2t
» In ¢ iterations, ——*~> >1—- K| 5] .
> ('viT”) !
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Analysis of Consistency of Tensor Power Method

@ Project initial point u( onto eigenvectors ¢, = (ug, vy), Vh.
@ Order eigenvectors {v;,}2 | such that
Atler] > Aglea| > - > Aklex|.
Convergence properties

o ldentifiable i.f.f. {)\h|ch|}hK:1 are distinct. Initialization dependent.

o If iziﬂ < 1 and Aq|e1| # 0, tensor power method converges to v;.

Note w1 is NOT necessarily the largest eigenvector.

@ Converges quadraticly to v; assuming gap )\Q}ZI < 1.

» Bi-linear transform permits 7°(I, wo,uo0) = 3, A (v;':uo)z'uh =34 Ancd vy
i.e., projection in vy, direction is squared then scaled by Aj.

o) s
> In ¢ iterations, —— ) >1-— k(#)

(v v max;_1 A;

v2c2
vicy

54 /75



Matrix vs. tensor power iteration

Matrix power iteration:

Tensor power iteration:
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Matrix vs. tensor power iteration

Matrix power iteration:

© Requires gap between largest and second-largest eigenvalue.

Property of the matrix only.

Tensor power iteration:

© Requires gap between largest and second-largest A\ |cp|.
Property of the tensor and initialization wuy.
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Matrix vs. tensor power iteration

Matrix power iteration:

© Requires gap between largest and second-largest eigenvalue.

Property of the matrix only.

© Converges to top eigenvector.

Tensor power iteration:

© Requires gap between largest and second-largest A\ |cp|.
Property of the tensor and initialization wuy.

@ Converges to v; which is the largest vp,|cp|. Not necessarily the largest

eigenvector.
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Matrix vs. tensor power iteration

Matrix power iteration:

© Requires gap between largest and second-largest eigenvalue.
Property of the matrix only.

© Converges to top eigenvector.
© Linear convergence. Need O(log(1/¢)) iterations.

Tensor power iteration:

© Requires gap between largest and second-largest A\ |cp|.
Property of the tensor and initialization wuy.

@ Converges to v; which is the largest vp,|cp|. Not necessarily the largest
eigenvector.

© Quadratic convergence. Need O(loglog(1/¢)) iterations.
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Spurious Eigenvectors for Tensor Eigen

Decomposition
T = Z ARV ®3 .
he[K]

Characterization of eigenvectors: T (I, v,v) = \v?

o {vh}}fle are eigenvectors as T (I, vy, vp) = A\pvp.
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Spurious Eigenvectors for Tensor Eigen

Decomposition
T = Z ARV ®3.
he|K]

Characterization of eigenvectors: T (I, v,v) = \v?

o {vh}}fle are eigenvectors as T (I, vy, vp) = A\pvp.
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Spurious Eigenvectors for Tensor Eigen

Decomposition
T = Z ARV ®3.
he|K]

Characterization of eigenvectors: T (I, v,v) = \v?

° {vh}}fle are eigenvectors as T (I, vy, vp) = A\pvp.
@ Bad news: There can be other eigenvectors (unlike matrix case).
E.g., when {\}E =1
v+ v - 1
v = ——2 satisfies T(I,v,v) = —=v.

V2 V2

How do we avoid spurious solutions (not components {v; }_)?

Optimization viewpoint of tensor Eigen decomposition will help.
‘AII spurious eigenvectors are saddle points.‘
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Optimization Viewpoint of Matrix/Tensor Eigen Decomposition
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Optimization Viewpoint of Matrix/Tensor Eigen

Decomposition
Optimization Problem
Matrix: max M (v,v) s.t. ||[v|| =1.  Tensor: maxT (v,v,v) s.t. |jv] = 1.
v v
@ Lagrangian: @ Lagrangian:
L(v,A) := M(v,v) — A(v v — 1). L(v,\) :=T(v,v,v) — L.5A(v " v — 1).
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v v
@ Lagrangian: @ Lagrangian:
L(v,A) := M(v,v) — A(v" v — 1). L(v,\) :=T(v,v,v) — L.5A(v " v — 1).
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Optimization Viewpoint of Matrix/Tensor Eigen

Decomposition
Optimization Problem
Matrix: max M (v,v) s.t. ||[v|| =1.  Tensor: maxT (v,v,v) s.t. |jv] = 1.
v v
@ Lagrangian: @ Lagrangian:
L(v,A) := M(v,v) — A(v" v — 1). L(v,\) :=T(v,v,v) — L.5A(v " v — 1).

Non-convex: stationary points = {global optima, local optima, saddle point}

Stationary Points: first derivative | VL(v,\) =0

VL(v,\)=2(M(I,v) —Av) =0 VL(v,\) =3(T(,v,v) —Av) =0
@ Eigenvectors are stationary points. @ Eigenvectors are stationary points.
M(I,v) . . T(I,v,v) .
@ Power r.nethod V= Ry 1S @ version ) Pow.er method .v R ETI
of gradient ascent. version of gradient ascent.

Local Optima: [w' V2L(v, \)w < 0| for all w L v, at a stationary point v

@ v is the only local optimum. @ {v,}K | are the only local optima.
@ All other eigenvectors are saddle points. @ All spurious eigenvectors are saddle
points.
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Question: What about performance under noise?
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Tensor Perturbation Analysis

@:|lz=1

T-T+& T=Y hone €] := max [E(w,2,a) <.
h
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Tensor Perturbation Analysis

T=T+& T=> N’ [€]:= max [E(zz,z) <e
h

x:||z||=1

Theorem: Let T' be number of iterations. If

7> log K +loglog b, < .

then output (v, A) (after polynomial restarts) satisfies
€
lo-ul <0 (). IA=xl <0,

where vy is s.t. Aler| > Aalea| ..., ¢ = (v;,ug), and wyg is the
(successful) initializer.
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Tensor Perturbation Analysis

T=T+& T=> N’ [€]:= max [E(zz,z) <e
h

x:||z||=1

Theorem: Let T' be number of iterations. If

7> log K +loglog b, < .

then output (v, A) (after polynomial restarts) satisfies
€
lo-ul <0 (). IA=xl <0,

where vy is s.t. Aler| > Aalea| ..., ¢ = (v;,ug), and wyg is the
(successful) initializer.

@ Careful analysis of deflation: avoid buildup of errors.

@ Implies polynomial sample complexity for learning.
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Other tensor decomposition techniques
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Orthogonal Tensor Decomposition

Simultaneous Power Method
® (Wang & Lu, 2017)

Simultaneous recovery of eigenvectors
Initialization is not optimal

Orthogonalized Simultaneous Alternating Least Square
@ (Sharan & Valiant, 2017)

Random initialization
Proved convergence for symmetric tensor

Initialization
@ SVD based initialization (Anandkumar & Janzamin, 2014).

@ State-of-the-art (trace based) initialization (Li & Huang, 2018).
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Outline

© Tensor Decomposition for Neural Network Compression
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Neural Network - Nonlinear Function Approximation
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Neural Network - Nonlinear Function Approximation
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Express Power
@ linear composition vs nonlinear composition

@ shallow network vs deep structure
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Revolution of Depth
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ResNet GoogleNet VGG

shallow

ILSVRC'13  ILSVRC'12  ILSVRC'11

ILSVRC'10
AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Revolution of Depth

AlexNet, 8 layers |

(ILSVRC 2012)

11x11 conv, 96, /4, pool/2 |

5x5 conv,

v
256, pool/2 |

<«

3x3 conv, 384 |

<«

3x3 conv, 384 |

3x3 conv, 256, pool/2 |

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”.

CVPR 2016.




AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun.

GoogleNet, 22 layers
(ILSVRC 2014)

‘Deep Residual Learning for Image Recognition”. CVPR 2016.



Revolution of Depth

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Revolution of Depth

101 layers
A
/86
Engines of /
. s 66 J/
visual recognition ss )
34 /!
81
______
HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*
PASCAL VOC 2007 Object Detection mAP (%)

*w/ other improvements & more data
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Challenges For Large Deep Neural Network

Learning

@ Learning takes longer, might not converge, susceptible to
vanishing/exploding gradients, etc

@ One-time cost.
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Challenges For Large Deep Neural Network

Learning

@ Learning takes longer, might not converge, susceptible to
vanishing/exploding gradients, etc

@ One-time cost.

Test

@ Requires large amount of computation and memory storage.
lll-suited for smart phones or loT device.

@ Repeated cost.

How to compress the neural network without much performance loss?
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Common Types of Tensor Decompositions

m-order tensor T~ € RIoxT1x-xTm—1

67 /75



Common Types of Tensor Decompositions

m-order tensor T~ € RIoxT1x-xTm—1

CANDECOMP/PARAFAC (CP) Decomposition
@ Factorize a tensor into sum of rank-1 tensors
@ Rank-1 tensor is defined as outer product of multiple vectors

° 7'1,07”' ZR 1M(0) M(m—l)

tm—1 7,20 Tylm—1
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Common Types of Tensor Decompositions
m-order tensor T~ € RIox 1xxIm-1
CANDECOMP/PARAFAC (CP) Decomposition
@ Factorize a tensor into sum of rank-1 tensors

@ Rank-1 tensor is defined as outer product of multiple vectors

° 7'1,07”' ZR 1M(0) M(m—l)

tm—1 7,20 Tylm—1

Tucker (TK) Decomposition

@ More general than CP decomposition

@ Multilinear operation on a core tensor C: C(M©) ... M(m=1)
_ Ro-1 Rpo1—1 (0) (m—-1)
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Common Types of Tensor Decompositions
m-order tensor T~ € RIox 1xxIm-1
CANDECOMP/PARAFAC (CP) Decomposition
@ Factorize a tensor into sum of rank-1 tensors

@ Rank-1 tensor is defined as outer product of multiple vectors

O Tiowsimes = Sorcg My My )

7520 Tylm—1

Tucker (TK) Decomposition

@ More general than CP decomposition

@ Multilinear operation on a core tensor C: C(M©) ... M(m=1)
_ Ro-1 Rpo1—1 (0) (m—-1)
° TiOv"' Jim—1 ET‘OO:O e Erm_llz(] cTo,...,Tn, 1M'r‘0 10 T M'r‘m_h’im_l

Tensor-Train (TT) Decomposition
@ Factorize a tensor into a number of interconnected lower-order tensors

O T i s = SRSl D))

ro=1 Tm—2=1 i0,70 7 T0,81,T1 Tm—2,%m—1
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Compression of Convolutional Layer w/ Tensor Decompositions
Convolutional Kernel: tensor IC € REXWxSx7
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Compression of Convolutional Layer w/ Tensor Decompositions
Convolutional Kernel: tensor IC € REXWxSx7

@ Filter height/width H/W, No. of input/output channels S/7".

@ Map an input tensor U € RXXY*5 to an output tensor Y € RX'*xY'x7"
Kernel CP Decomposition
@ CP: Decompose kernel IC into 3 factor tensors

R-1
0 ICijst= D K§?2 ) ’ngt)

‘ (2VHs

@ No. of param.: HWST — (HW + S+ T)R

CP decomposition
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Compression of Convolutional Layer w/ Tensor Decompositions
Convolutional Kernel: tensor IC € REXWxSx7

@ Filter height/width H/W, No. of input/output channels S/7".

@ Map an input tensor U € R¥*Y*5 to an output tensor YV € RX Y x7"

Kernel TK Decomposition

@ TK: Decompose IC into 1 core tensor, 2 factor tensors 5_0&&{;&}&0/_

W

—1R;—1
0) 5 (2)
0 ICijst = K K
i,3,5, T;Q rtZ:O 8,Ts ,J Ts,Te VTt TK decomposition

@ No. of param.: HWST — SR, + HWR;R; + R;T
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Compression of Convolutional Layer w/ Tensor Decompositions
Convolutional Kernel: tensor IC € REXWxSx7

@ Filter height/width H/W, No. of input/output channels S/7".

@ Map an input tensor U € R¥*Y*5 to an output tensor YV € RX Y x7"

Kernel TT Decomposition
@ TT: Decompose K into 4 factor tensors

R,—1R—1R;—1
O Kiji= > X% 1O 1) 4@ 4(3)

EN N N 7,7t T,
rs=0 r=0 r;=0

® No. of param.. HWST—SR,+HR;R+WR,R+ R, T

TT decomposition
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € REIXWxSxT" tensorized to
K;' c RH><W><So><~~~><Sm,1><T0><---><Tm,1
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@ Tensorization: kernel reshaped to higher order tensor.
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € REIXWxSxT" tensorized to
’C' c RHXWXS0><~~~><Sm,1><T0><---><Tm,1

@ Tensorization: kernel reshaped to higher order tensor.
o S=TI""Siand T =117, 7
@ Input tensor U € RX*Y XS tensorized to U’ € RX XY xSox-XSm—1
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € REIXWxSxT" tensorized to
’C' c RHXWXSOX~~~><Sm,1><T0><---><Tm,1

@ Tensorization: kernel reshaped to higher order tensor.

: 14 - 1.,
o S=TI"5" S and 7 =15 7.
@ Input tensor U € RX*Y XS tensorized to U’ € RX >V *S0x X Sm—1

@ Output reshaped V € RXXYXT to Y/ ¢ RX XY xTox-xTm—1
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € RZ*WxSxT" tensorized to
’C' c RHXWXSOX~~~><Sm,1><T0><---><Tm,1

@ Tensorization: kernel reshaped to higher order tensor.
~ m—1 & m—1
o S=][_, Siand 7' =TI,
@ Input tensor U € RX*Y XS tensorized to U’ € RX XY xSox-XSm—1

@ Output reshaped V € RXXYXT to Y/ ¢ RX XY xTox-xTm—1

Tensorized Kernel CP Decomposition

Sm
tensorized CP
@ Param. No.: HWST — (HW + S+ T)R — (m(ST)» + HW)R
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € REIXWxSxT" tensorized to
’C' c RHXWXS0><~~~><Sm,1><T0><---><Tm,1

@ Tensorization: kernel reshaped to higher order tensor.

o S=TI""Siand T =117, 7
@ Input tensor U € RX*Y XS tensorized to U’ € RX >V *S0x X Sm—1

@ Output reshaped V € RXXYXT to Y/ ¢ RX XY xTox-xTm—1

Tensorized Kernel TK Decomposition

A 1
I S m\ g
H R H :

_ofts B O: r : :
§_ofte e Bl Fu g : }%
w £ %%
5 T
TK tensorized TK

@ Param. No.: HWST—=SR,+HW R R, + R, T—m(Sw +1m )R+HW R*™
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Tensorized Spectrum Preserving Compression of Neural Networks

Convolutional Kernel: IC € REIXWxSxT" tensorized to
’C' c RHXWXS0><~~~><Sm,1><T0><---><Tm,1

@ Tensorization: kernel reshaped to higher order tensor.
m—1 m—1
o S=][., Siand T"=T[,Z, 7i.
@ Input tensor U € RX*Y XS tensorized to U’ € RX XY xSox-XSm—1

@ Output reshaped V € RXXYXT to Y/ ¢ RX XY xTox-xTm—1

Tensorized Kernel TT Decomposmon gL IE

T tensorized TT
@ Param. No.HW ST —SR,+HR R+W RR+R;T—(m(ST)= R+ HW)R
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Experiments - Compress CIFAR10 Resnet-34

Successful Compression of CIFAR10 Resnet-34 Network
Huang

Compression rate: SPC, E2E

Compression rate: t-SPC, Seq.
Method 5% 10% 20%  40%

2% 5% 10% 20%

Cp 84.02 86.93 88.75 88.75| 85.7 89.86 91.28 -
TK 83.57 86.00 88.03 89.35 | 61.06 71.34 81.59 87.11
TT 77.44 8292 84.13 86.64 | 7895 84.26 87.89 -

@ Testing accuracies of tensor methods under compression rates.
@ The uncompressed network achieves 93.2% accuracy.

o CIFAR10 Resnet-34 has 4 x 10° parameters that have to be trained
and retained during testing.
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Experiments - Compress ImageNet Resnet-50

Successful Compression of ImageNet Resnet-50 Network

Huang

# Uncompressed || SPC-TT | t-SPC-TT

Epochs (E2E) (Seq.)
0.2 4.22 0.66x 10.51x
0.3 6.23 0.64x 7.54x
0.5 9.01 0.83x 5.54x
1.0 17.3 0.74x 3.04x
2.0 30.8 0.59x 1.75x

@ Testing accuracy of tensor methods compared to the uncompressed
ImageNet Resnet-50.

@ The accuracy of the tensor method results (both non-tensorized and
tensorized) are shown normalized to the uncompressed network’s
accuracy.
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Outline

@ Conclusion
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Conclusion

@ Method-of-moments can efficiently estimate parameters for many
latent variable models.
» Exploit distributional properties, multi-view structure, and other
structure to determine usable moments tensors.
» Some efficient algorithms for carrying out the tensor decomposition to
obtain parameter estimates.

@ Tensor decomposition of neural network kernels/weights effectively
compresses the network.

@ Many issues to resolve

» Handle model misspecification, increase robustness.
» Learning deep neural network parameters using tensor decomposition?
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A Short List of Related Papers to Today’s Talk

“A Method of Moments for Mixture Models and Hidden Markov Models”, by Anima
Anandkumar, Daniel Hsu and Sham Kakade. In Conference on Learning Theory, 2012.
“Tensor Decompositions for Learning Latent Variable Models”, by Anima Anandkumar,
Rong Ge, Daniel Hsu, Sham Kakade and Matus Telgarsky. In Journal of Machine Learning
Research, 2014.

“Escaping from saddle pointsonline stochastic gradient for tensor decomposition”, Rong
Ge, Furong Huang, Chi Jin and Yang Yuan. In Conference on Learning Theory, 2015.
“Online tensor methods for learning latent variable models”, Furong Huang, Niranjan U.
N., Mohammad Umar Hakeem and Anima Anandkumar. The Journal of Machine
Learning Research, 2016.

“Guaranteed Simultaneous Asymmetric Tensor Decomposition via Orthogonalized
Alternating Least Squares”, by Jialin Li and Furong Huang, 2018.

“Tensorized Spectrum Preserving Compression for Neural Networks”, by Jiahao Su,
Jingling Li, Bobby Bhattacharjee and Furong Huang, 2018.
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Tensor Softwares

@ Spark implementation of method of moments to learn Latent
Dirichlet Allocation available at
https://github.com/FurongHuang/spectrallda-tensorspark.

@ Tensorly: Simple and Fast Tensor Learning in Python available at
http://tensorly.org/stable/home.html.

@ A general library with higher order tensor operations is coming soon.
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