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1 Introduction

Diophantine equations are equations with integer coefficients constructed using addition, subtraction,
multiplication, and exponentiation. The only solutions of interest to Diophantine equations are
typically natural number solutions. Since Martin Davis, Julia Robinson, Hilary Putnam, and Yuri
Matijasevi proved that any recursively enumerable set, i.e. sets that can be described algorithmically,
is Diophantine [2] [5], many special sets of numbers have been represented by Diophantine equations.
Notably, James Jones et al. have created a set of Diophantine equations to represent the set of prime
numbers [4]. Jones et al. managed to create a polynomial of degree 25 in 26 variables from the set
of equations whose positive values are strictly prime. The aforementioned polynomial:

(k + 2){1− [wz + h+ j − q]2 − [(gk + 2g + k + 1) · (h+ j) + h− z]2 − [2n+ p+ q + z − e]2

− [16(k + 1)3 · (k + 2) · (n+ 1)2 + 1− f2]2 − [e3 · (e+ 2)(a+ 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2

− [16r2y4(a2 − 1) + 1− u2]2 − [((a+ u2(u2 − a))2 − 1) · (n+ 4dy)2 + 1− (x+ cu)2]2 − [n+ l + v − y]2

− [(a2 − 1)l2 + 1−m2]2 − [ai+ k + 1− l − i]2 − [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

− [q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2 − [z + pl(a− p) + t(2ap− p2 − 1)− pm]2}

The Diophantine representation of the primes heavily relies on the Diophantine representation
of the exponential function. Davis showed in 1973 that the exponential function, nk = m, can be
represented in 12 equations which are only true when nk = m is also true [1]. These equations use
the properties of the Pell equation

x2 − dy2 = 1

in order to force specific integer solutions.
While the theoretical side of these Diophantine representations has been mapped out, little has

been done in terms of explicit solutions. Nachiketa Gupta attempted to formulate explicit solutions
to the prime representing Diophantine equations for the prime number 2 but was unsuccessful in
actually finding the whole solution set [3]. Of the total 26 variables, Gupta found values for only
22 of them. The problem he ran into regarded the size of the solutions of the last four variables.
That is, some equations require numbers so large that it is impossible to write them down, let alone
calculate them.

In this paper, we will explore the root of the problem—the exponential function—and show that
it is impossible to find solutions for the equations representing the function when k ≥ 5. We will
first find general explicit solutions to the equations in [1] and then use these to find actual explicit
solutions and prove the upper bound on k.
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2 General Explicit Solutions

Before finding general solutions to the Diophantine equations representing the exponential function
we need some properties of the special Pell equation where

x2 − (a2 − 1)y2 = 1, for a > 1. (1)

The trivial solutions to this equation are

x = 1, y = 0

x = a, y = 1.

Definition 2.1. xn(a) + yn(a)
√
a2 − 1 = (a+

√
a2 − 1)n

For simplicity, xn(a) and yn(a) will be written as xn and yn where dependence on a is implied.

Lemma 2.1. xn and yn are solutions to (1)

Lemma 2.2. xn+1 = 2axn − xn−1 and yn+1 = 2ayn − yn−1

Lemma 2.3. When n is even, yn is even and when n is odd, yn is odd.

The proofs to these lemmas can be found in [1]. On top of these lemmas we will need the
following:

Lemma 2.4. If n is even, xn is odd. If n is odd and a is odd, xn(a) is odd and if n is odd and a is
even, xn(a) is even.

Proof. The lemma holds for xo = 1, x1 = a. Following inductively:

xn+1 =2axn − xn−1

xn+1 ≡ −xn−1 ≡ xn−1 (mod 2)

Note that this result is also deducible from (1) and 2.3. When y or a2 − 1 is even x must be odd
in order to have a difference of 1. Both y and a2 − 1 being odd force x to be even.

Since solutions to (1) are recursive we may use a characteristic equation to find general solutions
to x and y.

xn+1 − 2axn + xn−1 = 0

rn+1 − 2arn + rn−1 = 0

r2 − 2ar + 1 = 0

r =
2a±

√
4a2 − 4

2
= a±

√
a2 − 1

an = (a+
√
a2 − 1)n, bn = (a−

√
a2 − 1)n

cn = 2acn−1 − cn−2 = k12a(a+
√
a2 − 1)n − k2(a−

√
a2 − 1)n

Using c0 = 0, c1 = 1 for y and c0 = 1, c1 = a for x and solving for k1 and k2 we have:
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yn =
1

2
√
a2 − 1

(
(a+

√
a2 − 1)n − (a−

√
a2 − 1)n

)
xn =

1

2

(
(a+

√
a2 − 1)n + (a−

√
a2 − 1)n

)
With this knowledge, we are ready to start writing the nth solution to the special Pell equation

in terms of n and a. We will follow the method outlined in [1] to find a general explicit solution to
equations derived by Davis. The aforementioned equations

x2 − (a2 − 1)y2 = 1 (2)

u2 − (a2 − 1)v2 = 1 (3)

s2 − (b2 − 1)t2 = 1 (4)

v = ry2 (5)

b = 1 + 4py = a+ qu (6)

s = x+ cu (7)

t = k + 4(d− 1)y (8)

y = k + e− 1 (9)

(x− y(a− n)−m)2 = (f − 1)2(2an− n2 − 1)2 (10)

m+ g = 2an− n2 − 1 (11)

w = n+ h = k + l (12)

a2 − (w2 − 1)(w − 1)2z2 = 1 (13)

Theorem 2.5. m = nk if and only if (2)-(13) have solutions in the remaining arguments.

We will concern ourselves with the case n ≤ k for simplicity, although general solutions are just
as easily found for n > k. The only equation that features both n and k is (12), so that is where we
will start.

Equation (12) is just saying that w > n and w > k. In order to keep solutions as minimal as
possible we have

w = n+ h = k + 1, h = k + 1− n, l = 1. (14)
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Equation (13) slightly deviates from the typical special Pell equation as it expresses the y2 in (1)
as the product of two squares. Namely, (w− 1)2z2. This is done so that a is large enough to satisfy
(10) and (11). As we will see later in the paper we will use the k the solution to the majority of
these Pell equations. Accordingly, we have

a = xw−1(w) and z =
yw−1(w)

w − 1
.

This can be written as

a =
1

2

((
k + 1 +

√
(k + 1)2 − 1

)k

+
(
k + 1−

√
(k + 1)2 − 1

)k
)

(15)

z =
1

2k
√
(k + 1)2 − 1

((
k + 1 +

√
(k + 1)2 − 1

)k

−
(
k + 1−

√
(k + 1)2 − 1

)k
)
. (16)

The next equation to tackle is (2) which encodes the central property that assures (2.5) is true.
Equations (3)-(9) are simply there to ensure x = xk(a) and y = yk(a). The solutions are

x = xk =
1

2

((
a+

√
a2 − 1

)k

+
(
a−

√
a2 − 1

)k
)

(17)

y = yk =
1

2
√
a2 − 1

((
a+

√
a2 − 1

)k

−
(
a−

√
a2 − 1

)k
)
. (18)

These solutions are written in terms of a and k as writing in just terms of k would create an
excessively complicated expression. We could at any point plug our solution to a back into these
solutions in order to have something just in terms of k.

(5) guarantees that u = xikyk
and v = yikyk

for some i in (3). We will use i = 2 to ensure that
ikyk is even, in accordance with Davis’s instructions. To satisfy both (3) and (5) we have:

u = x2ky =
1

2

((
a+

√
a2 − 1

)2ky

+
(
a−

√
a2 − 1

)2ky
)

(19)

v = y2ky =
1

2
√
a2 − 1

((
a+

√
a2 − 1

)2ky

−
(
a−

√
a2 − 1

)2ky
)
r =

v

y2
. (20)

At this point, we will have to deviate from the method outlined by Davis as it is inadequate for
finding general solutions. He proposed using the Chinese Remainder Theorem to solve (6), however,
that requires knowing certain inverses that we do not know in this case.

Lemma 2.6. When k is even, x2kyk
(a) ≡ 1 (mod4yk). When k is odd and a is odd, x2kyk

(a) ≡ 1
(mod4yk) and when k is odd and a is even, x2kyk

≡ 2yk + 1 (mod4yk).

Proof. Starting with the case where k is even, y is even by Lemma 2.3.

x2kyk
(a) + y2kyk

(a)
√
a2 − 1 =

((
a+

√
a2 − 1

)2k
)yk

(21)

Expanding the right-hand side with the binomial theorem and collecting the components without√
a2 − 1 we have
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x2kyk
=

yk
2∑

i=0

(
yk
2i

)
· xyk−2i

2k ·
(
y22k

(
a2 − 1

))i
x2kyk

≡ (x2k)
yk (modyk)

yk = 2m for some m since yk is even and x2
n ≡ 1 (modyn) by equation (1). Combining these two

with the equivalence above we have:

x2kyk
≡

(
(x2k)

2
)m

(modyk)

≡ 1m = 1 (modyk)

By Lemma (2.4), xk is odd and so can be represented as 2n+ 1 for some n. Since y2k ≡ 0,

x2kyk
≡ xyk

k (mod4)

≡ (2n+ 1)2m (mod4)

≡
(
4n2 + 4n+ 1

)m
(mod4)

≡ 1m = 1 (mod4).

Since x2kyk
≡ 1 (modyk) and x2kyk

≡ 1(mod4), x2ky ≡ 1 (mod4yk).
Continuing on to the case where k is odd, yk is odd. Rearranging components from (22) in a

slightly different way we have

x2kyk
=

yk∑
i=0

(
2yk
2i

)
· x2yk−2i

k ·
(
y2k

(
a2 − 1

))i
.

And so by the same logic from earlier in the proof:

x2kyk
≡ 1 (modyk)

Going by cases, if a is odd, xk is also odd.

a2 − 1 ≡ 0 (mod4)

x2
k ≡ 1 (mod4)

Then:

x2kyk
≡ x2yk

k (mod4)

≡ 1yk = 1 (mod4).

And so x2kyk
≡ 1 (mod4yk) when k is odd and a is even. If a is even, xk is also even.

x2
k ≡ 0 (mod4)

So:

x2kyk
≡

(
y2

(
a2 − 1

))yk
(mod4)

≡
(
a2 − 1

)yk
(mod4)

≡ (−1)yk = −1 (mod4)
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x2kyk
≡ 1 (modyk) means u = 1 +myk for some m and x2kyk

≡ −1(mod4) means ky ≡ 2 (mod
4). Since yk is odd, any k of the form 2 + 4n for some n satisfies the congruence. Therefore

u = 1 + (2 + 4n)yk = 1 + 2yk + 4yk ≡ 1 + 2yk (mod 4yk).

From here the general solutions to (2)-(13) change depending on whether k is even or odd. We
will start with the case where k is even. By Lemma 2.6:

u = 4yi+ 1, for some i.

i =
u− 1

4y

Some algebra:

4yi = u− 1

4y(i(4y − a+ 1)) = u(4y − a+ 1)− (4y − a+ 1)

4y(i(4y − a+ 1)) + 4y = u(4y − a+ 1)− (4y − a+ 1) + 4y

4y(i(4y − a+ 1) + 1) = u(4y − a+ 1) + a− 1

1 + 4y(i(4y − a+ 1) + 1) = a+ u(4y − a+ 1)

Now we have something of the form 1 + 4yp = a+ uq. We can now solve equation (7).

p =
u− 1

4y
(4y − a+ 1) + 1

q = 4y − a+ 1

Now for the case where k is odd. By Lemma 2.6:

u = 4yj + 2y + 1, for some j.

j =
u− 2y − 1

4y

Some more algebra:

4yj = u− 2y − 1

4y(j(2y − a+ 1)) = (u− 2y − 1)(2y − a+ 1)

4y(j(2y − a+ 1)) + 4y

(
y − 1

2
a+ 1

)
= (u− 2y − 1)(2y − a+ 1) + 4y

(
y − 1

2
a+ 1

)
4y

(
j(2y − a+ 1) + y − 1

2
a+ 1

)
= u(2y − a+ 1)− 2y(2y − a+ 1)

− (2y − a+ 1) + 4y2 − 2ya+ 4y

= u(2y − a+ 1)− 4y2 + 2ya− 2y − 2y

+ a− 1 + 4y2 − 2ya+ 4y

= u (2y − a+ 1) + a− 1.

1 + 4y

(
j(2y − a+ 1) + y − 1

2
a+ 1

)
= a+ u(2y − a+ 1)
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So:

p =
u− 2y − 1

4y
(2y − a+ 1) + y − 1

2
a+ 1

q = 2y − a+ 1

Use the corresponding p and q depending on the parity of k to determine b from (6). Equation (6)
is somewhat convoluted in nature to ensure that b ≡ 1(mod4y), b ≡ a(modu), b > 4y, and b > u.
This has relevance in ensuring (4), (7), and (8) are all simultaneously true.

Now we need to find s and t in (4). Solutions:

s = xk(b)

t = yk(b)

And so:

s =
1

2

((
b+

√
b2 − 1

)k

+
(
b−

√
b2 − 1

)k
)

t =
1

2
√
b2 − 1

((
b+

√
b2 − 1

)k

−
(
b−

√
b2 − 1

)k
)
.

The equations that remain are (8)-(12). Equations (7) and (8) perform similar jobs causing
c ≡ x(modu) with c > u and t ≡ k(mod4y) with t >= k respectively. Equation (10) helps to
ensure x = xk and y = yk. Without it, it’s possible to always have x = x1 and y = y1. For (8)-(10):

c =
s− x

u

d = 1 +
t− k

4y

e = 1 + y − k

It can be shown that [1] that c, d, and e will be integers because of the choices we made for the
previous variables, even though it appears they may not be.

Equations (10) and (11) make sure that we’ve chosen the right m to satisfy nk = m. Equation
(10) ensures that x − y(a − n) − m is some integer multiple of 2an − n2 − 1. In other words:
x− y(a−n) ≡ m

(
mod2an− n2 − 1

)
. Equation (11) forces m < 2an−n2 − 1. These equations can

be resolved similarly to those above:

f = 1 +
x− y(a− n)−m

2an− n2 − 1

g = 2an− n2 − 1−m

3 Explicit Solutions

Now that we have general solutions to all of the variables in Davis’s equations we can apply them
to actual cases of nk = m, k ≥ n. We will start with showing 11 = 1.

n = 1, k = 1, m = 1

By (14)-(29):
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w = 1 + 1 = 2, h = 1 + 1− 1 = 1

a =
1

2

((
1 + 1 +

√
(1 + 1)2 − 1

)1

+
(
1 + 1−

√
(1 + 1)2 − 1

)1
)

=
1

2
(2 +

√
3 + 2−

√
3)

= 2

z =
1

2
√
(1 + 1)2 − 1

((
1 + 1 +

√
(1 + 1)2 − 1

)1

−
(
1 + 1−

√
(1 + 1)2 − 1

)1
)

=
1

2
√
3
((1 + 1 +

√
3)− (1 + 1−

√
3))

= 1.

Verifying with (13):

22 −
(
22 − 1

)
(2− 1)212 = 1

4− (3)(1) = 1

1 = 1

For x and y :

x =
1

2

((
2 +

√
22 − 1

)1

+
(
2−

√
22 − 1

)1
)

=
1

2
((2 +

√
3) + (2−

√
3))

= 2

y =
1

2
√
22 − 1

((
2 +

√
22 − 1

)1

−
(
2−

√
22 − 1

)1
)

=
1

2
√
3
((2 +

√
3)− (2−

√
3))

= 1.

Plugging into (2):

22 −
(
22 − 1

)
12 = 1

1 = 1

Continuing on:
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u =
1

2

((
2 +

√
22 − 1

)2(1)(1)

+
(
2−

√
22 − 1

)2(1)(1)
)

=
1

2

(
(2 +

√
3)2 + (2−

√
3)2

)
=

1

2
(4 + 4

√
3 + 3 + 4− 4

√
3 + 3)

= 7

v =
1

2
√
22 − 1

((
2 +

√
22 − 1

)2(1)(1)

−
(
2−

√
22 − 1

)2(1)(1)
)

=
1

2
√
3

(
(2 +

√
3)2 − (2−

√
3)2

)
=

1

2
√
3
(4 + 4

√
3 + 3− 4 + 4

√
3− 3)

= 4

r =
4

12

= 4

Again verifying with (3) and (5):

72 −
(
22 − 1

)
42 = 1

49− (3)16 = 1

1 = 1

4 = 4(1)

Moving on to p, q, and b :

p =
7− 2(1)− 1

4(1)
(2(1)− 2 + 1) + 1− 1

2
(2) + 1

=
4

4
(1) + 1

= 2

q = 2(1)− 2 + 1

= 1

b = 1 + 4(1)(2) = 2 + (7)(1)

= 9

In finding b we also ensured that p and q were correct. For the final Pell equation:
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s =
1

2

((
9 +

√
92 − 1

)1

+
(
9−

√
92 − 1

)1
)

=
1

2
((9 +

√
80) + (9−

√
80))

= 9

t =
1

2
√
92 − 1

((
9 +

√
92 − 1

)1

−
(
9−

√
92 − 1

)1
)

=
1

2
√
80

((9 +
√
80)− (9−

√
80))

= 1

To check:

92 −
(
92 − 1

)
12 = 1

1 = 1

For the values of c, d, e :

c =
9− 2

7
= 1

d = 1 +
1− 1

4(1)

= 1

e = 1 + 1− 1

= 1

Now we will find f :

f = 1 +
2− 1(2− 1)− 1

2(2)(1)− 12 − 1

= 1 +
0

4− 1− 1

= 1

And for g :

g = 2(2)(1)− 1− 1− 1

= 1

This concludes the derivation of the solutions to Davis’s equations that describe 11 = 1. This
can be done for any n, k, and m such that nk = m, however, as we will discuss in the next section,
there is a limitation to finding solutions for all n, k, and m. Solutions to 22 = 4 can be found in
Appendix.A.
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4 Explicit Solutions Limitation

Here we show that there is a point where we can no longer find solutions to the equations representing
the exponential function. The variable with the largest value in (??)-(??) is s, so we will focus on
finding the size of s for a given nk = m. Starting with n = 5, k = 5, and m = 3125 and ignoring
certain variables that don’t have bearing on s:

w = 5 + 1 = 6

a =
1

2

(
(5 + 1 +

√
(5 + 1)2 − 1)5 + (5 + 1−

√
(5 + 1)2 − 1)5

)
= 120126

y =
1

2

(
(120126 +

√
1201262 − 1)5 − (120126−

√
1201262 − 1)5

)
≈ 3 · 1021

We will start using approximations here as the numbers start to get substantially larger. we will
use the fact that n+

√
n2 − 1 ≈ 2n and n−

√
n2 − 1 ≈ 0 for sufficiently large n.

u ≈ 1

2

(
(120126 +

√
1201262 − 1)2(5)(3·10

21) + (120126−
√

1201262 − 1)2(5)(3·10
21)

)
≈ 1

2
(2 · 120126)2(5)(3·10

21)

≈ 10log10(
1
2 )+2(5)(3·1021)·log10(2·120126)

≈ 101.6·10
23

We will just use q to calculate b.

q ≈ 2 · 3 · 1021 − 120126 + 1

≈ 6 · 1021

b ≈ 120126 + 101.6·10
23

· 3 · 1021

≈ 3 · 101.6·10
23

For s:

s ≈ 1

2

(
(3 · 101.6·10

23

+
√

(3 · 101.6·1023)2 − 1)5 + (3 · 101.6·10
23

−
√
(3 · 101.6·1023)2 − 1)5

)
≈ 1

2
(2 · 3 · 101.6·10

23+21)5

≈ 10log10
1
2+5·log10(101.6·10

23+21)

≈ 108·10
23
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Both s and u have a number of digits in the realm of 1023 digits. This is far beyond the number
of digits producible by even the best supercomputers, let alone computable. It would require around
2 ·1019 pages completely filled with digits in order to write down s. It would be physically impossible
to write these numbers down, so in a sense, they’re completely useless. This will be true for k ≥ 5.

The nature of Davis’s equations imposes the solution of (2) to be xk. Therefore, there are not
the same constraints on n as there are on k. The value of n is allowed to be sufficiently large if k
is sufficiently small. The value of m does not have as powerful an effect on the size of solutions to
(2)-(13) and so is not restraining the solutions like k and n do.

This has implications for all other sets of Diophantine equations that require the use of the
exponential functions. The reason Gupta [3] could not calculate values to the equations in [4] is that
they require the use of the exponential function for some k ≥ 5.

Appendices

A Solutions to 22

Even the solutions to Davis’s equations for 22 = 4 are extremely large as can be seen below. The
problem again arises from the values of u and v which are immensely larger than x and y and cause
all the subsequent values to be immensely large as well.

n = 2, k = 2, m = 4

w = 3, h = 1, l = 1

a = 17, z = 3

x = 577, y = 34

u = 849068693654549914850658204329910506487643463118908823215880908362481757178962381736

03034916784966177173904562967610959612092029388630473803843852076197861167198886

92845532669945258325154547492631702763938817

v = 5003185258136129826178235128632666199004705973932442072989870120777917763935

00565819450897362315752945552369579016741617339282624095342427174840926799388377

324075295980413152618950904131419366111555350733576

r = 432801492918350330984276395210438252509057610201768345414348626364871778887111

216106791433704425391821412084410914136347179310228456178570220450628719194098

031207003443263972853763757899151700788542690946

p = 7491782591069558072211690038205092704302736439284489616610713897316015504520256

3094355619044222028979859327555559656729069492967107615123944568104773115759853

41078258393117061716404404548130140557384791710721

q = 120
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b = 10188824323854598978207898451958926077851721557426905878590570900349781086147548

5808323641900141959412608685475561133151534510435266356568564612622491437433400

6386643141463920393430999018545699115804331672658057

s = 2076242822047422520817630096192405802622724135960311541444061750093998278585806629

3376278068821682754887804813642886096534772932775411633786947071000721824776732709

3527043255734978702137544296857133049650558449491813660405577110658007240563041389

0068754731172000115189265037338431131695739703667994377371559363845557112403366064

06344604022364181786907040098237513426405193321175660

6452542846189888489360035517191294030497

t = 20377648647709197956415796903917852155703443114853811757181141800699562172295097161

66472838002839188252173709511222663030690208705327131371292252449828748668012773286

282927840786861998037091398231608663345316114

c = 244531783772510375476989562847014225868441317378245741086173701608394746067541165939

976740560340702590260845141346719563682825044639255764555070293979449840161532794353

951340894423439764450967787793039601437937760

d = 149835651821391161444233800764101854086054728785689792332214277946320310090405126188

7112380884440579597186551111193134581389859342152302478891362095462315197068215651678

6234123432808809096260281114769583421443

e = 33, f = 2, g = 59
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