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On #P-completeness of Some Counting ProblemsNadia CREIGNOUD�epartement de Math�ematiquesUniversit�e de Caen14032 Caen, France Miki HERMANN�CRIN (CNRS) and INRIA-LorraineBP 23954506 Vand�uvre-l�es-Nancy, FranceR�esum�eNous prouvons que les probl�emes #1-in-3Sat, #Not-All-Equal 3Sat et #3-Colorabilit�e, dontles probl�emes de d�ecision correspondants font partie des probl�emes les plus fr�equemmentutilis�es pour prouver la NP-compl�etude de nouveaux probl�emes, sont #P-complets. D'unepart, la preuve explicite de la #P-compl�etude de #1-in-3Sat pourrait être utile dans lecadre des preuves de complexit�e en uni�cation �equationnelle. D'autre part, le fait que la#3-Colorabilit�e est #P-compl�ete nous permet de d�eduire imm�ediatement que de nombreuxprobl�emes NP-complets ont une version �enum�erative #P-compl�ete.De plus, ce travail met une nouvelle fois en �evidence l'int�erêt d'exhiber des r�eductionslin�eaires entre probl�emes de la classe NP.AbstractWe prove that the counting problems #1-in-3Sat, #Not-All-Equal 3Sat and #3-Colorability,whose decision counterparts have been the most frequently used in proving NP-hardness ofnew decision problems, are #P-complete. On one hand, the explicit #P-completeness proofof #1-in-3Sat could be useful to prove complexity results within uni�cation theory. On theother hand, the fact that #3-Colorability is #P-complete allows us to deduce immediatelythat the enumerative versions of a large class of NP-complete problems are #P-complete.Moreover, our proofs shed some new light on the interest of exhibiting linear reductionsbetween NP problems.Keywords: counting class, counting problem, #P-completeness, parsimonious reduction,satis�ability.�Partially supported by Institut National Polytechnique de Lorraine grant 910 0146 R1.



1 IntrodutionCounting problems represent the quantitative counterpart to decision problems. The com-plexity class NP and NP-complete decision problems have been exhaustively studied in theliterature (see [GJ79] for an overview). Valiant [Val79a, Val79b] introduced the complexityclass #P and proved several counting problems to be #P-complete. The class #P is de�nedas the class of counting problems whose decision problem is in NP, that is, f 2 #P if andonly if there is a nondeterministic Turing machineM that runs in polynomial time with theproperty that f(x) equals the number of accepting computation paths of M on input x. If Ais a decision problem, let us denote the corresponding counting problem by #A.The counting problem #Sat (the number of satisfying assignments of a propositionalCNF formula) is known to be #P-complete, mainly because Cook's generic transformationis parsimonious in the sense that the number of satisfying assignments to the Boolean for-mula corresponds exactly to the number of accepting computations of the nondeterministicTuring machine being simulated. The reduction from Sat to 3Sat can be made parsimo-nious [Koz92], thus proving the #P-hardness part of #3Sat. Intuitively, it seems that almostfor each NP-complete problem the corresponding counting problem is #P-complete. Thisis often repeated in the literature [Joh90, page 107][PB83, page 779][Sim77, page 484], butthe explicite proofs are omitted. In fact, it is sometimes not straightforward to �nd an ap-propriate reduction [Val79b, Gal74]. Moreover, not all NP decision problems have countingcounterparts that belong to the class #P. For example, AC-uni�cation as a decision problemis NP-complete [KN92] but there are AC-uni�cation problems whose minimal complete setof uni�ers (see [FH86] for the de�nition) has double exponential cardinality [Dom92]. Thissituation is due to the fact that the decision problem asks for the existence of a uni�er,not necessarily a member of the minimal complete set. On the other hand, computing the(minimal) complete set of uni�ers is a crucial problem in automated deduction in particularand arti�cial intelligence in general to guarantee the completeness of many procedures oralgorithms which use AC-uni�cation. Thus, the AC-uni�cation counting problem cannotbelong to the counting class #P, since each counting problem belonging to #P contains, byde�nition, only a simple exponential number of di�erent solutions.A polynomial reduction from 1-in-3Sat is the NP-hardness proof of many interestingproblems, especially in automated deduction. Uni�cation modulo idempotence [KN92] andmodulo unit [TA87] are proved NP-complete by a reduction from 1-in-3Sat. Within theuni�cation theory, we are interested not only in decision problems (whether two terms areuni�able in a given theory) but also in counting problems (how many substitutions containsthe minimal complete set of uni�ers), therefore the interest in counting classes. We couldperhaps adapt the polynomial reductions fromNP-hardness proofs to parsimonious ones fromthe counting problems #1-in-3Sat or #Mono 1-in-3Sat, proving this way the #P-hardnessof the corresponding counting problems, provided #1-in-3Sat and #Mono 1-in-3Sat areproved #P-complete. The decision problem 1-in-3Sat was proved to be NP-complete bySchaefer [Sch78] but the corresponding counterpart was not proved to be #P-complete.The purpose of our paper is to prove the #P-completeness of several counting problemssuch as #1-in-3Sat, #Not-All-Equal 3Sat (and their variants) and #3-Colorability. In thisway we give an e�ective proof of the #P-completeness of the counting versions of some1



decision problems that are among those that have been most frequently used to get proofs ofNP-completeness. Finally, a prior work on the class of problems that are linearly equivalentto Satis�ability enables us to prove that a the counting versions of a large class of problemsare #P-complete.2 Counting problemsWe consider the following counting problems.#1-in-3Sat (#Mono-1-in-3Sat)Instance: Set V of Boolean variables, a Boolean formula B over V in conjunctive normalform where each clause of B has exactly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with exactly one true literal ineach clause ?The problem#2-in-3Sat (respectively#Mono-2-in-3Sat) requires exactly two true literalsin each clause.#Not-Exactly-One 3Sat (#Not-Exactly-One Horn-3Sat)Instance: Set V of Boolean variables, a Boolean formula B over V in conjunctive normalform where each clause of B has exactly three literals (and at most one unegated variable).Question: How many truth assignments for V satisfy B with no clause having exactly onetrue literal ?#Not-All-Equal 3Sat (#Mono-Not-All-Equal 3Sat)Instance: Set V of Boolean variables, a Boolean formula B over V in conjunctive normalform where each clause of B has exactly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with at least one true and one falseliteral in each clause ?#3-ColorabilityInstance: Graph G = (V;E).Question: How many 3-colorings de�ned on V exist for G ? In another words, how manyfunctions col:V ! f1; 2; 3g exist such that col(u) 6= col(v) whenever (u; v) 2 E ?Let us recall also the counting problems which were proved #P-complete before andwhich will be reduced to previously mentioned problems.Positive 2Sat (#Pos-2Sat) proved #P-complete (called monotone) by Valiant [Val79b]Instance: Set V of Boolean variables, a Boolean formula B over V in conjunctive normalform where each clause of B has exactly two positive literals.Question: How many truth assignments for V satisfy B ?2



Bipartite positive 2Sat (#BPos-2Sat) proved #P-complete by Provan and Ball [PB83]Instance: Two disjoint sets of variables X = fx1; : : : ; xkg, Y = fy1; : : : ; ylg and the Booleanformula B = (xi1 _ yj1) ^ � � � ^ (xin _ yjn).Question: How many truth assignments for V satisfy B ?Implicative 2Sat (#Impl-2Sat) proved #P-complete by Linial [Lin86]Instance: Set V of Boolean variables, a Boolean formula B over V in conjunctive normalform where each clause of B has exactly one positive and one negative literal.Question: How many truth assignments for V satisfy B ?In the sequel, a k-clause means a clause containing k literals. An implicative clause meansa clause containing exactly one positive and one negative literal.3 Counting class #PLet � and � be nonempty alphabets. Let w: �� ! P(��), where P(��) denotes the powerset of ��, and let x 2 ��. We refer to the elements of w(x) as witnesses for x.For satis�ability problem, let x 2 �� be an encoding of the Boolean formula B and y 2 ��an encoding of a truth assignment. The witness set isw(x) = ftruth assignments y satisfying x and Q(x; y)gwhere Q(x; y) is a predicate on x and y, expressing e.g. that each clause of B has exactlythree literals, or that each satisfying assignment for B has exactly one true value, etc.For #3-Colorability, let x 2 �� be an encoding of the graph G = (V;E) and y 2 �� anencoding of a coloring function col:V ! f0; 1; 2g. The witness set isw(G) = fcol:V ! f0; 1; 2g j (col(u) 6= col(v)) � ((u; v) 2 E)gN denotes the natural numbers, jxj is the size of the string x, and jSj is the cardinalityof a set S.De�nition 3.1 ([Koz92]) The class #P is the class of witness functions w such that:1. there is a polynomial-time algorithm to determine, for given x and y, if y 2 w(x);2. there exists a constant k 2 N such that for all y 2 w(x), jyj � jxjk.(The constant k can depend on w).Using this de�nition it is clear that all the problems proposed here are in the countingclass #P. 3



4 Parsimonious reductions and #P-complete prob-lemsTo prove #P-hardness, we need reductions from already known #P-complete problems.It is necessary to observe how counting problems v and w are related under the processof reduction. The notion of counting reductions and parsimonious reductions have beenintroduced for this purpose.De�nition 4.2 Let w: �� ! P(��) and v: �� ! P(��) be counting problems. A weaklyparsimonious reduction from w to v consists of a pair of polynomial-time computable func-tions �: �� ! �� and � : �� �N ! N such that jw(x)j = � (x; jv(�(x))j).A counting reduction � is parsimonious if jw(x)j = jv(�(x))j.Let w and v be counting problems. Note w �! v and w �!! v if there is a weakly parsimoniousand parsimonious reduction from v to w, respectively.The #P-complete problems are the most di�cult problems in the class #P.De�nition 4.3 A counting problem w is #P-hard if v �! w for all problems v 2 #P . Acounting problem w is #P-complete if it is #P-hard and w 2 #P .If w is #P-complete and there is a weakly parsimonious reduction from w to v then v is#P-hard.The reductions in the #P-hardness proofs must preserve the number of solutions, possiblywith a certain factor. Therefore the necessity to look for parsimonious or weakly parsimo-nious reductions. Note that a composition of (weakly) parsimonious reductions is a (weakly)parsimonious reduction.Theorem 4.4 The counting problems #1-in-3Sat and #Mono 1-in-3Sat are #P-complete.Proof: It is clear that these problems are in the class #P. To show that they are #P-hardit is su�cient to prove that prove that #Mono-1-in-3Sat is #P-hard. For this we �rst showthat there is a parsimonious reduction from #Impl-2Sat to #Mono-2-in-3Sat.Suppose that we are given an instance of the #Impl-2Sat problem with the variables Vand the implicative clauses C = fc1; : : : ; cng, with the Boolean formula B = c1^� � �^cn. LetX = fx12; x13; : : : ; xn2; xn3g and Y = fy12; y13; y14; : : : ; yn2; yn3; yn4g be sets of new variables.Let V 0 = V [X [ Y .To each implicative clause ci = �vi1 _ vi2 we associate four new clausesci1 = vi1 _ xi2 _ xi3ci2 = vi2 _ xi2 _ yi2 ci4 = xi3 _ yi2 _ yi4ci3 = vi2 _ xi3 _ yi3Let B0 be the Boolean formula constructed from B by replacing each clause ci by the con-junction ci1 ^ ci2 ^ ci3 ^ ci4. 4



vi1 vi2 xi2 xi3 yi2 yi3 yi40 0 1 1 1 1 00 1 1 1 0 0 11 1 0 1 1 0 0Figure 1: Enlargements of truth assignments from B to B0.First, we show that for each truth assignment for V satisfying B there exists a uniqueenlargement to a truth assignment for V 0 satisfying B0 with exactly two true literals in eachclause.Each truth assignement satisfying B evaluates the variables vi1 and vi2 in each clause ciin one of the following ways: (1) vi1 false and vi2 false; (2) vi1 false and vi2 true; (3) vi1 trueand vi2 true.Case 1: If vi1 and vi2 are evaluated as false, then the variables xi2, xi3, yi2 and yi3 mustbe true. The variables xi3 and yi2 are true, thus yi4 must be false. All variables in theclauses ci1, : : : , ci4 have been determined.Case 2: If vi1 is evaluated as false and vi2 as true. The variable vi1 is false, thus thevariables xi2 and xi3 are true following clause ci1. The variables vi2, xi2, and xi3 are true,thus yi2 and yi3 are false. The variable xi3 is true and yi2 is false, thus yi4 is true. Allvariables in the clauses ci1, : : : , ci4 have been determined.Case 3: If vi1 and vi2 are evaluated as true. Suppose that xi2 is true, then yi2 must befalse since vi2 is already true. If vi1 and xi2 are true then xi3 must be false following clause ci1.But we have now the situation where xi3 is false and yi2 is false, thus the clause ci4 cannothave two true literals. Hence, xi2 must be false. The variable vi1 is true and xi2 is false,thus xi3 is true. The variables vi2 and xi3 are true, thus yi3 must be false. The variable vi2is true and xi2 is false, thus yi2 is true. The variables xi3 and yi2 are true, thus yi4 is false.All variables in the clauses ci1, : : : , ci4 have been determined.We proved that each truth assignment satisfying B determines a unique enlargementsatisfying B0 with exactly two true literals in each clause. Figure 1 summarizes the truthassignments.Conversely, we must prove that the restriction to the variables V of each 2-in-3 truthassignment satisfying B0 satis�es also the original formula B. Suppose that B0 is evaluatedas true, thus each clause cij is true. One of the literals in the clause ci1 must be false. If xikis false then the two other literals in the clause cik, in particular vi2, must be true. If vi1 isfalse then �vi1 is true. Thus, at least one of the literals �vi1 and vi2 in each clause ci is true.Hence, B is true.We proved that the reduction from #Impl-2Sat to #2-in-3Sat is parsimonious. It issu�cient now to negate all literals in each clause to get a parsimonious reduction from#Mono-2-in-3Sat to #Mono-1-in-3Sat. The #P-hardness of #1-in-3Sat follows from the#P-completeness of #Mono 1-in-3Sat. 2Theorem 4.5 The counting problem #Not-Exactly-one 3Sat is #P-complete.5



Proof: It is clear that this problem belongs to #P. To show that it is #P-hard we showthat there is a parsimonious reduction from #Pos-2Sat.Suppose that we are given an instance of the #Pos-2Sat problem with the variables Vand the 2-clauses C = fc1; : : : ; cng, where B = c1 ^ � � � ^ cn. Let V 0 = V [ fx; yg, where xand y are new variables.To each clause ci = vi1_ vi2 we associate the clause c0i = vi1 _ vi2 _x. Let us consider thenew clauses c0 = x _ �x _ y and d0 = y _ �y _ x and the new formulaB0 = c01 ^ � � � ^ c0n ^ c0 ^ d0The case analysis with constraints for evaluating logical variables proves that each truthassignment satisfying B determines a unique enlargment on V 0 with no clause in B0 havingexactly one true literal. The literals x and y must be evaluated as true following the clauses c0and d0 and conversely, the restriction to the variables V of each truth assignment on V 0, withno clause in B0 having exactly one true literal, satis�es the original formula B.Thus, the reduction from #Pos-2Sat to #Not-Exactly-One 3Sat is parsimonious. 2Remark. Let us notice that this reduction, in negating all the literals, also provides a proofof the #P-completeness of the same problem restricted to Horn 3-clauses. It is interestingto note that the decision problem Not-Exactly-One Horn-3Sat is in P (see [Sch78]). Thus, inthis particular case we show that the corresponding counting problem is #P-complete, i.e.considerably more di�cult than the original decision problem, provided P 6= NP.Theorem 4.6 The counting problems #Not-All-Equal 3Sat and #Mono-Not-All-Equal 3Satare #P-complete.Proof: It is clear that these problems belong to #P. To show that there are #P-hard weshow that there are weakly parsimonious reductions from #1-in-3Sat and #Mono-1-in-3Satrespectively.Suppose that we are given an instance of the #1-in-3Sat problem with the variables Vand the clauses C = fc1; : : : ; cng, where B = c1 ^ � � � ^ cn. Let V 0 = V [ ftg, where t is anew variable. To each clause ci = li1 _ li2 _ li3 we associate four new clausesci1 = li1 _ li2 _ tci2 = li2 _ li3 _ t ci4 = li1 _ li2 _ li3ci3 = li3 _ li1 _ tLet B0 be the Boolean formula constructed from B by replacing each clause ci by the con-junction ci1 ^ ci2 ^ ci3 ^ ci4.First, we show that for each truth assignment for V , satisfying B with exactly onetrue literal in each clause, there exists a unique enlargement to a truth assignment for V 0satisfying B0 with at least one true and one false literal in each clause.Let us consider a truth assignment for V satisfying B with exactly one true literal ineach clause. Since two of the literals li1, li2, and li3 are false, the variable t must be truefollowing one of the clauses ci1, ci2 or ci3. 6



Conversely, let s0 be a truth assignment satisfying B0 with at least one true and one falseliterals in each clause. Such a truth assignment evaluates t either as true or false.If the variable t is evaluated as true, then at least one of the two literals in each pair(li1; li2), (li2; li3), and (li3; li1) is false following the clauses ci1, ci2, and ci3. But followingclause ci4, one of the literals li1, li2 or li3 must be true. Therefore, exactly one of the threeliterals li1, li2 and li3 is true. Thus, the restriction to the variables V of the truth assignment s0satis�es also the original formula B with exactly one true literal in each clause.If the variable t is evaluated as false, then at least one of the two literals in each pair(li1; li2), (li2; li3), and (li3; li1) is true following the clauses ci1, ci2, and ci3. But followingclause ci4, one of the literals li1, li2 or li3 must be false. Therefore, exactly one of these threeliterals is false. Observe that the number of satisfying assignments for B0 with exactly onetrue literal in each clause is equal to the number of satisfying assignments for B0 with exactlytwo true literals in each clause. If s is a satisfying assignment with exactly one true literalin each clause then �s, where �s(v) = 1 � s(v) for each v 2 V , is a satisfying assignment withexactly two true literals in each clause.We showed that if t is evaluated as true then exactly one literal in each clause in B isevaluated as true, and if t is evaluated as false then exactly two literals in each clause in B areevaluated as true. Hence, each restriction of a satisfying assignment for B0 to the variables Vis either 1-in-3 or 2-in-3. There is no restriction in which one clause of B has exactly onetrue literal and another clause of B has exactly two true literals.From these observations, we conclude that the number of truth assignment satisfying B0with at least one true and one false literals in each clause equals two times the numberof truth assignment satisfying the original formula B with exactly one true literal in eachclause.We showed that the reduction from #1-in-3Sat to #Not-All-Equal 3Sat is weakly par-simonious, thus completing the proof of the #P-hardness of #Not-All-Equal 3Sat. Thesame reduction from #Mono-1-in 3Sat proves that #Mono-Not-All-Equal 3Sat is also #P-complete. 2Although the following theorem is subsumed by the Linial's result that the 3-coloring ofa bipartite graph is #P-complete [Lin86], we present it here since we prove its #P-hardnessby a weakly parsimonious reduction from #Not-All-Equal 3Sat.Theorem 4.7 The counting problem #3-Colorability is #P-complete.Proof: It is easy to see that this problem belongs to the class #P. The classical linearreduction [Dew82] from Not-All-Equal 3Sat to 3-Colorability is suitable for proving that#3-Colorability is #P-hard. Let us remind the reader of this transformation and prove thatit is weakly parsimonious.Suppose that we are given an instance of the #Not-All-Equal 3Sat problem with thevariables V and the clauses C = fc1; : : : ; cng, where B = c1 ^ � � � ^ cn. The correspondinginput for #3-Colorability is the graph G = (V;E) speci�ed as follows. Its set of vertices isV = V1 [ V2 where,V1 = fcontrolg [ fv; �v j v 2 V gV2 = fsi(l0i ); si(l1i ); si(l2i ) j ci = (li0 _ li2 _ li2); 1 � i � ng7



Its set of edges is E = E1 [ E2 where,E1 = fhcontrol ; vi; hcontrol ; �vi; hv; �vi j v 2 V gE2 = fhl0i ; si(l0i )i; hl1i ; si(l1i )i; hl2i ; si(l2i )i j 1 � i � ng [fhsi(l0i ); si(l1i )i; hsi(l1i ); si(l2i )i; hsi(l2i ); si(l0i )i j 1 � i � ngIn fact, the triangle for each i in E2 represents the clause ci and will be denoted by Ti.Let I be a truth assignment satisfying B with at least one true and one false literal ineach clause. Without loss of generality we can suppose that I(li0) = 0 and I(li1) = 1. So,up to isomorphism we can de�ne a 3-coloring of G by letting col(control) = 2, col(v) = I(v)and col(�v) = 1 � I(v) for v 2 V . Then, it is easy too see that for each triangle Ti there areexactly two di�erent valid colorings of the vertices si(l0i ), si(l1i ), and si(l2i ).Conversely, suppose that col:V ! f0; 1; 2g is a valid 3-coloring of G. Up to isomorphismwe can suppose that col(control) = 2. Thus, we can de�ne a truth assignment on V byletting I(v) = col(v). It is easy to see that this truth assignment satisfy B with necessarilyat least one true and one false literal.From these observations we can conclude that the number of valid 3-coloring for G equals3! � 2n times the number of truth assignment satisfying the original formula with at leastone true and one false literal.We showed that the reduction from #Not-All-Equal 3Sat to #3-Colorability is weaklyparsimonious, thus completing the proof of the #P-hardness of #3-Colorability. 2Linear equivalence to Satis�ability was studied in [Cre93b, Cre93a]. Among decisionproblems linearly equivalent to Sat we can �nd 3-Domatic Number, Path With ForbiddenPairs, Partition into Hamiltonian Subgraphs, 2-Partition into Perfect Matchings, Partitioninto Paths of Length 2, 3-Dimensional Matching, and Partition into TrianglesCorollary 4.8 The counting versions of the decision problems linearly equivalent to Satis-�ability are #P-complete.Proof: On one hand, it is easy to verify that all these problems belong to the class #P. Onthe other hand, one can easily verify that all the linear transformations proposed in [Cre93b,Cre93a], from 3-Colorability to these problems are in fact weakly parsimonious. Thus thecorollary follows from Theorem 4.7. 25 ConclusionWe proved here that the problems #Mono-1-in-3Sat, #Mono-Not-All-Equal 3Sat, #3-Co-lorability and a large class of other problems are #P-complete. Let us notice that all thereductions provided are computable in linear time. Besides to the interest of our resultto obtain new #P-complete problems, we should notice that this proof strengthens thehypothesis according to which the notion of linear reductions between NP-complete problemsis useful and natural (see [Cre93a, Gra93]). In fact, linear time reductions allow to simplifyand to standardize many proofs of NP-hardness [Cre93a], they often naturally preserve8
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