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On #P-completeness of Some Counting Problems

Nadia CREIGNOU Miki HERMANN*
Département de Mathématiques CRIN (CNRS) and INRIA-Lorraine
Université de Caen BP 239
14032 Caen, France 54506 Vandoeuvre-les-Nancy, France
Résumé

Nous prouvons que les problemes #1-in-35at, #Not-All-Equal 3Sat et #3-Colorabilité, dont
les problemes de décision correspondants font partie des problemes les plus fréquemment
utilisés pour prouver la NP-complétude de nouveaux problemes, sont #P-complets. D’une
part, la preuve explicite de la #P-complétude de #1-in-3Sat pourrait étre utile dans le
cadre des preuves de complexité en unification équationnelle. D’autre part, le fait que la
#3-Colorabilité est #P-complete nous permet de déduire immédiatement que de nombreux
problemes NP-complets ont une version énumérative #P-complete.

De plus, ce travail met une nouvelle fois en évidence I'intérét d’exhiber des réductions
linéaires entre problemes de la classe NP.

Abstract

We prove that the counting problems #1-in-3Sat, #Not-All-Equal 3Sat and #3-Colorability,
whose decision counterparts have been the most frequently used in proving NP-hardness of
new decision problems, are #P-complete. On one hand, the explicit #P-completeness proof
of #1-in-3Sat could be useful to prove complexity results within unification theory. On the
other hand, the fact that #3-Colorability is #P-complete allows us to deduce immediately
that the enumerative versions of a large class of NP-complete problems are #P-complete.

Moreover, our proofs shed some new light on the interest of exhibiting linear reductions
between NP problems.

Keywords: counting class, counting problem, #P-completeness, parsimonious reduction,
satisfiability.
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1 Introdution

Counting problems represent the quantitative counterpart to decision problems. The com-
plexity class NP and NP-complete decision problems have been exhaustively studied in the
literature (see [GJ79] for an overview). Valiant [Val79a, Val79b] introduced the complexity
class #P and proved several counting problems to be #P-complete. The class #P is defined
as the class of counting problems whose decision problem is in NP, that is, f € #P if and
only if there is a nondeterministic Turing machine M that runs in polynomial time with the
property that f(a) equals the number of accepting computation paths of M on input x. If A
is a decision problem, let us denote the corresponding counting problem by #A.

The counting problem #Sat (the number of satisfying assignments of a propositional
CNF formula) is known to be #P-complete, mainly because Cook’s generic transformation
is parsimonious in the sense that the number of satisfying assignments to the Boolean for-
mula corresponds exactly to the number of accepting computations of the nondeterministic
Turing machine being simulated. The reduction from Sat to 35at can be made parsimo-
nious [Koz92], thus proving the #P-hardness part of #3Sat. Intuitively, it seems that almost
for each NP-complete problem the corresponding counting problem is #P-complete. This
is often repeated in the literature [Joh90, page 107][PB83, page 779][Sim77, page 484], but
the explicite proofs are omitted. In fact, it is sometimes not straightforward to find an ap-
propriate reduction [Val79b, Gal74]. Moreover, not all NP decision problems have counting
counterparts that belong to the class #P. For example, AC-unification as a decision problem
is NP-complete [KN92] but there are AC-unification problems whose minimal complete set
of unifiers (see [FH86] for the definition) has double exponential cardinality [Dom92]. This
situation is due to the fact that the decision problem asks for the existence of a unifier,
not necessarily a member of the minimal complete set. On the other hand, computing the
(minimal) complete set of unifiers is a crucial problem in automated deduction in particular
and artificial intelligence in general to guarantee the completeness of many procedures or
algorithms which use AC-unification. Thus, the AC-unification counting problem cannot
belong to the counting class #P, since each counting problem belonging to #P contains, by
definition, only a simple exponential number of different solutions.

A polynomial reduction from 1-in-3Sat is the NP-hardness proof of many interesting
problems, especially in automated deduction. Unification modulo idempotence [KN92] and
modulo unit [TA87] are proved NP-complete by a reduction from 1-in-3Sat. Within the
unification theory, we are interested not only in decision problems (whether two terms are
unifiable in a given theory) but also in counting problems (how many substitutions contains
the minimal complete set of unifiers), therefore the interest in counting classes. We could
perhaps adapt the polynomial reductions from NP-hardness proofs to parsimonious ones from
the counting problems #1-in-3Sat or #Mono 1-in-35at, proving this way the #P-hardness
of the corresponding counting problems, provided #1-in-35at and #Mono 1-in-35at are
proved #P-complete. The decision problem 1-in-3Sat was proved to be NP-complete by
Schaefer [Sch78] but the corresponding counterpart was not proved to be #P-complete.

The purpose of our paper is to prove the #P-completeness of several counting problems
such as #1-in-35at, #Not-All-Equal 3Sat (and their variants) and #3-Colorability. In this

way we give an effective proof of the #P-completeness of the counting versions of some



decision problems that are among those that have been most frequently used to get proofs of
NP-completeness. Finally, a prior work on the class of problems that are linearly equivalent
to Satisfiability enables us to prove that a the counting versions of a large class of problems
are #P-complete.

2 Counting problems

We consider the following counting problems.

#1-in-3Sat (#Mono-1-in-3Sat)

Instance: Set V' of Boolean variables, a Boolean formula B over V in conjunctive normal
form where each clause of B has exactly three (all positive or all negative) literals.
Question: How many truth assignments for V satisfy B with exactly one true literal in
each clause 7

The problem #2-in-3Sat (respectively #Mono-2-in-3Sat) requires exactly two true literals
in each clause.

#Not-Exactly-One 3Sat (#Not-Exactly-One Horn-3Sat)

Instance: Set V' of Boolean variables, a Boolean formula B over V in conjunctive normal
form where each clause of B has exactly three literals (and at most one unegated variable).
Question: How many truth assignments for V' satisfy B with no clause having exactly one
true literal 7

#Not-All-Equal 3Sat (#Mono-Not-All-Equal 3Sat)

Instance: Set V' of Boolean variables, a Boolean formula B over V in conjunctive normal
form where each clause of B has exactly three (all positive or all negative) literals.
Question: How many truth assignments for V satisfy B with at least one true and one false
literal in each clause ?

#3-Colorability

Instance: Graph G = (V, E).

Question: How many 3-colorings defined on V exist for G 7 In another words, how many
functions col: V — {1,2,3} exist such that col(u) # col(v) whenever (u,v) € £ ?

Let us recall also the counting problems which were proved #P-complete before and
which will be reduced to previously mentioned problems.

Positive 25at (#Pos-2Sat) proved #P-complete (called monotone) by Valiant [Val79b]
Instance: Set V' of Boolean variables, a Boolean formula B over V in conjunctive normal
form where each clause of B has exactly two positive literals.

Question: How many truth assignments for V satisfy B ?



Bipartite positive 2Sat (#BPos-2Sat) proved #P-complete by Provan and Ball [PB83]
Instance: Two disjoint sets of variables X = {xy,..., 2}, Y = {y1,..., 4} and the Boolean
formula B = (21 Vyj1) A+ A(@in V Yin)-

Question: How many truth assignments for V satisfy B ?

Implicative 2Sat (#Impl-2Sat) proved #P-complete by Linial [Lin86]

Instance: Set V' of Boolean variables, a Boolean formula B over V in conjunctive normal
form where each clause of B has exactly one positive and one negative literal.

Question: How many truth assignments for V satisfy B ?

In the sequel, a k-clause means a clause containing k literals. An implicative clause means
a clause containing exactly one positive and one negative literal.

3 Counting class #P

Let ¥ and ? be nonempty alphabets. Let w:¥* — P(7*), where P(?7*) denotes the power
set of 7%, and let # € ¥*. We refer to the elements of w(x) as witnesses for x.

For satisfiability problem, let « € ¥* be an encoding of the Boolean formula 5 and y € 7*
an encoding of a truth assignment. The witness set is

w(x) = {truth assignments y satisfying « and Q(z,y)}

where Q(x,y) is a predicate on & and y, expressing e.g. that each clause of B has exactly
three literals, or that each satisfying assignment for B has exactly one true value, etc.

For #3-Colorability, let € ¥* be an encoding of the graph G = (V, E) and y € 7* an
encoding of a coloring function col: V' — {0,1,2}. The witness set is

w(G) = {col: V —{0,1,2} | (col(u) # col(v)) = ((u,v) € E)}

N denotes the natural numbers, || is the size of the string x, and |S| is the cardinality
of a set 5.

Definition 3.1 ([Ko0z92]) The class #P is the class of witness functions w such that:

1. there is a polynomial-time algorithm to determine, for given x and y, if y € w(x);

2. there exisls a constant k € N such that for all y € w(z), |y| < |z|".
(The constant k can depend on w).

Using this definition it is clear that all the problems proposed here are in the counting

class #P.



4 Parsimonious reductions and #P-complete prob-
lems

To prove #P-hardness, we need reductions from already known #P-complete problems.
It is necessary to observe how counting problems v and w are related under the process
of reduction. The notion of counting reductions and parsimonious reductions have been
introduced for this purpose.

Definition 4.2 Let w:¥* — P(?7*) and v:1I* — P(A*) be counting problems. A weakly
parsimonious reduction from w to v consists of a pair of polynomial-time computable func-
tions o: X" — II* and 7:3* x N — N such that |w(z)| = 7(x, |v(o(x))]).

A counting reduction o is parsimonious if |w(x)| = |v(o(x))].

Let w and v be counting problems. Note w <; v and w <y v if there is a weakly parsimonious
and parsimonious reduction from v to w, respectively.
The #P-complete problems are the most difficult problems in the class #P.

Definition 4.3 A counting problem w is #P-hard if v <, w for all problems v € #P. A
counting problem w is #P-complete if it is #P-hard and w € #P.

If w is #P-complete and there is a weakly parsimonious reduction from w to v then v is
#P-hard.

The reductions in the #P-hardness proofs must preserve the number of solutions, possibly
with a certain factor. Therefore the necessity to look for parsimonious or weakly parsimo-
nious reductions. Note that a composition of (weakly) parsimonious reductions is a (weakly)
parsimonious reduction.

Theorem 4.4 The counting problems #1-in-3Sat and #Mono 1-in-3Sat are #P-complete.

Proof: It is clear that these problems are in the class #P. To show that they are #P-hard
it is sufficient to prove that prove that #Mono-1-in-35at is #P-hard. For this we first show
that there is a parsimonious reduction from #Impl-25Sat to #Mono-2-in-3Sat.

Suppose that we are given an instance of the #Impl-25at problem with the variables V'
and the implicative clauses C' = {¢y, ..., ¢, }, with the Boolean formula B = ¢; A+ A¢,. Let
X =A{z12, 213, - -, Tpa, Tpz} and Y = {912, Y13, Y145 - - -+, Yn2, Yn3, Yna } be sets of new variables.
Let VV=VUXUY.

To each implicative clause ¢; = v;1 V v we associate four new clauses

1 = vaVapVas
Cia = U VIaViyn Cia = Tz VY2V i
Cz = U VIsViys

Let B’ be the Boolean formula constructed from B by replacing each clause ¢; by the con-
junction ¢y A ¢io A €3 N ¢iq.
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Figure 1: Enlargements of truth assignments from B to B’.

First, we show that for each truth assignment for V' satisfying B there exists a unique
enlargement to a truth assignment for V' satisfying B’ with exactly two true literals in each
clause.

Each truth assignement satisfying B evaluates the variables v;; and v;3 in each clause ¢;
in one of the following ways: (1) v;; false and v;s false; (2) v,y false and v;y true; (3) v;y true
and v;, true.

Case 1: If v;; and v;y are evaluated as false, then the variables x5, x;3, y:2 and ;3 must
be true. The variables x;3 and y,; are true, thus y,4 must be false. All variables in the
clauses ¢;1, ..., ¢y have been determined.

Case 2: If v; is evaluated as false and v;; as true. The variable v;; is false, thus the
variables x;5 and x;3 are true following clause ¢;;. The variables v;y, 29, and x;3 are true,
thus 4,0 and 7,3 are false. The variable z;3 is true and ;o is false, thus ;4 is true. All
variables in the clauses ¢;1, ..., ¢4 have been determined.

Case 3: If v;; and v;3 are evaluated as true. Suppose that x, is true, then y;, must be
false since v;5 is already true. If v;; and x5 are true then z;3 must be false following clause ¢;;.
But we have now the situation where x;3 is false and y;, is false, thus the clause ¢;4 cannot
have two true literals. Hence, ;5 must be false. The variable v;; is true and x;, is false,
thus ;3 is true. The variables v, and w;3 are true, thus 3,3 must be false. The variable v;,
is true and x5 is false, thus ¥, is true. The variables x;3 and y;y are true, thus yy is false.
All variables in the clauses ¢, ..., ¢4 have been determined.

We proved that each truth assignment satisfying B determines a unique enlargement
satisfying B’ with exactly two true literals in each clause. Figure 1 summarizes the truth
assignments.

Conversely, we must prove that the restriction to the variables V' of each 2-in-3 truth
assignment satisfying B’ satisfies also the original formula B. Suppose that B’ is evaluated
as true, thus each clause ¢;; is true. One of the literals in the clause ¢;; must be false. If x4
is false then the two other literals in the clause ¢;, in particular v;y, must be true. If vy is
false then v;; is true. Thus, at least one of the literals v;; and v;3 in each clause ¢; is true.
Hence, B is true.

We proved that the reduction from #Impl-25at to #2-in-3Sat is parsimonious. It is
sufficient now to negate all literals in each clause to get a parsimonious reduction from
#Mono-2-in-35at to #Mono-1-in-3Sat. The #P-hardness of #1-in-35at follows from the
#P-completeness of #Mono 1-in-3Sat. O

Theorem 4.5 The counting problem #Not-Ezractly-one 3Sat is #P-complete.



Proof: It is clear that this problem belongs to #P. To show that it is #P-hard we show
that there is a parsimonious reduction from #Pos-2Sat.

Suppose that we are given an instance of the #Pos-2Sat problem with the variables V'
and the 2-clauses C' = {¢1,...,¢,}, where B =¢; A--- A¢,. Let V! =V U {z,y}, where z
and y are new variables.

To each clause ¢; = v;1 V v;5 we associate the clause ¢, = v, V v;a V@, Let us consider the
new clauses ¢ =2V Vyand d =y VyVae and the new formula

B = AN ANIND

The case analysis with constraints for evaluating logical variables proves that each truth
assignment satisfying B determines a unique enlargment on V' with no clause in B” having
exactly one true literal. The literals # and y must be evaluated as true following the clauses ¢/
and d’ and conversely, the restriction to the variables V' of each truth assignment on V', with
no clause in B’ having exactly one true literal, satisfies the original formula B.

Thus, the reduction from #Pos-2Sat to #Not-Exactly-One 35at is parsimonious. O

Remark. Let us notice that this reduction, in negating all the literals, also provides a proof
of the #P-completeness of the same problem restricted to Horn 3-clauses. It is interesting
to note that the decision problem Not-Exactly-One Horn-3Sat is in P (see [Sch78]). Thus, in
this particular case we show that the corresponding counting problem is #P-complete, i.e.
considerably more difficult than the original decision problem, provided P # NP.

Theorem 4.6 The counting problems #Not-All-Equal 3Sat and #Mono-Not-All-Fqual 35at
are #P-complete.

Proof: It is clear that these problems belong to #P. To show that there are #P-hard we
show that there are weakly parsimonious reductions from #1-in-35at and #Mono-1-in-3Sat
respectively.

Suppose that we are given an instance of the #1-in-35at problem with the variables V'
and the clauses C' = {¢1,...,¢,}, where B =¢; A -+ A¢,. Let V! = V U {t}, where t is a
new variable. To each clause ¢; = [;; V l;2 V ;3 we associate four new clauses

¢1 = lpaVigVvi
Gz = lipVigVi ¢a = laVigVis
¢z = liaVigVi

Let B’ be the Boolean formula constructed from B by replacing each clause ¢; by the con-
junction ¢y A ¢io A €3 N ¢iq.

First, we show that for each truth assignment for V, satistying B with exactly one
true literal in each clause, there exists a unique enlargement to a truth assignment for V"’
satisfying B’ with at least one true and one false literal in each clause.

Let us consider a truth assignment for V satisfying B with exactly one true literal in
each clause. Since two of the literals l;1, l;2, and [;3 are false, the variable ¢ must be true
following one of the clauses ¢;1, ¢;3 or ¢;3.



Conversely, let s’ be a truth assignment satisfying B’ with at least one true and one false
literals in each clause. Such a truth assignment evaluates ¢ either as true or false.

If the variable ? is evaluated as true, then at least one of the two literals in each pair
(li1, li2), (L2, li3), and (I;3,1;1) is false following the clauses ¢;1, ¢;2, and ¢;5. But following
clause ¢;4, one of the literals /;1, [;2 or [;3 must be true. Therefore, exactly one of the three
literals l;1, l;5 and ;5 is true. Thus, the restriction to the variables V of the truth assignment s’
satisfies also the original formula B with exactly one true literal in each clause.

If the variable ¢ is evaluated as false, then at least one of the two literals in each pair
(li1, li2), (L2, i), and (I;3,1;1) is true following the clauses ¢;1, ¢;2, and ¢;3. But following
clause ¢y, one of the literals [;1, l; or [;3 must be false. Therefore, exactly one of these three
literals is false. Observe that the number of satisfying assignments for B’ with exactly one
true literal in each clause is equal to the number of satisfying assignments for B’ with exactly
two true literals in each clause. If s is a satisfying assignment with exactly one true literal
in each clause then s, where s(v) = 1 — s(v) for each v € V, is a satisfying assignment with
exactly two true literals in each clause.

We showed that if ¢ is evaluated as true then exactly one literal in each clause in B is
evaluated as true, and if ¢ is evaluated as false then exactly two literals in each clause in B are
evaluated as true. Hence, each restriction of a satisfying assignment for B’ to the variables V'
is either 1-in-3 or 2-in-3. There is no restriction in which one clause of B has exactly one
true literal and another clause of B has exactly two true literals.

From these observations, we conclude that the number of truth assignment satisfying 5’
with at least one true and one false literals in each clause equals two times the number
of truth assignment satisfying the original formula B with exactly one true literal in each
clause.

We showed that the reduction from #1-in-3Sat to #Not-All-Equal 3Sat is weakly par-
simonious, thus completing the proof of the #P-hardness of #Not-All-Equal 35at. The
same reduction from #Mono-1-in 35Sat proves that #Mono-Not-All-Equal 3Sat is also #P-
complete. O

Although the following theorem is subsumed by the Linial’s result that the 3-coloring of
a bipartite graph is #P-complete [Lin86], we present it here since we prove its #P-hardness
by a weakly parsimonious reduction from #Not-All-Equal 3Sat.

Theorem 4.7 The counting problem #3-Colorability is #P-complete.

Proof: It is easy to see that this problem belongs to the class #P. The classical linear
reduction [Dew82] from Not-All-Equal 3Sat to 3-Colorability is suitable for proving that
#3-Colorability is #P-hard. Let us remind the reader of this transformation and prove that
it is weakly parsimonious.

Suppose that we are given an instance of the #Not-All-Equal 3Sat problem with the
variables V' and the clauses C' = {¢1,...,¢,}, where B = ¢; A --+ A¢,. The corresponding
input for #3-Colorability is the graph G = (V| F) specified as follows. Its set of vertices is
V =V, UV, where,

Vi = {control} U{v,v|veV}
Vo= {sill)sillhsilf) e = (v 5V 6), 1< <n)

7



Its set of edges is £ = Fy U Ey where,

FEy = {{control,v), (control,v), (v,v)|veEV}
By = {(I7,s:(B)), (Gsi(lD), (Fosi(@) |1 <i<n}U
{{s:(10), s:(10)), (sa(lD), sal1D)), (sallD), sal)) [ 1 <4 < m}

In fact, the triangle for each ¢ in F; represents the clause ¢; and will be denoted by T;.

Let I be a truth assignment satisfying B with at least one true and one false literal in
each clause. Without loss of generality we can suppose that I(l}) = 0 and I(l{) = 1. So,
up to isomorphism we can define a 3-coloring of GG by letting col(control) = 2, col(v) = I(v)
and col(v) =1 — I(v) for v € V. Then, it is easy too see that for each triangle T} there are
exactly two different valid colorings of the vertices s;(17), s;(1}), and s;(1?).

Conversely, suppose that col: V' — {0,1,2} is a valid 3-coloring of G. Up to isomorphism
we can suppose that col(control) = 2. Thus, we can define a truth assignment on V' by
letting I(v) = col(v). It is easy to see that this truth assignment satisfy B with necessarily
at least one true and one false literal.

From these observations we can conclude that the number of valid 3-coloring for G equals
3! x 2™ times the number of truth assignment satisfying the original formula with at least
one true and one false literal.

We showed that the reduction from #Not-All-Equal 35Sat to #3-Colorability is weakly
parsimonious, thus completing the proof of the #P-hardness of #3-Colorability. O

Linear equivalence to Satisfiability was studied in [Cre93b, Cre93a]. Among decision
problems linearly equivalent to Sat we can find 3-Domatic Number, Path With Forbidden
Pairs, Partition into Hamiltonian Subgraphs, 2-Partition into Perfect Matchings, Partition
into Paths of Length 2, 3-Dimensional Matching, and Partition into Triangles

Corollary 4.8 The counting versions of the decision problems linearly equivalent to Satis-
fiability are #P-complete.

Proof: On one hand, it is easy to verify that all these problems belong to the class #P. On
the other hand, one can easily verify that all the linear transformations proposed in [Cre93b,
Cre93al, from 3-Colorability to these problems are in fact weakly parsimonious. Thus the
corollary follows from Theorem 4.7. O

5 Conclusion

We proved here that the problems #Mono-1-in-35at, #Mono-Not-All-Equal 3Sat, #3-Co-
lorability and a large class of other problems are #P-complete. Let us notice that all the
reductions provided are computable in linear time. Besides to the interest of our result
to obtain new #P-complete problems, we should notice that this proot strengthens the
hypothesis according to which the notion of linear reductions between NP-complete problems
is useful and natural (see [Cre93a, Gra93]). In fact, linear time reductions allow to simplify
and to standardize many proofs of NP-hardness [Cre93a], they often naturally preserve



the approximation algorithms for NP-complete optimization problems (observe for example
that the L-reductions proposed by Papadimitriou and Yannakakis [PY91] are linear time
computable) and finally they seem to be useful to get parsimonious reductions in a natural

way.
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