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Multiparty Communication Complexity: A Serious Approach

0.1 Points

In the last chapter we considered the following problem:

Alice, Bob, and Carol each have a number between 0 and 2n−1
on their forehead, written in binary; so everyone has exactly n
bits on their forehead. Everyone can see the two numbers that
are NOT on their own forehead. Call the three numbers a, b, c.
They wish to determine if a + b + c = 2n+1 + 1. At the end
of the protocol they should all know. Each player can shout
information so the others hear them. Here is one solution: Alice
shouts a, which is n bits, and then Bob can compute a + b + c
and should YES if a + b + c = 2n − 1, NO otherwise. Can you
do this with fewer than n bits of communication?

This problem was FUN for Olivia since there is an elementary solution

using only n
2 + O(1). I suspect Olivia could find this solution. She can

certainly understand the solution.

In this chapter we give a much better upper bound that Olivia could

not come up with. We also give matching upper and lower bounds – sort of.

We’ll see later what that means. We will also look at the k-party version

of the problem.

The problem, and the original definition of multiparty communication

complexity, and a solution are due to Chandra, Furst, and Lipton ([Chandra

et al. (1983)]). There were later improvements to the solution by Beigel,

Gasarch, and Glenn ([Beigel et al. (2006)]). In Section 0.8 we discuss who

did what, the motivations of the authors, and why, of the papers I have

co-authored, Beigel-Gasarch-Glenn is one of my favorites.

The last chapter was FUN whereas this chapter is SERIOUS. One proof

of that: the last chaper had 0 references, this one has 17.

0.2 A Serious Solution

We need a byte of notation.

Definition 0.1. Let n ∈ N. f3 : {0, 1}n × {0, 1}n × {0, 1}n → {YES,NO}
is defined by:

f3(a, b, c) =

{
YES if a+ b+ c = 2n+1 − 1

NO if a+ b+ c 6= 2n+1 − 1
(0.1)



July 10, 2018 17:47 ws-book9x6 Book Title foreheadserious page 2

2 Book Title

Definition 0.2. Let Alice, Bob, and Carol be as in Section 0.1. Let d(f3)

be the number of bits that Alice, Bob, and Carol need to communicate so

that at the end they all know f3(a, b, c).

Informally, a proper coloring of [T ]× [T ] does not have be three vertices

that (a) are the same color, and (b) are the corners of a right isosceles

triangle with legs parallel to the axes and hypotenuse parallel to the line

y = −x. Formally:

Definition 0.3. Let c, T ∈ N.

(1) A proper c-coloring of [T ]× [T ] is a function COL : [T ]× [T ]→ [c] such

that there do not exist a, b ∈ [T ] and λ ∈ [T ] with

COL(a, b) = COL(a+ λ, b) = COL(a, b+ λ)

(2) Let χ(T ) be the least c such that there is a proper c-coloring of [T ]×[T ].

There are tight bounds on d(f3), up to an additive constant.

Theorem 0.1. Let n ∈ N. lg(χ(2n)) + Ω(1) ≤ d(f3) ≤ lg(χ(2n)) +O(1).

These bounds seem very good except (1) we don’t know what the bound

is, and (2) we don’t even know if we have beaten the d(f3) ≤ n
2 + O(1)

bound!

Upper Bound: We will show lg(χ(2n)) + O(1) ≤ O(
√
n); hence d(f3) ≤

O(
√
n). So we do indeed beat d(f3) ≤ n

2 +O(13.

Lower Bound: We will show that lg(χ(2n)) ≥ Ω(log log n)); hence d(f3) ≥
Ω(log log n).

The upshot is

Ω(log log n) ≤ d(f3) ≤ O(
√
n).

There is a big gap between the upper and lower bounds. Normally if

we have this kind of gap one might look for a better protocol. But this

option will not work – we already have the optimal protocol! So what we

really need is better bounds on χ(2n). This seems to be a hard problem in

Ramsey Theory which we discuss in Section 0.5.

0.3 The Upper Bound on d(f3)

Theorem 0.2. Let n ∈ N. d(f3) ≤ lg(χ(2n)) +O(1).
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Proof. Let COL be a proper coloring of [2n − 1] × [2n − 1] using χ(2n −
1) colors. We represent elements of [χ(2n − 1)])] by bit strings of length

lg(χ(2n)) +O(1). Alice, Bob, and Carol will all know COL ahead of time.

We present a protocol for this problem for which the communication is

lg(χ(2n)) +O(1). We will then show that it is correct.

(1) Alice has b, c. Bob has a, c. Carol has a, b. 0 ≤ a, b, c ≤ 2n − 1.

(2) Alice calculates a′ such that a′ + b + c = 2n+1 − 1. If a′ ≥ 2n then

Alice broadcasts NO and the protocol is over. Else Alice broadcasts

σ1 = COL(a′, b).

(3) Bob calculates b′ such that a + b′ + c = 2n+1 − 1. If b′ ≥ 2n then

Bob broadcasts NO and the protocol is over. Else Bob broadcasts 1 if

σ2 = COL(a, b′), 0 otherwise.

(4) Carol looks up σ3 = COL(a, b). Carol broadcasts YESif σ1 = σ3 (and

hence both equal σ2 since Bob said that σ1 = σ2) and NO otherwise.

Claim 1: If f3(a, b, c) = YES then Carol will shout YES.

Proof: If f3(a, b, c) = YES then a′ = a, b′ = b. Hence σ1 = σ2 = σ3 and

Carol shouts YES.

End of proof of Claim 1.

Claim 2: If Carol shouts YES then f3(a, b, c) = YES.

Proof: Assume that Carol shouts YES.

Hence

COL(a, b) = COL(a′, b) = COL(a, b′).

We call this The Coloring Equation.

Assume

a+ b+ c = 2n+1 − 1 + λ.

We show that λ = 0.

By the definition of a′

a′ + b+ c = 2n+1 − 1.

Hence
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a′ + a+ b+ c− a = 2n+1 − 1 =⇒

a′ − a = 2n+1 − 1− (a+ b+ c) = −λ =⇒

a = a′ + λ

By the same reasoning

b = b′ + λ

Hence we can rewrite The Coloring Equation as

COL(a, b) = COL(a+ λ, b) = COL(a, b+ λ).

Since COL is a proper coloring, λ = 0.

End of proof of Claim 2.

So we have d(f3) ≤ lg(χ(2n)) +O(1). To show this is ≤ O(
√
n) we take

a detour into upper bounding χ.

0.4 An Upper Bound on χ and Hence on d(f3)

We will need the following definition from Ramsey Theory.

Definition 0.4.

(1) A 3-AP is an arithmetic progression of length 3.

(2) Let χ∗(T ) be the minimum number of colors needed to color [T ] such

that there are no monochromatic 3-AP ’s.

(3) A set A ⊆ [T ] is 3-free if there do not exist any 3-AP’s in A.

(4) Let r3(T ) be the size of the largest 3-free subset of [T ].

Lemma 0.1.

(1) χ(T ) ≤ χ∗(3T ).

(2) χ∗(T ) ≤ O(T log T
r3(T ) ).

(3) χ(T ) ≤ O(T log T
r3(T ) ). (This follows from 1 and 2.)
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Proof. 1) Let c = χ(3T ). Let COL′ be a c-coloring of [3T ] with no

monochromatic 3-AP’s. Let COL be the following c-coloring of [T ]× [T ].

COL(a, b) = COL′(a+ 2b).

Assume, by way of contradiction, that COL is not a proper c-coloring.

Hence there exist a, b ∈ [T ] and λ 6= 0 such that

COL(a, b) = COL(a+ λ, b) = COL(a, b+ λ).

By the definition of COL the following are equal.

COL′(a+ 2b) = COL′(a+ λ+ 2b) = COL′(a+ 2λ+ 2b)

Hence a+ 2b, a+ 2b+λ, a+ 2b+ 2λ form a monochromatic 3-AP, which

yields a contradiction.

2) Let A ⊆ [T ] be a set of size r3(T ) with no 3-AP ’s. We use A to obtain

a 3-free coloring of [T ]. The main idea is that we use randomly chosen

translations of A to cover all of [T ].

Let a ∈ [T ]. Pick a translation of A by picking t ∈ [T ]. The probability

that a ∈ A+ t is |A|T . Hence the probability that a /∈ A+ t is 1− |A|T . If we

pick s translations t1, . . . , ts at random (s to be determined later) then the

expected number of x that are not covered by any A+ ti is

T

(
1− |A|

T

)s

≤ Te−s
|A|
T .

We need to pick s such that this quantity is < 1 We take s = 2T lnT
|A|

which yields

Te−s
|A|
T = Te−2 lnT = 1/T < 1.

We color T by coloring each of the s translates a different color. If

a number is in two translates then we color it by one of them arbitrar-

ily. Clearly this coloring has no monochromatic 3-APs. Note that it uses
T lnT
|A| = O(T log T

r3(T ) ) colors.

To get an upper bound on χ we need a lower bound on r3(T ). Behrend

([Behrend (1946)]) and Moser ([Moser (1953)]) both proved Part 1 of the

next theorem. Behrend proved it first and with a smaller (hence better)

value of c, but his proof was nonconstructive (i.e, the proof does not indicate

how to actually find such a set). Moser’s proof was constructive.

Theorem 0.3.
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(1)

r3(T ) ≥ Ω(T
1− c√

T )

(This is due to Behrend and Moser as noted above.)

(2)

χ(T ) ≤ O(T
c√
lg T log(T ))

(This follows from Lemma 0.1 and Part 1.)

(3)

χ(2n) ≤ 2O(
√
n).

(This follows from Part 2.)

(4)

lg(χ(2n) ≤ O(
√
n).

(This follows from Part 3.)

(5)

d(f3) ≤ O(
√
n).

(This follows from Part 4 and Theorem 0.2.)

0.5 Can the Upper Bound on d(f3) be Improved?

One way to obtain a smaller upper bound on d(f3) is to improve Theo-

rem 0.3.1 by finding a better larger 3-free sets and hence a larger lower

bound on r3(T ). The largest known 3-free set from 1946 until 2008 were

those from Theorem 0.3.1. Elkin (published [Elkin (2011)], simplified by

Green and Wolf ([Green and Wolf (2010)])) obtained the following result:

r3(T ) ≥ (log T )1/4 T

22
√

2
√

log2(T )
.

If we had used this bound instead of Theorem 0.3.1 we would still have

d(f3) ≤ O(
√
n) though perhaps with a better constant.

Is there a mathematical obstacle to improving the lower bound on r3(T )?

In 2016 [Bloom (2016)] showed

r3(T ) ≤ T (ln lnT )4

lnT
Hence the gap between the upper and lower bound on r3(T ) is still large.

Which is believed to be closer to the truth? I posed this question to a
pretension of professors. I got several responses which are best summarized
by one of them, Jacob Fox:
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The good money is on the following two statements:

(1) The lower bound on r3(T ) by Elkin is close to the truth, and
(2) current methods are not up going to improve this.

If the consensus is correct then we cannot improve the upper bound on

d(f3), by using 3-free sets. In this case to improve the upper bound on

d(f3) will require some other technique. Having said that, I believe:

(1) If the consensus is correct then d(f3) = Θ(
√
n).

(2) The consensus is correct.

Hence I am forced to believe d(f3) = Θ(
√
n).

0.6 A Lower Bound on d(f3)

We use the following lemma from communication complexity.

Lemma 0.2. Let f be any function from {0, 1}n×{0, 1}n×{0, 1}n to {0, 1}.
Let P be a multiparty protocol for f .

(1) Let TRAN be a possible transcript of the protocol P . There exists

A1, A2, A3 ⊆ {0, 1}n such that, for all a1, a2, a3 ∈ {0, 1}n the following

holds: The protocol P on input (a1, a2, a3) produces transcript TRAN

iff (a1, a2, a3) ∈ A1 ×A2 ×A3.

(2) Let a1, a2, a3 ∈ {0, 1}n, σ1, σ2, σ3 ∈ {{0, 1}n}, TRAN be a transcript.

Assume that σ1 has a1 as its first element, σ2 has a2 as its second

element, σ3 has a3 as its third element. (In symbols, if ∗ means we

don’t care about the element, then

σ1 = (a1, ∗, ∗)
σ2 = (∗, a2, ∗)
σ3 = (∗, ∗, a3).

Further assume that σ1, σ2, σ3 all produces transcript TRAN. Then

(a1, a2, a3) produces transcript TRAN.

Theorem 0.4. d(f3) ≥ lg(χ(2n)) + Ω(1).

Proof. Let P be a protocol for f . Let d be the maximum number of bits

communicated. Note that the number of transcripts is bounded by 2d. We

use this protocol to create a proper 2d-coloring of [2n]× [2n].

We define COL(a, b) as follows. First find c such that a+b+c = 2n+1−1.

Then run the protocol on (a, b, c). The color is the transcript produced.
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Claim: COL is a proper coloring of [2n]× [2n].

Proof: Let λ ∈ [2n] be such that

COL(a, b) = COL(a+ λ, b) = COL(a, b+ λ).

We denote this value TRAN (for Transcript). We show that λ = 0.

Let c be such that

a+ b+ c = 2n+1 − 1.

We know that the following tuples produce the same transcript TRAN,

which ends with a YES.

• (a, b, c).

• (a+ λ, b, c− λ).

• (a, b+ λ, c− λ).

By Lemma 0.2.2 the tuple (a, b, c−λ) also goes to TRAN and ends with

a YES. Hence a+ b+ c− λ = 2n+1 − 1. Since a+ b+ c = 2n+1 − 1 + λ, so

λ = 0.

End of Proof of Claim

Theorem 0.5.

(1) χ(T ) ≥ Ω(log log T ). This is due to Graham and Solymosi ([Graham

and Solymosi (2006)]).

(2) χ(2n) ≥ Ω(log n) (This follows from Part 1.)

(3) lg(χ(2n)) ≥ Ω(log log n) (This follows from Part 2.)

(4) d(f3) ≥ Ω(log log n) (This follows from Part 3 and Theorem 0.4.)

0.7 What About Alice, Bob, Carol, Donna, . . ., Zelda?

Consider the following extension of our problem. There are k people

A1, . . . , Ak. Person Ai has n-bit number ai on her forehead. They want to

know if
∑k

i=1 ai = 2n+1 − 1. How many bits do they need to exchange?

Formally:

Definition 0.5. Let n ∈ N. fk : ({0, 1}n)k → {YES,NO} is defined by:

fk(a1, . . . , ak) =

{
YES if

∑k
i=1 ai2

n+1 − 1

NO if
∑k

i=1 ai 6= 2n+1 − 1
(0.2)
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Let d(fk) be the number of bits the parties must exchange so that

everyone knows fk(a1, . . . , ak).

We state the lemmas needed to upper bound d(fk). Unless otherwise

noted the proofs are similar to those for upper bounding d(f3) (which is

d(f3)).

Definition 0.6. Let k, T ∈ N. A k-dimensional widget of [T ]k is a set of

the form:

0) (a1, . . . , ak)

1) (a1 + λ, a2, a3, . . . , ak)

2) (a1, a2 + λ, a3, . . . , ak)

3) (a1, a2, a3 + λ, . . . , ak)

...

k) (a1, a2, a3, . . . , ak−1, ak + λ)

When k and T are understood we just call them widgets.

Definition 0.7. Let c, T ∈ N.

(1) A proper c-coloring of [T ]k is a function COL : [T ]k → [c] such that

there are no monochromatic widgets.

(2) Let χ(T ) be the least c such that there is a proper c-coloring of [T ]k.

Theorem 0.6. Let n ∈ N. Then d(fk) ≤ lg(χ(2n)) +O(k). (We think of k

as a constant so the last term is really O(1); however, there are applications

where k is a function of n.)

Definition 0.8.

(1) A k-AP is an arithmetic progression of length k.

(2) A set A ⊆ [T ] is k-free if there do not exist any k-AP’s in A.

(3) Let rk(T ) be the size of the largest k-free subset of [T ].

Lemma 0.3. χ(T ) ≤ O(T log(T )
rk(T ) ).

The following was first proven by Rankin [Rankin (1960—1961)] but

later rediscovered (and is unfortunately behind paywalls) by Laba and

Lacey [Laba and Lacey (2001)].

Lemma 0.4.

rk(T ) ≥ T

eΩ((log T )1/(log2(k−1)+1))
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Using Lemma 0.3 and 0.4 we obtain:

Theorem 0.7. dk(f) ≤ O(n1/(log2(k−1)+1).

What about lower bounds? The following is a corollary of the Gallai-

Witt theorem, also called the multi-dimensional van der Warden theorem.

Lemma 0.5. For all k, for all c, there exists T such that for all c-colorings

of [T ]k there exists a monochromatic widget.

There are essentially two proofs of Theorem 0.5

(1) The classical proof gives Ackerman-type bounds fot T . It was discov-

ered independently by Gallai ([Rado (1933)],[Rado (1943)]), where the

theorem is stated and credited to him, and Witt (see [Witt (1951)]).

(2) The theorem is an easy corollary of the Hales-Jewitt Theorem. If you

use the bounds from the proof by Hales-Jewitt (see [Hales and Jewett

(1963)]) then you still get Ackerman-type bounds for T . But if you use

the proof of Hales-Jewitt due to Shelah (see [Shelah (1988)]) then you

get primitive recursive bound on T . However, they are still quite large:

bigger than TOWER or WOWER.

There is no good notation for the bounds nor do we want to invent one.

Hence all we can deduce from Lemma 0.5 is the following.

Theorem 0.8. d(fk) ≥ Ω(1).

Jacob Fox and David Conlon, two prominent Ramsey theorists, both

told me that improving the Ω(1) to something reasonable is hard.

0.8 Whose Problem Is This? Whose Bounds are They?

In 1983 Chandra et al. [Chandra et al. (1983)] introduced multiparty com-

munication complexity in order to get better bounds on constant width

branching programs. They wanted to get non-polynomial lower bounds;

however, they got non-linear lower bounds. A later paper by Ajtai et al

[Ajtai et al. (1986)] got Ω(n log n) bounds. However, Barrington [Barring-

ton (1989)] showed that you could always get polynomial upper bounds.

Hence the goal of Chandra et al. was not possible.

Chandra et al. proved:

(1) lg(χ(2n) + Ω(1) ≤ d(fk) ≤ 2 lg(χ(2n) +O(1)

(2) d(f3) ≤
√

logN
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(3) for all k ≥ 3, d(fk) ≥ Ω(1).

In 2006 [Beigel et al. (2006)] proved:

(1) d(f3) ≥ Ω(log log n).

(2) d(fk) ≤ O(n1/(log2(k−1)+1)).

0.9 Favorite Paper

Shortly after we first proved the results in [Beigel et al. (2006)], I we had

the following conversation with Clyde:

Begin Conversation

Bill: I have two results!

Clyde: Yeah!

Bill: But all I did was combine two known theorems from Ramsey The-

ory (Lemma 0.4 and Theorem 0.5.a) to a theorem in complexity theorem

(Theorem 0.1).

Clyde: Who else knew all three of those theorems?

Bill: I would guess fewer than five people. Actually it might just be me.

Clyde: You took A and applied it to B. There is a term for that. Its

called Research.

End Conversation

This is one of my favorite papers! Why? Because I was able to take

some Ramsey Theory (my favorite field of mathematics) and apply it to

complexity theory (my favorite field of computer science) and, without

having to be clever, get out some results. I am the only person who could

have written it (downside: I am also the only person who cares).

This raises the question of: Which of your papers is your favorite? What

should the criteria be? Rather than discuss it here, at the end of a long

chapter where it won’t be read, I will discuss it in a later chapter.
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