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ABSTRACT 

Let rj represent the order type of the rational numbers. 

'n unpublished result of F. Galvin asserts the partition 

2 1 ' • cion of n where we use the standard partition 

arL'ou notation: given a 'coloring' f: [Q] —»- 3 of pairs of 

•iL:onals with three colors there exists a large subset 

X t Q which avoids a color. The subset is large in that X 

has order type n, and X avoids a color in that there is 

c e 3 such that p e [X]^ => f(p) t c. 

Proving this theorem leads naturally to the inductive 

construction of an order type ri set where the steps of induction 

are labelled by the nodes of a full binary tree of height ID. A 

t-':;.nolation of the Galvin theorem entirely into the language 

o" binary trees was stated by James Baumgartner. A definition 

o.:: u-ie 'hi-- subsets' of an infinite full binary tree was r;iven, 

co 1 "2:; >onding to the order type ri subsets of Q. In the language 

o trrees, various generalizations or modifications of the 

'-^ivivial theorem are easily conjectured. For example, the 

::a,ne definition of 'big subset' can be applied to the ternary 

::ree to give a partition theorem for pairs in which seven colors 

•;an be reduced to six on a big subset. By changing the definition 

'big subset', different partition theorems result, each 

theorem with its characteristic number of 'essential colors'. 

}•'!rt..t:ton theorems for triples, quadruples, etc. including 

il^rized partition theorems are also naturally conjectured 

'n the tree context. V/hile some of the simpler cases of these 

v ous tree theorems can be proved 'directly' in analogy to 
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Ill 

the proof of the Galvin theorem, the more complicated cases 

are most easily deduced from a version of the Halpern-Lauchli 

partition theorem as extended by K. Milliken in his unpublished 

paper A Ramsey Theorem for Trees. 

Let jl s be a co-ideal, & = $'(w) - I, where 

I is an ideal including the finite sets. If satisfies a 
n 

combinatorial property like M [j?] g , there seems hope 

for an ultrafilter , such that U -+ [U]g • With CH, all 

possible partitions of [to] can be enumerated in order type 

The desired ultrafilter can be built using w^-induction provided 

the partial order countably complete [i.e., for 

any countable (x s lI')(3y such that(Vx e  x)(y - x e I)] . 

Although the simple tree theorems like Galvin's theorem do not 

yield directly a countably complete co-ideal, such co-ideals 

can be defined on a countable disjoint union of trees. In this 

way for example, a countably complete co-ideal M such that 

L/ 2 
[£] 0 built and then a q-point ultrafilter  ̂such 

that U —> [U] g and U -{-*• [K] ̂ . 
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INTRODUCTION 

The combinatorial results of this thesis can be broadly 

classified as Ramsey type theorems or partition theorems." The 

most basic infinite and finite Ramsey theorems follow. 

ft 
The Infinite Ramsey Theorem Given a function, /c: [to] —*• 2 

from the 2-element subsets of to as domain, there exists an 

2 infinite subset S = w such that in is constant on [s] . 

The function /c is referred to as a partition of [to] 

into two colors and the set S is said to be homogeneous with 

respect to the partition c. 

The Finite Ramsey Theorem For any h,n e w there exists 

rem such that for any partition /c:[r]n —>• 2 of the 

n-element subsets of r there exist H s r with |HJ = h 

and H is homogeneous with respect to /c (i.e., re is 

constant on [H]n). 

In Chapter 1 we introduce a basic partition theorem for 

infinite trees due to Halpern and Lauchli [5] and prove some 

equivalences with similar theorems. In Chapter 2 we present 

and prove some consequences of the Halpern Lauchli Theorem 

due to Keith Milliken [7]. One of his theorems concerns 

partitions of finite subsets of an infinite tree and the 

infinite Ramsey theorem is a special case of this theorem. 

1 
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In Chapter 3 the structural notions used by Milliken to 

define embeddings between trees are modified and some new 

partition theorems result. 

In Chapter 4 one of the results of Chapter 3 is reformulated 

2 as the result n —»• [rj] ̂  due to F. Galvin and generalizations 

to Galvin's theorem follow from the reformulation. 

Chapter 5 describes a standard procedure for constructing 

ultrafilters with specific combinatorial properties using the 

continuum hypothesis. 

In Chapter 6 the Milliken partition result for partitions 

of the finite subsets of a tree is generalized to a partition 

result for the finite subsets of an infinite set of trees. 

Chapter 7 uses the partition results of the previous 

chapter to construct square bracket partition ultrafilters 

with a great variety of properties. The techniques illustrated 

in this chapter go beyond the specific ultrafilter constructions 

which are presented as examples. More detailed information 

can easily be deduced about the ultrafilters which are con­

structed and further modifications to the partition theorems 

of Chapter 3 and Chapter 6 are easily conjectured. 



CHAPTER 0 

STANDARD NOTATION 

Terminology and notation which is not specifically defined 

is quite standardized in modern set theory and logic texts 

(eg. [3] and [4]). 

We will use the convention which identifies art ordinal 

with the set of its ordinal predecessors so in particular 

the symbol "0" will denote the least ordinal, the empty set, 

and the empty sequence. The letters n,msr will invariably 

denote natural numbers and this will usually be indicated as 

n,m,r z to. 

A sequence will often be indicated with angle brackets, 

/ \ 3 so for example <(1,0,1^) denotes the function f e 2 

defined by f(0) = 1, fCl) = 0 and f(2) = 1. The concatenation 

notation f"o denotes the extension of f to the function 

g e ^2 defined by fCi) = gCi) for i e 3 and g(3) = 0. 

The restriction of g to the domain 3 is indicated by g|3 

so in our example gj 3 = f. 

The restriction symbol is also used to restrict a model 

to a smaller similarity type. We will give specific definitions 

of another use of the restriction symbol in the text. 

Given a function f: A—• B from the set A to the set B, 

typically an element of A will be denoted a e A with image 

f(a) £ B. We use f "A to denote {fCa): a e A} usually 

but the notation f(A) = {f(a): a e A} is also used. 

The cardinality of a set A is denoted J A| and (P(A) denotes 

the power set. [A]n means {B g A: |B| =n}. We use 

3 
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A - B to indicate {a e A: a ^ B). The symbol "3i" 

means "there exists a unique 

A tree is a partially ordered set, , such that X 

has a unique minimal element (called the root of X) and for 

any x e X3 {y e X: y -< x} is well ordered. We will be 

interested only in finite or height tu trees so 

(Vx e X)C|{y e X: y *< x}| e w). For a height w tree every 

node x e X has a well defined immediate predecessor except 
i 

the root. The degree of a node in X is the number of its 

immediate successors in X. Typically we will be interested 

in infinite trees where all nodes have finite but non-zero 

degree. More of these standard tree definitions can be found 

in Drake [4] and Milliken [7] . 



CHAPTER 1 

A PARTITION THEOREM OF HALPERN AND LAUCHLI 

We begin with a presentation of some known partition 

theorems on trees. As various relationships are pointed out 

between these theorems, a notation and vocabulary will evolve 

which will then be used to state and prove some new results. 

First we define a canonical set of objects on which partition 

theorems are considered. 

Definitions 1.1 Let % be the collection of subsets 

X £ U nco such that 
new 

(i) X is non-empty and closed under ^-predecessors, 

(ii) Every feX has a non-empty initial segment of immediate 

successors, fo» f"i > f 2 j ••• f1 

Any such X e ft when structured by the inclusion rela­

tion, £ , is a finitely branching, height w tree, without 

maximal nodes. The tree partial ordering will be denoted 

and -< will denote the strict partial order, f < g ̂  f |g-

We define 

X(n) = {feX: |f| = n} = the n'th level of X. 

X'J n = {feX: |f| < n} = the first n-levels of X. 

Note XCO) = X*)l = {0} for all Xe#. 

Theorems and definitions stated for canonical objects 

will have obvious restatements for objects isomorphic to 

canonical objects but it is often notationally and concept­

ually convenient to deal with definite concrete objects 

5 



rather than axiomatically defined structures. Definitions 

of additional structure on the objects of 'K will be needed 

soon, and these definitions are particularly easy to write 

down and understand in the context of objects X £ ̂  nto. J new 

The following definitions are based on concepts or 

similar definitions in the paper A Partition Theorem by 

Iialpern and Lauchli [^5]. 

Definition 1.2 Given Y e)^ and A,B£ Y, we say 
* 

A supports B iff (VbeB) (3aeA)(a ̂  b) 

B dominates A iff (VaeA) (3beB) (a s^b) 

A is level in Y iff (anew)(A S Y(n)). 

Typically 1a is level in Y^ is abbreviated by /A is level^ 

when the context Y is clear. If A is level (in Y) we say 

B is a matrix over A (in Y) iff B dominates 

{yeA: 3aeA (a y 6 |a| + 1 = |y|) but no proper subset of 

B dominates this set. 

B is a level matrix over A (in Y) iff B is both level (in Y) 

and B is a matrix over A (in Y). 

B is a matrix (in Y) iff for some level matrix A over Y(0), 

B is a matrix over A. 

B is a level matrix (in Y) iff B is level (in Y) and B is a 

matrix (in Y). 

With these definitions we state a deceptively simple 

looking combinatorial theorem. 



Theorem 1, 3 Given Y&K let J) = {A s. Y : A is a matrix over Y(o) 

For any partition /c 2 of A into 2 'colors', there exists 

a matrix in Y which is homogeneous with respect to tz . That 

is to say, for some matrix B in Y,/c is constant on (P(B) n J . 

A proof of Theorem 1.3 seems to require the statement 

of a much more complicated theorem as the basis for inductive 

constructions. The Theorem 1 in the Halpern Lauchli paper [5 

can be regarded as an example of one such inductive hypothesis. 

Another complicated theorem suitable for inductive proof is 

the theorem of Richard Lavsr, "A pigeon hole principal for 

trees" which is stated and proved by Keith Milliken in his 

paper A Ramsey Theorem for Trees £7 j . Following a somewhat 

circuitous route, we will state these two theorems and some 

generalizations. It will be trivially apparent that 

Theorem 1.3 follows from any of the more complicated theorems. 

Conversely, we will prove these theorems from Theorem 1.3 

(while we never actually prove Theorem 1.3 here). The 

Halperin Lauchli proof of their Theorem 1 is very difficult. 

In comparison, all of our deductions from Theorem 1,3 to 

various theorems in chapter 1 are quite immediate. It is 

for this reason that we consider all of the results in this 

chapter as "closely related" or even "equivalent". 

Our objective in Chapter 1 is to state these various 

known theorems and demonstrate their close relationships. 

Theorem 1.3 is now assumed as a basis for all of the 

following results. 



Theorem 1.4 Given Yz% and 

> i = { A ^ Y :  A  i s  a  m a t r i x  o v e r  Y ( 0 ) }  t h e r e  e x i s t s  n e w  

such that for every partition :h—* 2, there is a homo­

geneous matrix B with respect to <v. such that B s Yin. 

proof: Suppose the conclusion fails so we can define for 

each new, the non-empty sets, C^, of 'counter-example 

colorings', Cn = {/cih—• 2 such that for every 

matrix B c Y^n /Q is not constant on (P(B) n i }. If n < m 

then Yin s Y1 m so C 2 C , If we regard 2 as a discrete 1 n m 

topological space, and ̂ 2 as the Tychonoff product 

topology, we have a chain CQ s  ... of non-empty closed 

subsets of a compact space. Let /c. e By Theorem 1.3 

there is a homogeneous matrix, B, with respect to/C. 

Since B is a finite subset of Y, for some new, B <= Yjn and 

hence /c £ C . But this contradicts c e O C . [1 
n new n L-1 

Corollary 1.5 Given Ye % and 

i - {A £ Y : A is a matrix over Y(0)} there exists new 

such that for every partition /o: <3—>- 2 there is a level 

matrix B =Y(n) which is homogeneous with respect to/c. 

proof: Let n be as in Theorem 1.4 and let/c:J—»• 2 be 

given. Let <f> : Y]n—• Y(n) be any fixed map such that 

(VyeYln)Cy -< <j)(y) £ Y(n)). We extend the definition of 

<j> to act on subsets of Y1n in the usual way, so in 



particular for any A e ^ n (P(Yfn) we have <KA) e ̂  n (P(Y(n)). 

Define /c : J) n (P(Y n)—• 2 for A e J) 0 (P(Y n) by 

/tf (A) =sc(<p(A)). By Theorem 1.4 there is a matrix Bs Y'jn 

which is homogeneous with respect to /C. Since <£(B) S Y(n) 

dominates B but no proper subset does, <J>(B) is also a 

matrix in Y. By the definition of /c from/c, in fact the 

level matrix <j)(B) £ Y(n) is homogeneous with respect to/c.Q 

This finite consequence of Theorem 1.3 can now be 

turned back to give the stronger result: 

Theorem 1.6 Given Yefc let 

d = { A = Y :  A  i s  a  m a t r i x  o v e r  Y ( 0 ) } .  F o r  a n y  p a r t i t i o n  

sc \h—*• 2 there is a level matrix in Y which is homogeneous 

with respect to /c. 

proof; Clear. 

Since the matrix asserted to exist here is level, the 

theorem could be stated in terms of a partition of 

d = {A ^ Y : A is a level matrix over Y(0)} without any 

real loss of power. 

In order to strengthen this result further we define 

a k-matrix over A where A is level in Y. Recall that a 

matrix over A dominates all the immediate successors of 

elements a e A. 



Definition 1.7 Given level A s Y and k e tu, B is a k-matrix 

over A in Y iff B dominates {y e Y : (3aeA)Ca ̂  y and 

|a| + k = fy|} but no proper subset of B does. 

Hence a l-matrix over A is just a matrix over A, and 

a 0-matrix over A is a minimal dominating set. Note that 

J - {A £ Y : A is a l-matrix over Y(0)} 

- {A £ Y : A is a 0-matrix over Y(l)} . 

Theorem 1.8 Given Y e let 

^ - { A s Y :  A  i s  a  l e v e l  l - m a t r i x  o v e r  Y ( 0 ) } .  F o r  a n y  

partition /c —»• 2, there exists some A e ̂  such that 

Vk e w there is a level k-matrix over A in Y which is 

homogeneous with respect to sc. 

2£oof: Suppose the conclusion fails, so to each A e J) we 

can assign #(A) = the greatest k z w such that there is a 

homogeneous, level, k-matrix over A. We define a new tree 

tree y" (not a canonical tree, Y fji ) with each level 

Y'(n) of Y' chosen as some level Y(fCn)) of Y. The 

function f: u + u is defined inductively by 

fCO) = 0 

fCn+1) = 1 + fCn) + sup (#(A): A e n P(YCfCn))} 

For example, f(l) = 1 and fC2) = 1 + 1 + #(Y(1) - Y(0)), 

and since n (p(Y(f(n)) is finite, f(n+l) e w and f is an 

increasing function. 



The -<-structure on y' = U Y(fCn)) is inherited from 
new 

} , and clearly ^Y' ;-<^is a finitely branching 

height to tree.without terminal nodes. Since Y'Cl) = Y(l) 

and Y'Cn) is level in Y, 

J)' 0 (p(Y') = {A s y' : A is a level 1-matrix over Y'(0)}. 

rc. restricts to a partition on J n (p(Y') and Theorem 1.6 

gives a level homogeneous matrix B in Y' (technically we 

must stretch the implications of Theorem 1.6 here since 

Y' is not canonical). Hence for some new there exists 

A E ^ n ^P(Y (n)) - 0 (P(YCfCn)) such that B is a level 

1-matrix over A in Y', and /c is constant on PCB) n ^ ' . 

Put ! = fCn+1) - fCn). By the construction of Y', B is a 

homogeneous, level, i-matrix over A in Y. But 

? > sup {#(A) : A e n (p(YCfCn))} so ! > #A = the 

greatest k e w such that there is a homogeneous, level, 

k-matrix over A, and we have a contradiction. Q 

At this point we begin to develop a very general 

framework for stating partition results. The point of 

view reflected by our choice of notation is inspired by 

the paper of Nesetril and Rodl, Partitions of Finite 

Relational and Set Systems [8 ]. After setting this nota­

tion we will return in this chapter to statements of known 

results using the notation. 

The set of objects ̂  will now become the set of 

objects of a category which we also denote by ?•(. In order 
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to define the morphisms of the category, the objects of fC 

are formalized as first order structures in which a fixed 

similarity type, c , is interpreted. A category, ?* , of 

finite objects will also be needed. The objects of K 

and are all substructures of a single structure, T, 

which we now define. 

Defini tion .1 „ 9 Let T =• binary function symbols 

A 'pass-meet' 

A 'meet1 

and the binary relation symbols 

'tree partial order1 

' levelwise left-right linear order' 

<< 'level partial order' 

(.neuj) 'n-extension partial order' 
i: 

comprise the similarity type, a. 

The interpretation of these symbols in T is defined for x,y e T by 

T X A y - y(z e  T: z = x 6 z cy} 

rx] |y| if |x| > |y| 

x AT y - J y]|x| if |y| > |x| 

( x /\ y if |x| - |y| 
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T x •< y iff x = y 

fy properly extends x1 

x <T y iff |x | < |y | or 

C |x | = |y j 8 x y S x( |x AT y I) < y.C |x ;/F y|)) 

'x is younger than y' 

x <<T y iff • |x | < |y | 

'x is lower than y' 

x KT y iff xn s y n J 

'y is an n-extension of x1 

Let ^Tjcr) be an abbreviated notation for the fixed 

v  T T  T  T T T \  
structure <T; -< , < , « , ̂  , A , a  ) n£W-

Definition 1.10 Let the objects of % be the set of all 

substructures of ^T;a) with universe X ST satisfying 

(i) X is non-empty and closed under ^-predecessors in T. 

Cii) Every x e X has a non-empty initial segment of 

immediate *<-successors; x~o, xl, xl, ... xn^-i. We 

will call this n e w - {0} the degree of x in X, 

which is denoted deg^(x) = |{y e X: x < y S |x| + 1 = y}| 

Let the objects of 'f be the set of all substructures 

of with universe A sT satisfying 

(i) A is non-empty and closed under -<-predecessors in T 

(iii) A is finite. 

Let d = S-" u % 

Comments 1.11 We will use the symbol X (or A etc.) ambiguously 

to denote both the structure 

<w AX Ax\  J -\ X ;  • < , < , < < ,  K  ,  A  ,  a n d  1 - t s  u n i v e r s e .  
• » * 11 & UJ 



Typically the superscripts on the symbols <, <<etc. 

will be suppressed whenever no confusion results. 

Condition (i) guarantees the closure of a set under 

T T the two operations A and A , so we have sensible defini­

tions of substructures of T. 

Condition (ii) insures that objects in ̂  are finitely 

branching, height w, trees without maximal nodes. The 

initial segment condition on immediate successors implies 

that for any new, an object X e satisfies 

(VxcX)C3yeX Cx *^ + 2^ "+3ze^ "<n z)). This property 

is not necessarily satisfied by objects in 3̂ . 

Condition Ciii) insures that any object A e J" is a 

f inite substructure of some X e "fa , but of course not all 

finite substructures of an X e 5^ are objects in since 

t h e y  m a y  n o t  s a t i s f y  ( i ) .  F o r  a n y  n e o i a n d X e ^ l ,  

Xjn c cf but not all finite objects are realized in this 

fashion since A e may have a,b e A with a -<^ b without 

having any c c A such that a -<q c„ 

To complete the definitions of Ji , and Cas categories, 

the morphisms must be specified. 

Definition 1.12 Let A X e ]( and Z e C =FuK • We 

define the morphisms from A to Z in the category C by 

C(A,Z) - { (A, (J), Z^ : (Jj:A4—+- Z is an isomorphic embedding 

of the cr-structure A into the a-structure Z}. 



When the domain is an infinite object there is an 

additional constraint on the morphism. C(X,Z) = 

{ ̂ X, <{>, Ẑ  | 4):Xc—• Z is an isomorphic embedding of the 

CT-structure X into the cr-structure Z and 

(VxeX)(deg^(x) = deg^Ctf)Cx)) } » 

Composition of morphisms is defined as composition of maps, 

and the identity maps are the identity morphisms, so C 

is a category. . . 

By requiring that cf and are full subcategories of 

C (i.e. for X,Y e \ and A,B fc(X,Y) = C(X,Y) and 

£(A,B) = C(A,B)) we have defined the morphisms of the 

categories }C and 3" as well. 

Comments 1.13 The words isomorphic embedding are being 

used here in the sense of model theory I a], so for example, 

given ^A, <f>3 Z^ e £(A,Z), and a,b,c e A and n e tot-then 

a-<£ b <£==> «(a)<^ 4>Cb) 

a b = c -̂ v <f>(a) tf>(b) = <f>(c) etc. 

where $: Ac—»-Z is a one-one map. In this case we say that 

4> preserves the diagram of A . (or <f>- preserves the similarity 

type) as contrasted with a homomorphism A—*• Z which only 

preserves the positive diagram (or weakly preserves the 

similarity type) e.g. a b =^> y.(a.) "ytb) but not 

conversely. 

By enlarging the similarity type interpreted by 
t 

objects in Cs the morphisms which we have defined in 



cases depending on whether the domain of the morphism is 

finite, could have been defined uniformly as monomorphisms 

between the structures. The only advantage would be a 

more uniform appearance of our definitions of morphism at 

the expense of a more complicated structure on the objects. 

Our choice of similarity type of objects in C was 

designed to make available some useful notation in addition 

to providing the structure which constrains the notion of 

a morphism between objects* Thus economy has not been 

attempted -- e.g. is definable from A. On the other 

hand, the similarity type is not exhaustive and we may 

refer to defined relations -- e,g. "x is on the same level 

as y" x <•£ y 6 y x, A minimal similarity type 

from which the entire structure on objects Z c C is defin­

able, can be extracted in various ways„ When later we 

discuss isomorphisms to non-canonical structures it will 

be useful to give an example of such a minimal set. 

- 2 For any Z e C ,  <  is a well ordering of Z (of finite 

type, if Z e'J » and of type to if Z e any any morphism 

strongly preserves < so there are no non-trivial auto­

morphisms in the category C» In fact, 

Lemma 1. m Every isomorphism <j»: Z<—<•> W between objects 

Z,W c C is an identity map. 



proof: Suppose <fi is not an identity map, and look at the 

<-least z e Z such that <j>(z) ^ z- Let w e Z be the 

immediate -<-predecessor of z, so <{>(w) = w. Condition (i) 

in the definition of the objects in ^ and along with the 

fact that (f> preserves for all new forces <f>(z) = z, 

a contradiction. Q 

This lemma justifies our use of the word 'canonical' in 

referring to the objects of C. 

Definition 1.15 For Z e £ define 

height (Z) = sup {|z| + 1 : z e Z}. 

Note for X e^C > height (X) = to and for any new 

height (X^n) = n. If $: Z—»• W is a morphism between 

objects Z,W' , since <p preserves <<, each level, Z(n), 

of Z is mapped into some level, WCm), of W. Thus $ 

naturally induces a non-decreasing map, 

height (Z)e—• height (W), which satisfies 

$(Z(n)) £ Y($(n)). 

The preservation (by a morphism) of the binary 

function parameters A and A, follows from the preserva­

tion of the relations {n e w), and <<. The function 

parameters are included in the.similarity type for nota-

tional convenience and when the notion of sub-object is 

later defined they will impose a closure constraint. 
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Loosely we think of a morphism of ?C as a map which 

preserves the tree partial order-<, takes levels to levels, 

and preserves degree. This is Hillken's definition of a 

"strong embedding" [7l» Here we have- the further condi­

tion that <fr preserves the ' levelwise left-to-right linear 

order', <. 

Now that we have a well defined class of canonical 

objects C- Q u it , it is easy to define the general class 

of objects in which we will be interested. 

Definition 1.16 Let be the category of objects X such 

that for- some object Y efc , X is isomorphic to Y (isomprphic 

as o-structures)„ 

Let y be the category of objects A such that for 

some object B f ?, A is isomorphic to B. 

Let C - 3- u "K „ 

Note that since the only isomorphisms of C are the 

identity maps, any object Z e C corresponds by a unique 

canonical isomorphism p^: Z<-*> W, to a unique canonical 

object W e Co The morphisms of the category C are thus 

defined naturally via this correspondence. 

Notation and terminology which was defined for objects 

in C will be translated by the unique canonical isomorphism 

to objects in C„ 



Example 1..17 Let X = {f e T : | f | is even and 

(\/i e dcmCf)) £(i is even -> f(i) e 2) £ 

(i is odd -- f(i) = 0)j} with structure inherited from 

<T;a> . X is isomorphic to (structured by inherit-

ence from ). Let Y = Q^z. The canonical iso-N ' ' n EU 

morphism p : X*—Y is defined by pv(f) = g where 
A X 

(Vn ewJ(g(n) - f(2n)). Following this isomorphism we have 

for instance X^3 = {f z X: Jf| 4}. The natural inclusion 

map i: Xe—• Y, is a degree preserving embedding so 

<^X, i, Y) E C(X,Y) . 
f 

Definition 1.18 Given W,Z e C such that W S Zs if the 

natural inclusion .map i : W*—Z (defined by 

(Vv)'.WJ f i (w) - w)) is a morphism, ^W,i,Z^ z C(W,Z), then 

we say W is a subobject of Z, which is denoted W<=<=Z. 

Even though "W is a substructure of Z" may hold 

(i.e. the natural inclusion is an isomorphic embedding of 

cr-st:ructures), it does not necessarily follow that the in­

clusion map is a morphism — the condition of degree pre­

servation must also be met when W z X* For finite W eJ , 

the notions of sub-object and sub-structure do coincide, 

and the role of the operation parameters A and A is thus 

clarified,. 



Lemma 1.19 Given Z cC , the finite subset A s Z is a sub-

object, A e ^ & A «•= Z, iff A is a substructure of Z. 

proof; Clear 0 

Lemma I 70 Given Z t C, the infinite subset Y S Z is a 

sub-object, Yc?C & Y <= •= Z iff Y is a substructure of 

Z and (VyeY)(degyCy) * degz(y))„ 

proo f: Clear, 

Given Y c!t , it is easy to see how the corresponding 

canonical object Z , and the isomorphism Py1^'—i> 2 can 

be determined from the limited structure ^Y;K, < ̂  ; 

the map Py;1) 4 k T is simply defined by <-induction to 

preser ve -<and and then Z is taken as the image. As a 

consequence of this construction, it is clear that for 

any Y e% , the entire structure ^Y;a) is definable from 

^ Y; -k* , <y (but: obviously not definable from ^Y;*<^ or 

<V;<> '• It is useful to know some necessary and suffi­

cient conditions on the structure ^Y; •<, <^ so that it 

extends to an object <^Y;o^ e ?( „ The following technical 

lemma gives one such set of conditions and the very obvious 

but tedious proof is included to illustrate some of the 

technical properties satisfied by structures of fc., 
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l-:::?.:.- 1,.2'L The following are equivalent. 

•.I) There exists a unique isomorphic ebbedding 

py: ^Y;*<, <)>c <y whose image when 

structured by inheritance from is an object 

of X-

11; ^Y;*<, extends uniquely to E ̂  . 

'.Ill) Define for x,y e Y; . • 

x<<y |{zeY: z •< x} | < |{zeY: z -< y} | . 

<^Y: •< , <, <<^ satisfies 

(a) <Y;<> is a height oj, finitely branching 
i 

tree without maximal nodes. 

(b) ^Y;<^ is a linear order (not reflexive) 

\c) (Vx,y e Y) (x<<y -*• x<y) 

d) (Vx,y e Y) (Vx" ,y' e Y) (x^y 6 y^x 6 x^y'  & 

y^x' £ x'<x £ y*Cy S x^y' -+ x<y) # 

roof: :r.=^II clear, 11=^III clear. 

111'*% X: The map p^: Y«-»- T is constructed inductively 

using the conditions a-thru-d. The <-minimal element of 

Y (which exists by a) is first mapped to 0 e T, and this 

map (with singleton domain) is called pQ„ Having defined 

inductively the finite maps pg ... pn, conditions 

(a) And (b) show that {y e Y : (3y'  e dom(pn>) (y is an 

immediate «<-successor of y' } is a finite set linearly 

ordered by < „ Let yn+^ he the <-least element of this 

set, v.-here yn+^ is the immediate successor of say y'. 



22 

Clearly yn+,j_ must be mapped by PR+1 to the <-least element, 

t ., , of ft e T : p (y/) -< t} in order to insure that the n * l n 

image, ( U p) (Y), will be canonical. Hence we must put 
neto 'n ' * 

P i • p u (y .-1 jt ,, ) so that p„ = U p has a canonical n'l Jn + 1' n+1 KY new n 

image and satisfies 

f ; ") cVy' ,y e Y) (y' -<Y y +-*• py(y' ) <T py(y) ) 

t. ii) (V x 5 y, z e Y) 

Y T (. x,y are immediate K-successors of z—Kx < y«-»-py(x) < py(y)) 

(iii) (Vx,y e Y) (x << y «-»• Py(x) <•? Py( y ) )  

The relation < on a canonical object can be thought 

of as a. piecing together of the linear orders on the 

(finite) immediate successor sets, to form the total 

i' - ordering of type to. So far we know that Py: Y—*• T 

Y preserves the relation < restricted to any set of 

immediate successors of a single node. The purpose of 

Y conditions (Il'Ic) and (Hid) is to show that < restricted 

to immediate successor sets is pieced together to form the 

Y 
1inear order < in exactly the same way this piecing to­

gether is done in a canonical object., A pair of distinct 

nodes x,y falls into one of three cases: 

Case 1 ;X,y are immediate successors (in Y) of some z e Y. 

Y T 
We know already x < y •*-*• Py(x) < Py(y). 

Case 2 x <<: y (or y x). From (c) x ^ y and x y —> 

P  ( X >  P Y ( Y )  P Y ( X )  ?  P Y ( Y ) .  

i..e. x y -» Py(x) £ Py(y) . 
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•.r 3 >: y S y x £ 3 x'sy' ,z e Y such that x' and 

> / Y 
y '  are. immediate successors (in Y) of z and x' -< x and 

> Y - y 
>' *< V- Suppose without loss of generality that ;< < y 

j Y / 

j:ru] hence using (d) x * y . From Case 1, 
T* 4 *p 

PyCy') so p(x) < pCy) i.e., 

V T Y T 
• ,'jy.Cx) < PyCy?' Since < and < are strict 

\j Y T 
:  > ; -  o r d e r s  we conclude (Vx,y e Y) (x < y -^pyCx) <  P y(y)) 

... ;d i y—-»-T is an isomorphic embedding of the structure 

( i; , y> with p/Y efc . Q 

lary 1.2 2 Suppose X E  function f: to—no and 

. ;  • Y ;n) s X(f(n)) satisfy |Y(0)| = 1 and 

L V r ir l i > <Vy £ YCn)) Gz e YCn+1)) fy ~<X z) . Then the 

v 
rU Yfn) with structure ^Y; *< , inherited from 

\ < V / extends uniquely to an objcct <^Ya^> e X . 

Y . • Y 
i h denned as usual from -< .. note that 

V . . • Y) (y <% z •*-*• y a), It is easily checked 

;• . • •/i-in.'Lons (III' a-d) are satisfied by ^Y;~s, <^. [] 

: i in the corollary we are not claiming Y<^<= X. 

• -.,i; ^Y;-<, is a substructure of ^X; °<, , in 

iiit natural inclusion will fail to preserve degrees 

• t.o preserve the meet operation. 



Before developing our notation further, we can give 

e. preliminary statement of a theorem which is credited to 

R.. Laver and D, Pincus (by Milliken [ 7]). 

Theorem 1„23 Given Y £ J(_ , let 

•6 - {A £ Y : A is a level 1-matrix over Y(0)}„ 

For any partition /c:^—> 2, there exists X e & such 

that. X c c Y, X(0) - Y(0) and/: Ls constant on (p(X)ri 

proof: By Theorem 1.8, there exists A e A' such that 

Vk £u) there is a level homogeneous k-matrix over A in 

Y, For k" > k, any k'-matrix over A includes a k-matrix 

over A so we can assume that for a fixed color, c e 2, 

and for every k e a), we have chosen B^ — a level homo­

geneous k-ma.tr.ix over A in the color c (i.e„ ) 

{c} for all Let a,b^. e oj satisfy A «=Y(a) and 

^ Y(b^). Define f;w—* to by induction: 

fCO) -- 0 

f(n,1> "" bf(n) ' 1 " a • 

X s. Y is defined a level at a time 

by induction 

XCO) - Y(0) 

X(n+1) = [b e ®f(n) : ^ Y e X(n) y -< b) 

X - U X(n) 
new 

Now for every y e Y(b^nj+1) (Ijj b e (y ̂  b) 

since ®f'(nt-l) a ^fCn)+^"a matrix over A. 



Hence for any x e X(n+1) ̂  ®f(n) ~ ̂̂ f(n)^' 

deg^(x) - degy(x) and X with structure inherited from Y 

is a sub-object, X E & , Xc = Y, X(0) = Y(0). By con­

struction /c" ( (p(X) n $ ) - c e 2. P 

Corollary 1„2M Replace •c: J) *• 2 in the theorem by 

/c: *4 —r, a partition into finitely many colors r 0 to. 

proof; The corollary results from grouping the colors 

together with a definition of /c :A y 2 like 

Jo if/e(B) = 0  
/c(B) - .. ,, „ where B ei . The theorem 1 1 otherwise ^ 

yields xq £ ̂  such that XQc: <=. Y, X^(0) = Y(0) and 

|rc " C J ' n (pCXQ))| = 1 so |/c '' ( 0 (p (XQ)) | < r . By 

iterating finitely many times we get e It such 

that Xr_-Lc <=. Xr_2t= e= . . , . XQc: <= Y where x i(0) = 

and /c is constant on ^ 0 (p(X ^). [] 

Definitions and Notation 1,2 5 

The notation used by Nesetril and Rodl in [" 8 for 

stating partition theorems places the emphasis on the 

morphisms of a category. In a fixed category of 

objects and morphisms they define for f,f' e ^CX,Y) 

( - the morphisms from the object X to the object Y) 

f f' iff 3 an automorphism h € J5(X,X) such 

that f - f' ° h. The equivalence class of f with 



respect to ~ is denoted and {[f]^ : f e (X,Y)} 

is denoted or (*) 

A partition theorem typically involves a partition 

of some . In our category C s f°r anY X e ^ 

(X,X) = {id^}. Hence the equivalence classes under •— 

in (Z are singletons. This allows to be interpreted 

simply as "the set of sub-objects of Y isomorphic to X" 

(since a morphism f e C (X,Y) can be identified by its 

domain and image in this category). 

This dual interpretation of (fy will be exploited, 

and sometimes elements of (^j will be denoted as sub-

objects of Y while at other times these elements will be 

denoted as morphisms (though technically an element of 

is an equivalence class of morphisms.) The notation 

generalizes the notation for the binomial coefficeent 

(m) ~ num^er ways to choose copies of m (i.e., 

m-element subsets) in n. 

The notation is made more powerful by borrowing 

the notion of a 'map of pairs' or a 'map of triples' etc. 

from topology. In a category & where there is a well 

defined notion of sub-object (i.e. the concept of a 

canonical inclusion morphism) we first define for 

x ' < ^  c  X  a n d  Y c  c Y  ( w h e r e  x ' ,  X ,  Y ' ,  Y e p )  

& (CX,X /) >  (Y,Y/)) = {f e (X,Y) : f is an extension 

of some f' e (X" ,Y' )}. 

Here extension means f«i^/^ = iy, yOf^herB 



ix, x e & CX',X) and iy, y e 8 (Y',Y) are the canonical 

inclusion morphisms. 

This gives the morphisms for a category of pairs of 

objects CX,X') where X'e- <=• X. We let 

(x'x) = {M(X,X') : f e ^((XjX'J ,(Y,Y'))} where 

the equivalence class X') "*"s respect to 

automorphisms in ((X,X'),(X,X')). Perhaps a more 

natural notation would be 

but the inner parenthesis can be eliminated 

without confusion. 

For triples of objects (X,X',X") and CY,Y",Y") 

where X' <=• «=, X, x" <=• ^-X, Y' <=• CY, and Y"<= CY, the 

generalization of the above notation to 

/Y, Y'. Y"\ . . -
] is obvious. 

\X, X', X"/ 

In a category like C where morphisms from a given 

object correspond to sub-objects of the target, this 

notation is particularly transparent. For example, given 

Y eC [ ' Y^1) is essentially the set of 
' \Y]2, Y|1/ 

sub-objects of Y isomorphic to Y]2, such that the 

isomorphism carries Y"J1 into Y]l. That is to say, the 

sub-objects of Y isomorphic to Y") 2 which include Y(0). 

An element of will sometimes be denoted as 
Ŷ | 1 / 

an object A e 3= (or even as a pair (A,Y(0)) and sometimes 

as a morphism, f„ 



Note that A e j iff A - Y(0) is a 
\Y| 2 , Y ]lj 

level 1-matrix over Y(0). With this observation, the 

Laver-Pincus theorem (1.24) can be restated. 

Theorem 1.26 For any Y e ^ and any finite partition 

/c: 9 M • r there exists X s such that 
U 2, *11/ , 

X = <=: Y, X̂ l = Yll and /c is constant on  ̂̂ 
V 2 , XI1 

By an obvious extension of our sub-object notation 

to the situation of pairs etc., the conclusion of this 

theorem can be stated, 

"there exists X e ̂  such that (XsXll) <= <=(Y,Yll) 

and X is homogeneous for/c." 

Corollary 1.27 Given any Y £ j[ , n e w and a finite 

partition sz: / ̂ 1 Y 1 n \ —• r there exists X e 
{ Yjn+1, Y]n/ 

such that (X,Xjn) <= «= (Y,Y]n) and X is homogeneous for/c 

proof: Assume n > 0, The idea is simply to consolidate 

Y^n to a single point which acts as the root of a new 

object Y' e K j in which the sub-objects being colored 

are ( 5 Y 1 | . The details of the obvious construc 
\Y']2, Y") 1/ 

tion of Y' are justified by Corollary 10.8. 



In case n = 0, the object Y' e It is formed by 

adjoining a new root, A, to Y — i.e., A -< y for all 

y e Yo Clearly f > ^ M ] corresponds to 

Y' , Y"| 1 

Y"| 2 , Y-j 1 

correspondence. Q 

Yl1, Y]0/ \Yll 

and the corollary follows from this 

An asymetric version of Theorem 1.2 6 follows. 

Theorem 1>28 Given Y e "K and a finite partition 

/o : t- if /cCY^) = 0, then there exists 
_U12, Y)ll 

X e & such that CX,X|l) <= <=(Y,Y'|l) and either 

(i) Xp - Y\2 with /c " (X » X''1\ = (0) or 
{ Y 2, Y]l) 

JX ' X11>1 
(ii) /c ' I 2 Y1] 1 / = where i e r - {0} -

proof: Assume r = 2. Let 

l\l)' { Y , 2 >  =  *  A ° '  • • • ' V i K  

Define £ •. (* ' Y12) - m2 fop B e /Y • Y12 

Y]3, Y]2 j ^ Y]3, Y]2 

by defining the i'th coordinate of /c(B) (where i e m) 

as /c(B)(i) = ^c(A) where A e j ' ̂1l| is the 
\Y]2, Y11/ 

unique memb'er which dominates A^. By Corollary 1.27, 

there exists Z e such that (Z,Zj2)e. c(Y,Y|2) and 

Z is homogeneous for /E . In case the homogeneous color 



o f Z with respect to (E has a. one in any coordinate, say 

The x'ch coordinate is one, then define X e by 

X • t z e Z : 2 - Y(0) or (3a e - Y(0)) (a z)}. 

5  t r i c e  X  i s  closed under A ,  and 

f.Vx e X) (deg^(x) = deg^Cx) - degy(x)), we have X e % 

and (X,X]l)c c(YsYll)„ It is easily checked that 

•  ' ( *  '  ^  =  U ) .  
yv)?, yji/ 

In case the homogeneous color of Z with respect to /c is 

zero in all coordinates, then put X = Z. We have 

<.x,x1;>e c<y,Yl?) and for- any A e /X J'*!1 

\ V 1 2 ,  Y ] 1  

either A - Y^) 2 so /c(A) =0 by assumption, or there exists 

B e /x J v 4-v • A /B > y] 1 ' 1 such thar A e ' 
Y1 3 , Y )2 [Y)2, Y]1 

and for 

some l rn, A must dominate A^ so 0 - ^c(B)Ci) = ^c(A) . 

The strengthening of this result to the case r > 2 

fellows by applying the r = 2 case to the partition 

: /V , Vli\ 2 defined for A f /* , *1l' 

vl 1/ ^ y|2, Y]1 

by (A) : / 0 if C(A) = 0 

|\ 1 otherwise 

If (Z,Zl2> c. c, CY,Y 2) is found as in conclusion (i) of 

the theorem (with color 0 with respect to /v.') then put 

X - Z and we are done. If (Z,Zjl) c c (Y,Y/)l) is found 

as :n conclusion Cli) of the theorem (with color 1 with 

respect to /z') then one further application of Theorem 1.26 

is required to reduce (Z,Z]l) to say (x,xj 1) <= <=• (Z,Z] 1) 



which is homogeneous with respect to /c and hence has 

color /t: = {i} where i e r - (0). £J 
( y | 2 ,  Y j l j 

As in the case of the Laver-Pincus result, all of the 

previous theorems can be upgraded to an asymetric many color 

versionn One such theorem is worth mentioning. 

Theorem 10.1M- Given Y e % and a finite partition 

/c r where /^={AsY: A is a level 1-matrix 

over Y(0)}, then either 

(1) (Vk e to) there is a level homogeneous k-matrix, B^, 

over Y*\2 with color 0 (i.e. /c ''((PCB^n K ) = {0}) 

or 

(ii) there exists A e A such that (Vk e w) there is 

a level homogeneous k-matrix, B^, over A in 

color i e r - {0} (i.e., tc "((PCB^) n A ) = {i}). 

proof: Theorem 1,2 8 immediately gives an asymmetric version 

of Theorem 1„6 (which deals only with the existence of a 

level matrix in Y). The asymmetric version of 1.6 gives 

our Theorem 1,29 by the same argument which generalized 

1.6 to 1.8 (which deals with the existence of level 

k - m a t r i c e s  o v e r  s o m e  A  e i '  ) .  Q  

This theorem is a slight strengthening of the original 

Halpern - Lauchli Theorem 1 in Their theorem dealt 

with only 2 colors and produced k-matrices rather than 



level k-matrices (so their coloring was of 

=  { A s Y :  A  i s  a  1 - m a t r i x  o v e r  Y ]  1 } )  .  A l s o  i n  t h e i r  

statement of conclusion (ii), rather than claiming the 

existence of a single A £ i which the k-matrices 

dominate (k e w) s they only claim the existence of 

some' hew such that (Vk e io) C^A e A (p(Y(h)) and 

there exists a homogeneous k-matrix over A with color 1). 

The only aspect of Theorem 1.2 9 which does not follow 

is a completely trivial way from the original Halpern 

and Lauchli version is the change from non-level to level 

matrices. This change is accomplished by the compactness 

argument of Theorem 1.4 (essentially the Halpern -Lauchli 

Theorem 2) and then the strengthening from matrix to 

k-matrix takes place in Theorem 1.8. 
i  

The analogue in the new context (of level k-matrices) 

to the Halpern and Lauchli Corollary 1 (which strengthens 

their Theorem 1) is easily obtained. 

Corollary 1.30 Given Y e and a finite partition 

/c : J) r as in Theorem 1.29, suppose also that 

W £ Y satisfies 

V n 3 m (Vy e Y( n ) )  G w  e  W ( m ) )  ( y < w ) .  

Then either 

(i) V k e in there is a level homogeneous k-matrix^ 

over Yj2 with color 0 and s W or 

(ii) there exists A e 4' such that (Vk z w) there is 



a level homogeneous k-matrix^B^,over A in color 

i e r - {0} and = W. 

proof: The analogous Corollary 1 of Halpern and Lauchli 

is proved by what they call 'the principle1, and the idea 

here is to modify their 'principle' so it respects levels. 

Let <p : Y—• W satisfy (Vy e Y ) (y -< <f>(y)) and 

(Vx,y e Y) Cx << y) -«-+ <}>(x) <<: <p(y)) . The existence of 

such a map follows by a simple inductive construction 

from the assumptions about W. Define sc :—*• r for 

A e & by /cCA) = scCip^A) where we note that the condi-. 

tions on guarantee 4>"A E  •&' . Apply Theorem 1.29 to 

/o : A—F  r so k-matrices 13^, k E  oj exist either as in 

case (i) or case (ii) of Theorem 1.29. Let B = ) 
Jc Jc 

so clearly B^ sW and B^ is a level k-matrix. For 

any A e (p (B^) n & , let A = ^"^(A) so A t (p (B^) n 4 

and /c(A) = /c(^"A) = /-c(A). Hence the B^.. (k e oj], satisfy 

either condition Ci) or (ii) of the corollary. Q 

Now from Theorem 1.2 9 (or its non-level version, 

Halpern and Lauchli Theorem 1) our -starting point, 

Theorem 1.3, follows trivially and we have a circle of 

'equivalent' theorems. To establish the truth of all 

these theorems we refer the reader to Halpern Lauchli [5_| 

or to Milliken £ 7] (where Milliken proves the Laver 

Pincus result, Theorem 1.3, from the Halpern - Lauchli 

machinery). 



CHAPTER 2 

A FORMALIZATION OF SOME TREE PARTITION RESULTS OF MILLIKEN 

All of the theorems of Chapter 1 essentially dealt 

only.with the tree partial ordering *< , and the level 

partial ordering <<(which can be defined from -< ). A 

justification for the elaborate structure is now finally 

seen in the statement of the following theorem due to 

Keith Milliken (which appears in £7] as Theorem 4.3). 

Theorem (Milliken) For any Y e K and any A £ and 

any finite partition : —• r, there exists X e tC 

Remark 2.1 We can assume in the hypothesis of the theorem 

that Y and A are canonical objects without any loss, and 

this statement may clarify the structural considerations 

which define the set of sub-objects being partitioned. 

Example 2.2 Consider a partition of pairs of nodes from 

an infinite binary tree. Let Y = ^̂ 2 £ 

inherit structure from , and let so. : [y] 2—»• r 

be a finite partition of the unordered pairs from Y. In 
1 

general, a pair of nodes is not a substructure of Y since 

it may not be closed under pass-meet (the only 2-element 

substructures of Y, are the substructures isomorphic to 

either {0, (0) } e $ or to {0, ̂ l) } e f ). 

By considering the closure under pass-meet, a pair can be 

such that X <=• <= Y and /c is constant on 

34 
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classified into one -of the following 7 isomorphism types: 

/ = (0, 0 } \ = {0, 1 } 

/\ = closure {<0> , (l) } 

= {<0> , <1> , 0} 

J\ - closure {(OjO) , <l) } = c-'-osure ^ ^ 

{ <0,0) , (1) , (0) ,0} = {<0> , (1,1) , (1) , 0} 

= closure { (o, l) , (l)} = closure { (0> , <^1,0^ } 

(<0,1> , (1) , (0) , 0 ) = {(0> , (1,0) , (l) , 0} 

The Milliken theorem says that any finite parititon 

of each of the given sets ^ (^) etc' can re<3uced 

by some X e ̂  ̂ X <=• <=Y. The given partition ^ : [Y] ̂—> r 

naturally induces partitions on j etc. and by 

r i 2 iterating the theorem 7 times, sv : [Y] —*• r can be reduced 

by some X X^^Y so that 

j c'' [Y] S 7. ' Furthermore, since any X<=<=Y, 

X t K is isomorphic to Y, all seven types of substructure 

generated by closing a pair under pass-meet are essential — 

for any one of these 7 finite structures 

A e { / , \ , A > etc.}, and any X <=-<=• Y where X e , we 

have i 0. 



Remark 2,3 Similar applications of the theorem to ternary 

trees (etc-) and partitions of n-tuples are easily imagined 

It. is useful to consider1 the most trivial such application 

the case of an "infinite unary tree",, Let Y = £<(T;a^ 

and consider a finite partition of n-tuples : ̂ yln)-* r* 

The existence of X e K. such that X «=<= Y and X is 

homogeneous for /c Is just the familiar Ramsey theorem 

for a partition of n-tuples from an Infinite set. 

Ln order to prove Millikens theorem, as usual in 

partition theory It is necessary to state and prove a more 

elaborate theorem which is more appropriate for carrying 

out inductive arguments. The exact form of the elaboration 

is net very critical and perhaps not even very interesting 

in .itself-, For reasons of economy therefore, we proceed 

with little further motivation to state and prove a string 

of lemmas which are pieced together to give a general 

theorem (Theorem 2.9) from which Milliken's theorem follows 

as a special case. It is useful to consider the meaning 

of each lemma when applied to the unary tree and a parti­

tion of n-tuples,. The lemmas and proofs become trivial 

in this case, thus highlighting the relationships between 

the lemmas so that an analogy to a simple proof of 

Ramsey's theorem is seen. 
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Lemma 2, 1 Given X,Y e It and n e to, if (X,X]n) <= <= (Y,Y|n) 

then X|n+1 is isomorphic to Y]n+1. 

proof 2„1 This proposition follows essentially from the 

degree preservation condition which the sub-object relation, 

X <=• <=-Y, entails for X,Y e % . [] 

Lemma 2 . 5 Given Y e % and A <=• <=• Y where A e 7 , let 

A' - Ajheight'(A)-1, and suppose n satisfies 

A' = A D Y]n i AO Yln-1. For any finite partition 

zc : \ ' ̂ } »• r there exists X e ^ such that 
\ A > A / 

(XjXln) <= <= (Y,Y|n) and X is homogeneous for /o. 

proof: This is an easy consequence of Corollary 1.2 7. We 

need to induce a partition /C : 
I Yjn+l, Y] n 

in such a way that any X e % such that (XjX'jn) <=• cCYjYjn) 

which is homogeneous for /o is then also homogeneous for /n.. 

Without loss of generality we can assume 

(A,A' ) <= <=(Y1n+l, a' ). Given C e /Y > Y^n 

I Y]n+1, Y'] n 

let C = {c e C : (3a'e A'~ f\ Y(n-l)) (3a e A o Y(n)) 

a » < a £ a ^ c } u A .  

Since (Vy e Y(n)) Ql c e C) (y ̂  c), it is easily seen 

that C e f C 5 A 1 Define c"(C) = c(C), and use 
\A , A'J 

Lemma 2.1 to find X e ?(. such that (X,X|n) <=<=-(Y,Y^n) 



and X 1? homogeneous for /c0 

Given any C c I 9 I » clearly C extends to some 
\ A  >  A  /  

C <r | ' ̂1nj (typically there are many such extensions 
^Xln'l, X]nJ 

C 2 CK But /c(C) - /C(C) so X is homogeneous for 

also, jj 

We need to consider partitions of a set more general 

than a set of all sub-objects isomorphic to a fixed object, 

so the following definitions are made. 

De f in111 on 2 .. 6 Given >6 £ 3" and Y e jt , let 

: 1A i- fa • A <r c YJ „ Given a partition txz : r 

we say X reduces ^ when X satisfies X e X , Xcc Y> 

dind /c is constant on Q[j s 

(X,Xln) reduces /C. means X reduces /C and (X,Xln) <= c. (Y,yjn 

We 5dy X weakly reduces /C iff X satisfies X e 

X <=•==• Y ana for any A,B e 

(Ajhe i ght. (A)-'1 = Bj height (B)-l c(A) = c(B)). 

In this context, for A e we let A' denote 

A'Jhelght.(A)-1 and J = {A' : A }„ 

Lemma 2 ,7 Let s T , Y e and new satisfy 

( i )  V A e (/ - A o  Yin / A d  Y^n-l) 

(n) V A,B e /Y| (A' - B* + A is isomorphic to B) 

/ Y 1 Tor any finite partition /c : f ^ j—• r there 

exists X E. ^ such that (X,X1n) weakly reduces /<!. 



proof: The set (A' : A e } is finite since 

a' ^ A n Yjn and we denote this set (A^, A^, A^} 

where k e w and A^, A2, • • • 5 A^ e have been 

chosen such that A^| height(A^)-1 = A^, 

A^l height(A2)-1 = A^, etc. Conditions Ci) and Cii) imply 

} •  

IV ! / .*•  -
* > A, 

V A2,' U 

Using Ci) and Lemma 2.5, we-have X^ e "K such that 

CXn ,X,1 n) <=• <= (Y,Yln) and /c is constant on /^l' Al|. 

U^ a ' J 
Then X^1 n - Yin and A^ = 0 t ^ n X^n-1 so again 

using Lemma 2.5 we have X2 c % such that 

(X^jX^n) c ̂  CX^,X-Jn) and so. is constant on 

Proceeding through the finitely ^2 ' A2 £ /^2 9 A1 
A2 ' A2. / \A1' A1 

many A^, A2, . . ., A^ we finally get X^ e % such that 

(X^, X^l n) <= <= ^]c_i» Xk-l1n) c c(YJ|n) and /c is 

constant on the sets /^k' Ak\ , fXk' ̂ -1 ] , .... 

V M W-1A-1 

x^, A 
/ 

k' l| . Thus Xk weakly reduces /c. Q 
A1 > A1 

Lemma 2.8 Let ^ » Y e and new satisfy 

Ci) V A E (A' = A n Yjn-1) 

Cii) V AsB e 'A' = B' -*• A Is isomorphic to B~) 



For any finite partition /c : ^Jfj—• r there 

exists X e % such that (X,X]n) weakly reduces, /c. 

proof: Put = Y and let 

A n+i = {A e : aS A 0 Xjn / A fi Xjn-l}. 

The assumption Cii) and Lemma 2.7 gives x
n+j e K" such 

that ^n+l'^n+lin^ wea^ly reduce 

X 

s 

^ * I f11 h* r' Continue by induction to define 
\A n+1 J 

dk+1 = (A e |^kJ : A' = A n Xkjk * A ri Xj lc-l> 

and let satisfy 'Xk+l1weakly reduces 

^ :  G k + i ) ~ ~ * r " P u t  x  =  k ^ n X k " N o t e  

X = j^X^k, X e K , Xjk = X^k, and (X,X| n) <= e <Y,Yln) 

To show that (X,Xjn) weakly reduces sc : 

for any A,B e such that A' = b ' we must have 

/c(A) = /-c(B). Using assumption (i), for some k >, n 

A' = A n X|k = A n xk|k i A A x j  k-1 = A n X ]k-1.  

Hence A E  ^1^+^ and likewise B e k+1. But 

^Xk+15 Xk+l1 ̂  weakly reduces /c : ̂ k j—r and 

(X,X^k) c c(Xk+1, Xk+11k) so A,B e/Xk+l] with a' 

Uk+i I 
and hence /c(A) = /c(B). [] 



Theorem 2 „ 9 Let *4 , Ye7Csneai, De1?" satisfy 

(i) D er cYln, D ^ Y^n-1 

(ii) V A £ ||J ( A n  Y j n  =  D )  

(iii) V A,B E  (heightCA) = height(B)) 

(iv) (\/m e w) (VA,B e  ) 

(Aim ~ B^m -+• A'l m+1 is isomorphic to B]m+1) . 

For any finite partition /C : ^jj—>• r there exists 

X e R such that (X,Xjn) reduces ^c. 

proof: Using condition (iii), we let h = height(A) where 

A is any member of QP . Let d = height(D), The proof 

is by induction on h-d. 

case 0 h-d = 0. Using (ii) and (iii), h-d. = 0 implies 

(^i) ~ an<^ assertion of the theorem is trivial. 

case k+1 h-d - k+1 and by induction we assume the theorem 

is true for h-d < k. Our conditions (i), (ii) , (iv) and 

h > d imply the condition (i) and (ii) of Lemma 2.8. 

Hence there exists Y' e  % such that (Y', Y'JN) weakly 

re duces /c : —• r. Let ^ = {A/ : A E  ^ }. A 

partition cc' : —>• r is naturally induced from 

zc : —• r by defining <c' (A'') = c(B) where A' e f̂ J'j 

and B e j^J is any object such that B')height(B)-l = A' . 

Now *4' S 3*^ ) Y' E ^ j n E (J, D E ? satisfy (i) through 

(iv) where V A' e (height(A') = h-1 = h' ). 

Since h' - d = k, by inductive hypothesis there exists 

X E  ~K such that (X,X|n) reduces /C' : /T/ j—* r. But 
/ y \ / y \ 

for any A,B e ( j ) , we have A' ,B' E  and 



/cCA) -CA' ) = /c'(B') = /"c(B) , so (X,Xjn) reduces 

~ :  (Ih r- D 

The main theorem of Milliken in £ 7], now follows 

easily as an application Theorem 2.9. 

Theorem 2.10 (Milliken 4.3 in [ 7 ] )  

Given Y 0 % , A e ̂  and any finite partition 

—• r, there exists X e % such that X 

reduces /ti. 

proof: Form Y e % by adjoining a new root, A, to Y — 

i.e., we assume A dY and define for every y e Y" 

(A -<£ y) so that Y U {A} can be completed to an 

object Ye li in the obvious (and unique) way. In the 

same way, given B e the structure • B = B u {X} is 

defined by the requirement (Vb e B) (A **< b). Let 

D~{A}ê :,n = l and J) = {B : Be }. Now >4 s ? , 

Y e ft , n e a), and D e ̂  satisfy conditions (i)-('iv) 

of theorem 2.9. Define c'(B) = c(B) wfyere. B e and 

we have X e % such that (XjX'Jl) reduces /6. Put 

X - X - {A} (with inherited structure) so clearly X e K 

and X reduces c. |~1 



Theorem 2.11 (Milliken 3.1 in £ 7] ) 

Given Y e H and finite k > 1, let 

A = {X\k : (X5Xjl) c ci CY,Yll) where-X £•?(}. 

For any finite partition /c : ('Jj r' "t-here exists 

X e \ such that (XjX^l) reduces /c. 

proof: Let D = Y| 1 and n = 1. It is easily checked 

that ^ , Y, n, D satisfy conditions (i)-(iii) of 

Theorem 2*9. Condition Civ) follows from Lemma 2.4. 

Hence Theorem 2.9 gives the required X e fc such that 

(XjXll) reduces /C. Q 

In addition to Milliken's theorems, other special 

applications of Theorem 2.9 can be found just by giving 

specific examples of Y E K , n £ U and D e 3-

which satisfy the hypothesis. In this sense, Theorem 2.9 

is more general than 2 ..10 or 2,11 but the difference be­

tween our proof and Milliken's proof of 2.11 is essentially 

a matter of organization and emphasis rather than a differ­

ence in method or content. The objective here has been to 

write the proof in such a manner that its generalization 

(in the context of a more general category) will be easy 

to follow. 



CHAPTER 3 

THREE VARIATIONS ON MILLIKEN1S THEME 

Using Theorem 2.10 as a basic combinatorial result 

concerning K- and d" , similar results can be obtained 

by modifying the objects and/or morphisms under considera­

tion™ The morphisms of fc- and ^ respect levels, and 

as a first modification, we will drop this requirement. 

Definition 3.1 Let be the similarity type 

c1 = { -< , -<n) A Let = {XlCTj^: X £ % ) where 

Xlo-^ is the reduct of X e K. to a structure inter­

preting the similarity type rather than a. 

Definition 3.2 Let the objects of 3^ be all sub­

structures, A, of {T; K, <, -cn, A y new = ^T;CT1^ 

such that 

f i )  fVneuj.) (A n TCn) i 0 —*• (Vm n) |A ft TCm) | = 1) 

fn) (Va f. A)(Vt e T - A) (t -< a —»• t *<g a) 

(lii) A is non-empty and finite. 

Put Ca -- 3^! u H1 

The morphisms for A e 3"^, X e , Z e C^ are defined 

by 

(A,Z) -- { (A,$,Zy :<f> is an isomorphic embedding of the 

a-^-structure A into the a^-structure Z} 

C 1 c x , z )  -  {  < X , , Z >  : | is an isomorphic embedding of ^ 

the a^-structure X into the a^-structure Z 

and (Vx e X) (deg^Cx) = degz(x))}. 
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3* ̂  arid fCj receive their morphisms as full subcategories 

of Cr, Composition of morphisms is defined of course as 

composition of maps. 

To insure that we have well defined substructures of 

^T;a^ it must be checked that an object Z e C-^ is 

closed under A in T. This is clear for X e ôr 

Ac 3^ , suppose x,y e A but x A  y i T - A. Then 

x A y -< x S x A y -< y, so using (ii) we conclude 

x A y *< q x £ xAy y, a contradiction. 

So that we may treat ^ u ?( as canonical 

objects, we must verify that there are no non-trivial iso­

morphisms between objects. 

Lemma 3.3 Every isomorphism between objects of is 

an identity mapD 

proofi Given infinite objects W,Z e let W, Z e K 

be the unique expansions of W, Z respectively to objects 

of (using Lemma 1.21). Note in fact W, Z e ?C . Any 

isomorphism f: W—* Z is also an isomorphism f: W—*• Z 

and hence by Lemma 1.14, f is the identity map. 

There are no non-trivial automorphisms of an object 

A Ac d- .± (since < is a well ordering). Suppose distinct 
iO-

A and B are members of J with an isomorphism 

f: A—*• B and let a be the <-least (in T) element of 

(A - B) v (B - A). Assume without loss of generality that 
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! ~ A o T(n) for some new. Since | A| =• | B f , using 

rrl.it ion Ci) in the definition of 31 b e (CB 0 T(n)) - A) 

Mich that f(a) b (since f preserves <), But condition (ii) 

:r<.! ---minimality of a imply a A b e An B with 

A A b -< a and a A b -< b for some distince 
P q 

Ph  - j k  But a a  b -< a->f(aAb)-aAb-< f(a) = b, 
P P ' 

giving a contradiction, Q 

Exactly in analogy to the definition of £ from C , 

tbo' general category ^ u K^ is the class of 

t Mir t lji-es isomorphic (by a unique canonical isomorphism) 

< . • ;ne structure in ~ U morPhisms of 

C. .ifp defined by translating back and forrh to canonical 

: b j e e ! i- (as in the case of C ), 

Given Z,W f: C ̂ , ZecW means of course Z £ W 

and the natural inclusion map, * W, is a tnorphism, 

{ 7 5 ;7,vj' C^(, In analogy to Lemma 1,19 we have: 

' p-uiniri M Giy&n Z e , the finite subset A <=. Z is 

-j • iih • r.h]ec t., A €- 3^ and A = = Z, .iff A is ai sub-

•  r u r e  o f .  Z ,  

i.r .v;• i : ("=4 ) Clear-. (<£= ) We are assuming that the 

nur a.1 inclusion map is an isomorphic embedding, so it 

.n:y remains to verify Ac 3-^. We must construct the 

:. jr.'on i.ca1 isomorphism y0^: A —>- from A to a 



canonical image pa^) £ ^1* 'r*ie ma^ PA "*"s defined by 

A i nduc t ion  on  t he  f i n i t e  o rde r ing  <  ,  beg inn ing  with 

p^Croot(A)) = root(T). Given a e A, let n = | {b e A: b<a 

and suppose ^-s defined for b e A, b < a. Let 

p^(A) - the <-minimal member of T(n) such that 

(Vb e A) fb -< a —*- (Vn  e u) (b •< a «->• pA(b) *< pACa))l . l- n a n a •* 

It is easily checked that such a member of T(n) exists 

and that p^s A—• T is an isomorphic embedding with an 

image satisfying conditions (i), Cii), (iii) in the 

definition of [] 

Suppose Z e ^ and X £. Z is infinite such that 

X is a substructure of Z and (Vx  £ X) (deg^ (x )  = deg^Cx)  

In this case X is not necessarily a sub-object of Z. 

X may fail to be an object of ?<^3 due to an inappropriate 
V 

interaction between the well ordering < and the defined 

level ordering << (the definition is the usual one, 

x <<* y iff |{z £ X: z x}|<|{zeX:z y) I) • The 

ob jec t s  X e  a l l  s a t i s fy  (Vx ,y  e  X) (x  <<^  y  *> x  <  y )  

but the sub-structure Z may have w,z 0 Z such that 

2 w << z and z < w« The simple lemma analogous to 

Lemma 1„20 fails. 

Lemma 3.5 Let Y e and an infinite subset Z ̂  Y be 

given, Z is a sub-object of Y, Z e and ZC<=Y iff 

(i.) Z is closed under A in Y 
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(;;) fVz £ ZJ (deg^tz) deg^Cz)) 

( MI.) (V W , Z £ Z) (W < Z -+ Z ^ W) 

proof; (=$ ) Clear, ("€=•) Conditions (i) (ii) show that 

the inclusion map is an isomorphic embedding which pre-

• ?- : v degree so it only remains to show Z e Condition 

(i i : > allows an isomorphic embedding p: Zfi—• T to be 

defined ?o that p(Z(n)) ̂ T(n) (where 

Z(n) (z c Z: |[w c Z: w z)| ~ n), and thus with the 

obvious-, definition of p, the image is canonical. [] 

Theorem 3,b Given A c and Y e and a finite 

partition t: r' there exists X e such that 

X reduces /c (i.e., X c <= y and is constant on ! 

Note that the notation and X <= <= Y is 

v I. course being used here in the context of rather 

i.ban C , 

Example 3.7 Consider again a partition of pairs from the 

infinite binary tree. Let Y •- U n2 be structured by 
new J 

. 2 inheritance from \T;o^/ and let /c: [Y] —*• r be a 

finite partition of the unordered pairs, In general a 

{..air of nodes may not be closed under A, so we classify 

the. pair according tc the isomorphism type (in the sense 

of of irs /\-closure. There are 4 isomorphism types 
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which appear as A-closures of a pair in the binary tree: 

/ - {0, <0"' 1 \ = {0, <1> } 

/*\ : A -closure {, <(l,0)j - A-closure {(0,0),(l)} 

: (<0> , <1,CT> ,0} = { <0 ,0> , (1> , 0} 
/ 
* 

Using 4 applications of Theorem 3.6 there is an 

X v: , X <= c Y such that \/c. " [x] ̂  | ̂ 4. Furthermore, 

if A i£ any one of the 4 finite canonical objects above, 

ana Z e is a sub-object, Z <=cy, then i 0 

and al] 4 isomorphism types are in this sense 'essential'. 

prc.oi of j.6 The method of proof involves translating the 

gr. en partition c: | —^r, to a corresponding partition 

)—-r where A e 5~ and Y E ?C • Theorem 2.10 

can be applied, and the result then translated back to the 

category C.. 

J.*. is enough to prove the theorem in the case where 

A arid Y are canonical, A e ^ and Y e . Let 

A - ':he >\-cloture of A in T with structure inherited from 

/ \ * " ( T;: ' so A c & - Let Y - the structure Y extended to 

interpret << and A by inheritance from ^Tjct") so 

Y e % . 

Now A is A substructure of A]CF ,̂ SO any isomorphic 

embedding f c restricts to an isomorphic embedding 

fjA c (^] Hence the partition /c;)—• r is induced 
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r.dturally from r' defining for any f e j 

/c ( f ) - cc f t ] a ) . 

We have A e 9" , Y e ?<_ with a finite partition 

sr.: II I-, so Theorem 2.10 gives W e ft such that 

%f - /w\ W = =• Y lin the sense of K- )  and sC is constant on I 

Put W Wjcj, Let -be the canonical isomorphism 

from W to an object of fc. , and note that certainly 

preserves all the structure of W - V^c^, and demonstrates 

that W •?. and W = cY, 

To complete the proof, W must be reduced to some 

X •: , X <= <= W such that 
1 i \ i * 

/X\ . ^ „ c__. • _ /W i |Aj f - 11 A for some f e ^ 

.rk* : r.g r-uc 1- in X, suppose f,g t so f - f j A and g =• g | A  

* k \ ' • • 
where t ,g -- Since W reduces yc , then >e(f) = yc(g) 

t ' 

-jrd ' - T.ear:£ x. C.f; • /<.Cg) so X reduces /C. 

The X t. ^ which satisfies * is defined in-
a 

du^riveiy as a subset of W and inherits its structure 

from W Let be the -<" -root of W. Having x^ 

for i f n let x be the <-least member of W(n) such n 

t hat 

ii w is the least element of 

iw c W: w is an immediate <-successor of some 

x̂  (k c n ) and (Vk e n) (w ̂  x̂ )} 

then w ^ x.^ . 
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11 is easily verified that 

X ••• {x : n c m} e , X «<= W, 
n 1' 

fVn t to)( !xn W(n) | - 1), and 

(,Vx e X) (Vw e W - X) (w •< x w -<g x) „ 

We prove that * holds by induction on |A|. It is trivial 

for- j A{ " 1. For | A| - n, let A = {aQ, a^, . . . , an 

and let B - {an, an, ..., a„ _} where an < a. < a«...< a , . 
0' 1. n-2 0 12 n-1 

• * 

Put B - the A-closure of B in A. Note that 
• * » 
A A A an <<" a, << a , and for some m, 0 < m < n 

0 1 n-1 ' 

A - B - f a  A a  , , a , ,  A a  a  ,  A  a  .  
m n-1' m+1 n-1' n-1 n-1 

For m < i < n-1 we have a. A a . <n a n since J i n-1 0 n-1 

a .  A  a  ,  c W - X  
j n-1 

Given f t: f^l let g ~ f| B and by induction as A sume 

g - gjB for some g c Define f(a) for a e A by 

... - if a e B 

f(.a) ~ •( g(â ) A fCa _̂ ) if a = a. A 
J ^ J 

where m j < n-1 

f (a , ) i f a = a . 
n-1 n-1 

i m t 

Clearly f: A—W is one-one (since (Vn e to) ( | X.n WCn) J = 1)) 

and the image t(A) - the A-closure in W of f(A) (which is 

an object of ? ). For a,b e A and k e to, it is easily 

checked that a b f(a) f(b) and since the 

full structure on objects in & is definable from the 

. w •<^ (k c w), we conclude that f e ^ . By its definition 

fjA - f and hence X satisfies *. Q 



5 2  

C . r_.. . , ;J rb !.«*• "i •: X •, and A e and suppose 
< 

• s. V . ^ ••irurtuxe of Y such that 

' V, ; ' degy(s>)c Given any finite partition 

—~ £ 'whet- is the set of isomorphic embeddings 

. f A int. there exists a substructure R £ S such 

V': - F) ideg«(r.) • deg-Cr)) and /o is constant 

: l'£ ii.g Lemma 3,. S, the only reason that S may fail 

-in . bje t oi is in case for some s,t e S, 

f •••<" s By an obvious inductive construction, 

v-: .-.r. i va .3 substructure. S' s S such that 

• V i. • - degs(e) degy(s)) and 

;-V •: 4 ' i (j. < r t: y<'̂  . s) , Hence S' c 

- « = V ,ar,d * ht par fit: ion /c restricted to ̂  j is 

c:v.'. ' :>• -t • : ii Theorem 3.. 6., The theorem gives R e 

-. t ' r, h c. y and c. is constant on j . [] 

i r • r.-; pat pose of proving the next theorem we make 

••i 5. «t.a t. -sr• t:: fi ola'i. definition of a category K The 

t" ive idea. behind rhe objects of is that they 

:-h i : k 1 'ik& subsets 3 S X where X e ft and S 

i • . -1 ; h <Vv v $') (3x in the A-closure of S such that 

:= < •< & d.e gc( .x) " deg^( x.) > 1) 0 Here 

~ <x) | ft S: x •< t 6 (Vs e S) .(s •< t s x)}| • 

rn<-: .b ject-i oi' will actually be much more highly 



structured (and in this sense, 'artificial') but it will 

be clear (by using a simple -inductive construction) that 

any set S as above will contain in its A-closure, an 

object, from ^ u 

Definition 3,9 An object X e will be defined by 

first, giving its skeleton, ' X , which is an object of 

kl with (Vx e x) Cdeg^Cx) > 1) „ Nodes of degree 1 

are then attached to this skeleton- X z must satisfy, 

(:) X with inherited structure 

(ia.) iVn  £  a )  (|X 0  T(2n)| ~ 1  £ |X n  T(2n+1) | = 0 ) 

f . l . i i )  (V t  c  T - X) (Vx  eX) (t -< x t -<Q x) 

(iv) (Vx l X) (deg^Cx) >1) 

The object. X c is 

X • X U It c Ti for some x e X, t is the immediate 

•̂ g-fjcjebsor of x} 

• X u fx 0: x £ X.-, with structure inherited from . 

Note thai1 (Vx e X) (deg^(x) > 1 +-»• x e X) and if 

deg^.(x) ] , then a l l  the -<-extensions of- x are 
* 

-^•-extensions a.nd all the -<-predecessors in X of x are 

-^-predecessors „ Although X e X itself fails to 

be an object of lC ^, because the attachment of nodas to 

X only as -^-extensions, has caused the condition 

x "" y ->• y x to be violated by X = 



''V-i • AJ(degA(d) -- 1  ̂(3b e A)(a -< Q b)} 

'H . Z ; C-ji a morphism from A to Z c c 

iibe dd.: r.g , I: Ae—- Z such that 

j -• deg f(a) < I), A morphism from 
Li 

pr iL. i--mbr-.ddi.ng f-: X'—- Z such that 

deg- ( ft x )) ) , 
U 

mp.::-i t.i.on 01 morphisms (as maps) is 

t ider. ti.ty maps are morphisms so C^ 

rir^rphi =m between objects of is 

n-: ph.-.iria between Unite objects, this 

•? . , dr-d Lemma 3 . 3 u Infinite canonical 

f del uu-d in T from their skeletons 

- T'o shew that distinct skeletons 

Bui. •< c ?d Is just a stretched out 

t . f  " k . - ^  ,  a n d  t h e  c o n d i t i o n s  

y ru: X is the unique skeleton iso-

S i nee. distinct objects of are not 

ude tha?; distinct skeletons are not 
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Definition 3„ 12 The general, category ^^ u ^2 

Li defined as usual via canonical isomorphisms to canonical 

ct>3ec ts m ^ u ^2r 

Remark 3,13 An object X e will have a skeleton 

X c It., which satisfies X (x e X: degv(x) > 1} and 1 J\ 
* 

X X v 1 x £.• X; x is the immediate -< ̂ -successor (in X) 

cf some x e XK 

A special skeleton X £. as in the definition of 

a canonical object" X c ?C ^ will be called a canonical 

ske l.e t on, 

Lemma 3 - 'l.̂  Given Z e the finite subset A £ Z is 

a yjb-ofojeoi, A e and AceZ , iff A. is a sub-

- t r'j.r.tur e of Z and (Va c A) Cdeg^(a) -< 1 -+ deg^Ca) < 1). 

P'~ ' -1 ; r •=»> ) Clear o (<£= ) Since A is a substructure 

M Z , iv 1? clear (as in the proof of Lemma 3,4) that 

A • ^ f- show that: A e 3* , A must satisfy 

t.Va c A J (deg^Ca) 1 -+• (3b e A) (a -<q b))„ This follows 

from !.he assumption (Va c A) (deg^(a) ̂  1 •+ deg^Ca) < 1 ) 

along with the fact, that , 

deg.z(d) 1. —»• (Vz £ Z) (a -< z —>- a -<0 z) which holds 

for- every Z e [] 
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• L'L Given Z c the infinite subset Y S. Z 

. : i bjeot , Ye & Y <=. e: Z, iff 

. 1 r ir: a substructure of Z. 

• >yy > Y) ^degyCy) - deg^Cy)) 

l : : l • V c K , 
L 

l: . _ i : Clear„ 

' j>. _i j . i 6 Given Ac 2 and Y c and a finite 

: /C'(a) —* r there exists X e H 2 such that 

A !  ' : C  6 i /C -

Is- ti'j-: •: We again consider a par tition of pairs from 

•1 i'."5T> tree, but this time the binary tree is a sub-

. • • * .ir of an object in K. 2 - Let Y S ̂T;a^ ̂ be 

•iv .r, . ,4 ;e - anonical skeleton which is isomorphic to the 

D-- a: y 'i-et-, U n2 0 ?C_ , and let Y be the associated 
n c iu i 

• * 

"i: TI J object Y - Y u ft E T: for some y e Y, t is the 

. .r.n.t.-i. t ^ •< extension of y}„ Put S = {y e Y : degy(y) = 1} 

• - h is a binary tree. Let so: [s] ̂  —>• r 

; n :e part ition of the pairs from So For any pair 

S the A-closure in Y is a finite sub-object| of Y 
r\ 

i' :: '.he; -?en;.e of  ̂̂  êmma 3-1'+ (since the A-closure 

-idd? nodes of degree < 1, and every s e S has 

•\r, gf-f.e i , the degree condition on sub-objects is satisfied). 

Tr > p.- i  1 r  -• in S can be classified according to the isomorphism 



5 7  

type cf their A-closure in Y. There are three isomorphism 

types which occur- as the closures of a pair from the binary 

tree 5 £ Y„ 

/ = (0, <0> } 

- A-closure (^0), <sl>0) ) = A-closure {(0,0) , (l)J 

i { 0 )  , <i,0> ,0} = { ̂0,0> , <1> , 0} 

Note that ~ {0, ^l) } / '?2 since 0 e \ satisfies 

deg^ (01 - 1 but there is no b z \ such that 0 b. 

Using thr<=-e applxcations of Theorem 3,16, there exists 

X H, such that the naturally induced partition is constant 

cn (/) ' ($) ' and ($) " Thus> with 
m 

P : ix t X: deg^vx) - 1} we have |^c [P] | ̂ 3. Note 

is a binary tree substructure of . If 

A is any one of the three finite objects above note that 

(*) 0 , s, all three, isomorphism type, are represented 

as the c 'Icsure of some pair from P. In this sense all three 

isomorphism types are essential,, 

proof oi 3ib We can assume. A e 3^ an^ ^ E % 2 ° 

will translate the given partition to a corresponding 

partition —>- r , where Y e is the skeleton 

:;f Y -̂ nd Ac 3-̂  is just A itself, but thought of in 

the context: 3"^ rather than . Before defining so , 
1 

we need a fixed map which attaches the degree 1 nodes of 

Y to the skeleton, Y . For y e Y - Y = {y e Y: degyCy) = 1}, 

let y denote the <q-immediate predecessor of y in Y. 
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' » « 

NoT.e that yt—>• y is a bijaction from Y - Y onto Y , 

so typically an arbitrary member of Y will be denoted 
* * 

y £ Y where y e Y - Y is the corresponding node of 

degree 1 =, The specific highly organized structure of the 

objects Ye was designed so that y is the immediate 

- successor of y (as well as the immediate -^-successor 

and the immediate •< -successor) and hence 

( V y , z  e Y) (y < z y < z «->- y < z y < z). 

Given f c (jj the corresponding f: A1—• Y is 

defined for a e A by 

(f(a) if deg.(a) > 1 
i( a) J A 

y such that y = f(a) if deg^(a) < 1 

i is clearly an injection f: A—> Y such that 

(Va c A) (deg^Ca) 1 •+ deg^CfCa)) =1). To show "that 

f e: (^J , we must show that f is. an isomorphic embedding 

of the a^-structure A into the a^-structure Y. Since 

the ent ire structure on A is definable from \A; <, -< / „ . x ' ' n ' new' 

it suffices to show that f preserves < and *< for 
n 

n e ok For distinct a,b e A let y,z e Y - Y satisfy 

y •- ffa) and z - f(b) „ We have 

* * * • a *•' b —f f(a) < f"(b) -<-*• y < z +-*• y < z -«->• y < z. Since 

fCa) is either y or y and fCb) is either z or z , 

f preserves <„ Also 

a -< b *™> f(a) *< f(b) fCa) •< z , so if f(a) = fCa) 
n n n 

then a b •*-»- f(a) <n f(bK If fCa) = y f(a)), 

then deg^Ca) ̂  1 , so by the definition of 2 
and ^2 

1 
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c V a ,b r. A) (Vn > 0) (a / b £ TCa) -ji fCb)). 
' n ' n 

Hence 

21 only remains to show a -< g b +•+ f(a) ^ f(b) where 

i '.a) : y. But this is clear since the assumption 
« 

it a) • y J z implies all *<-predecessors of y in Y - Y are 

-< p-predecessors and all •< -successors of y are 

"<q -successors so 

a b f'('a) - y -<0 y = f(a) -< Q f(b) = z *<Q z 

fCa) -< Q f (b) 

and f(a) - y fCb) fCa) = y y •< Q f(b) •> a *< Q b. 

Since f c jjQ we can define the induced partition 

/c(f)-/c(f), where f is 

defined from f as above„ Using Theorem 3.6, let W e 

IW \ satirly W ccY and /c is constant on \/^j n  Now w e  m u s"t 

define a substructure X of W s.uch that X e 2 , X <=• <= Y 

and icr any f e (^ the corresponding f e (a) satisfies 

r , (|). 

The skeleton X of X is first constructed inside W 

exactly in analogy to the way a canonical skeleton is 

constructed in T, Define the levels of W as usual by 
* * * IT" 
Wt'n) - i.w e. W: |{xeW: x-<w}| ~ n}. Let X e be 

the unique c^-structure which satisfies 

!. i ) X s. W with inherited structure 

(11) (Vn e to) C |X a W(2n) | = 1 6 X r\ W(2n+1) = 0) 

(lii) (Vw e W - X) (1/x e X) (w x ->• w  ̂x) 

(iv) t.Vx. c X) Cdeg^Cx) = deg^(x)) 

9 



Let X - X u tw c W: w is the immediate -<g-successor in 

W of some x e X .'} J 

with structure inherited from Y„ Clearly X e "k.^ and 

X Ls a substructure of Y, but X c W and 

(Vw W) (deg^(w) ~ deg^(w) = degy(w) >1) so X fails 

to be a sub-object of Y0 

We emphasize now that the dot notation y'—>-y is 

always being used as originally defined to denote the 

attachment bisection Y - Y'—»Y } and it will not change 

meaning in the context of a new object of 'K which has 

j is own "skeleton attachment map",, 
• — * 

Let X -- X u {y e Y: y e X - X} with structure in-

heiited from Y , so X is just obtained by replacing 

the degree 1 nodes of X by their <g-immediate successors 

in Y, It is easily seen that X £ K^ (in fact X is 

isomorphic tc X), and CVx e X) Cdeg^Cx) = degyCx)) so 

by Lemma 3.15 X ccY, 

Let it. and define f: A—•»- X •= W for a e A by 

( f(a) If deg.Ca) > 1 
Ha) - < . 

^ y such that y ± f(a) if deg^Ca) ̂  1 
* 

With this definition of f , note that 

[ f(a) if degA(a) > 1 
J" Co) < . 

[ y such that y = fCa) if deg^Ca) ̂  1 

so f and f are related exactly as they were previously 

in this proof. The verification that f e(V ) assuming 

/ x \ 1 ' f r I ^ J is just the reverse of the verification we have 



already seen that f e ^Aj assuming f e Given 

g e ê"t g e ij^j correspond to g as above. Using 
t * 

the definition of sn and the fact that W is homogeneous 
* , 

for /c we have <-c(f) = (̂f) = ec(g) =/c(g). Hence 

X e 1(_2 satisfies X <= Y and X is homogeneous for /-c. [] 

The combinatorial Theorem 3.16 can be presented in a 

somewhat different form by focusing only on the nodes of 

degree  ̂  1„ For W,Z e ^2 9  a n^ morphism W—• Z 

satisfies (Vw e. .W.) (deg^(w) 1 deg^CfCw)) ̂  1), so 

we could define as objects, {w e W: deg^(w) < 1} 5 

and let the morphisms just be restrictions of the 

morphisms of ^2' Since all •< -extensions between nodes 

of degree 1 are *<q-extens ions, the *<n relations are 

not really relevant to the structure of {w e W: deg^Cw) ̂  1}, 

but in the absence of A-closure for the set 

{w e W: deg^(w) ̂  1}, various 'meet-type' relations would 

have to be introduced with definitions like 

V  w,z e {w e W: deg^(w) ̂  1}, 

w 2^3 z iff w A 2 -<2 w ® w /\ z *^3Z where w A z 

is the meet of w and z in W. The relevant structure 
I 

on the object {we W: deg^Cw) <1} is therefore the partial 

order -<, the well order < , . and the 'meet type' relations 

p^q w^er>e P>Q. e T^e point is that there are many ways 

to present the same theorem. In the next category the 

intuitive structure on objects consists only of 'meet type1 

relations A and a well ordering — there are no 
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-< -extensions,. Such objects can be represented as sets of 

pai.rw;e <-incomparable nodes in T, As in the definition 

of C^ , the objects of C^. will actually be much more 

highly structured than the basic intuitive idea of a set 

of pairwise incomparables. The definition of the objects 

of C, £ u \ will be analogous to the definition 

of •- £ u k._ , and the corresponding combinatorial L. C L 

theorem will be proved by the same technique used for 

Theorem 3,16„ 
! 

Dei'in it.ion .3.18 An object X e will be defined by 

first giving its skeleton, X , which is an object of 

K .. Nodes of degree zero are then attached to this 

skelet.cn X e 'k. ̂  must satisfy; 

ri) X .is a substructure of 

: i ) C.Vn c w) C |X n T(3n) I = 1 £ 

X n-T(3n+.T) = X fl T(3n + 2) - 0) 

C ::i) (Vi e. T - X) (Vx e  X )  C t  < x  -t KQ x) 

(iv) (Vx X) (deg^(x) >1) 

The set of degree zero nodes attached to this skeleton 

will be denoted X' and 

X' i.t e T: t is the immediate -<̂ -successor (in T) of 

the immediate ^-successor (in T) of some x e X} 

{ x 01: x e X}, 

X - A -closure (X u x') 

* t * 

X u X w {x 0: x e X> with structure inherited from 



Remark 3,19 The intuitively important part of any X e ̂  

is the set X' of pairwise -<-incomparables. The nodes X/ 

are carefully attached to the skeleton, X e ? for 

the purpose of translating partitions into the context of 

The nodes X - (X u x") are a technical necessity. 

We note X has no nodes of degree one and 

X' •• {x t X: deg^(x) = 0 } Although X e , X has 

nodes of degree zero and is certainly not an object of 

Defintion 3.20 Let ? = {A e ?: (\/a e A)(degfl(a) i 1)}. 
3 1 A 

Let C3 - 3^ u &3> For A e ?3, X e ?C3, Ze C3 

a morphism from A to Z is an isomorphic embedding, 

f: A4—>• Z , such that (Va e A)Cdeg^(a) = 0 -+• deg^fCa) = 0) 

A morphism from X to Z is an isomorphic embedding, 

f: X'—^ Z, such that (Vx e X u X')(deg^(x) = deg^CfCx)). 

Remark 3,2.1 The isomorphic embedding condition on a 

morphism, f , from X e 3 to Z e C3 implies 

(Vx e X) (fCx) e Z). The degree condition implies 

(Vx e X') (f(x) e Z ) and f restricted to X is a 
» ' 

morphism from X to Z in the sense of 

The composition of morphisms Cas maps) is a morphism 

and the identity maps are morphisms so C3 is a category. 



Lemma 3,22 Every isomorphism between objects of C.^ is 

an identity map„ 

proof; Just like 30.6. 

Definition 3„23 The general category = ^3 U ^3 

is defined via isomorphisms as usual. A general object 

X 0 will have x' = {x e X: deg^(x) =0} and the 

skeleton, X , of X can be defined as 

X - lx e X: (3y e x')(y is the immediate -<^-successor 

(in X) of the immediate K^-s-uccessor (in X) of x)}. 

The special X £ ̂ Tja.^ as in the definition of a 

canonical X e ?£ ^ will be called a canonical skeleton. 

Lemma 3 „ 2 4 Given Z e the finite subset A Z is 

a sub-object, A e & ̂ and A e: <=. z , iff 

(Va e A) (deg^(a) ̂ 1 •+ degz(a) = 0). 

proof: Routine — similar to 3.14. 

Lemma 3 „ 2 5 Given Y e , the infinite subset Z SY 

is a sub-object, Z e k. ̂  and Z <=-<=Y , iff 

(i) Z is a substructure of Y 

(ii) (\/z e Z U Z ) (degz(z) = degy(z)) 

(iii) Z e 



proof: Clear, Q 

and Ye and a 

there exists X E 

Example 3.2 7 Let Y z ^ be the object whose skeleton 

is the binary tree. That is, let -Y £ ^T;a^ be the 

unique substructure isomorphic to n2 G. <^T;a^^ 

which satisfies 

CVn £ uO ( |Y O T(3n)j =1 8 Y n T(3n+1) = Y OT(3n+2) = 0) 

and (Vt e T - Y) (Vy e Y) (t •< y t -< Q y) . Let Y e 7( 3 

be the object with skeleton Y and recall 

Y - {y c Y: DEGYCY) = 0). Let •C:£Y'3'L —*" r be a finite 

partition of the pairs from Y". For any pair in Y' the 

A-closure in Y is a finite sub-object of Y by Lemma 3.24 

(since the A-closure only adds nodes of degree > 1). The 

pairs in Y' are thus classified according to the iso-

morphism type (in the sense of of their closure in Y. 

There are two isomorphism types which appear as closures 

of a pair from Y' : 

/j> - A-closure { , (l,0̂ >} y\ = A-closure { (0,0)>, (l) } 

- {<0> , <i,o> ,0} = {<o,o) , <1> , 0} 

Note that / = {o, <0> } j, ? 2 since deg^ (0) = 1. 

Using 2 applications of Theorem 3.26, there exists X e 

X c, <=. Y such that ^"[x 2. By the definition of 

Xc cY , we note that the skeleton X e satisfies 

Theorem 3.2 6 Given A E 

finite partition : |^]~^ r 

such that X reduces sc. 
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X c c Y so X is isomorphic to Y and X is isomorphic 

'x1 
A, 

to Y„ Hence for A - of A = ^ , ? 0 

and both isomorphism types are essential. 

proof of 3,26 This proof will exactly parallel the proof 

of Theorem 3,16 so some of the details will be omitted. 

Assume A e & ̂ and Y e and let Y e be the 

skeleton of Y and let A be just A considered as an 

object of „ Given y e Y , the map y • y will 

denote the attachment of y to the skeleton, 

y ~ the immediate predecessor (in Y) of the 

-^-immediate predecessor (in Y) of y. Given 

y,z e Y note that (y < z +-»• y < z *-*• y < z •+-»• y < z). 

' ( Y \  
Given f e hi the corresponding f: Ac—*• Y is 

defined for a e A by 

./ f(a) if deg.Ca) > 1 
fCa) J A . . 

I y such that y = f(a) if deg^Ca) = 0 

f is clearly an injection f: Atf—>- Y and 

(\f a e A)Cdeg^(a) = 0 -»• degyCfCa)) = 0). As in the proof 

of 3.16 (Va,b c A) (a < b -*-*• f(a) < f(b) . Also 

a *< b f(a) •< f(b) +-*- f(a) -< fCb) so if f(a) = fCa) 
n n n 

then a b f(a) -< f(b)„ If f(a) i f(a) 
n n 

(so deg^(a) ~ 0), then for any new and b_ e A 

a b„ Since degY(f(a)) = 0 also f(a) y( f(b) and 

thus f e We define ^c(f) by /t:(f) = <;(f). 

Let W z satisfy W Y (in the sense of and 
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yc is constant on (j()* Let X e be the unique 

0-^-structure which satisfies, 
j » 

(i) X is a substructure of W. 

Cii) (Vn e u) (|X o W(3n)| = 1 £ 

X r\ W(3n+1) = X 0 W( 3n+2) = 0) 

(iii) (Vw e W - X) (Vx e X) (w -< x w -<Q X) 

Civ) (Vx  e X) (deg^Cx.) = deg^(x) = deg^.(x) > 1) 

/ * * * Let X = {y e Y: y e W is the ^-immediate successor in 
• 0 • 
W of the -immediate successor in W of some x e X}. 

Let X = A-closure (X u X') with structure inherited from 

Y„ i.t is easily verified (exactly in analogy to the proof 

of 3<>16) that Xe&g, X <=' <= Y and /v. is constant on 

0  



CHAPTER 4-

GALVIN'S THEOREM n "-*[?! ]<u/2 
AND A GENERALIZATION 

In this chapter we fix the object Y as in example 3.27 

where Y t s^3 has the binary tree Y e &^ as skeleton, 

2 
and /o; [Y'J —• r was a finite partition of the pairs 

or degree zero nodes. We found X e }(g such that 

X = Y arid |<c"[x'3^| -$2. We also fix the notation 

Q - Y' 

Definition 1.1 Let © denote the binary relation defined 

for p^qeQ by p © q •*-*- p A q ~<gP ^or equivalent ly 

p © q p q •< ̂  q) „ 

Lemma M „ 2 Given any X e ^ if X c c Y then <^X'; 

is a countable dense linear order without endpoints — an 

order type n set. 

proof: Note that X c e Y implies X «=. = Y , and since 
1 * # 
Y is. binary, in fact X is isomorphic to Y and X is 

Isomorphic to Y„ It is enough to show that ^Q; ©) is 

a set. with © -order type n , 

Given p 0 q © r where p»q>r £ Q, either 

p Aq •< q Ar or q A r •< p A q. It is easily seen that in 

the first case p Aq = pA r p and in the second case 

qAr ~ pftr ̂  r, Hence p © r and <(Q; is a 

countable linear ordering. Given p 0 Q attached to 

• * » 4 # • 
p e Y , find y,z e Y such that p -<g y and p -<^ z. 
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Then y 0 p z (where y e Q is attached to y and 

z s Q is attached to z ), so does not have 

endpoints. Given p,q e Q } assume p © q. If q •< p 
* 

then let z E Y satisfy p z so z A q = p and 

p © z 0 q» Otherwise p A q £ Y , say p A q = y, and 

we pick z e Y such that q Z„ Since y q, 

y ?• q and y -<^ q <g z° Thus p @ z © q and the 

ordering {Q; ©) is dense. [] 

We would like to identify sub-objects of Y precisely 

with the order type n subsets of Q} 'but due to the highly 

organized structure of objects X z 7^, the converse of 

Lemma 4,-2 fails and we have only the following 'partial 

converse'-

Lemma 4.3 Let 3 £ Q„ If S has ©-order type r\ 

then S contains a subset P such that P = x' for some 

X= = Y, X e 

proof: Let S - {y e Y: both {seS: y -<Q s} and 

tscS: y s] are densely ordered by © }, We claim 

that S is a substructure of Y , satisfying 

(Vs e S)(degg-lsJ - deg^Cs) = 2). We must show that 

S EY is non-empty and (\/s e S")(3u,v e S) such that 

s *^q u and s v0 Let s be the •< -least node , 

of the A-closure of S and put 

U = ft e S: s -<q t} and V = (t e S: s" -<^ t}„ Then 
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U and V are non-empty, U u V = S, and 

(Vu e U) CVv e V) Cu @ v). Since S has @ -order 

type n } u and V are densely ordered by (<} and 

S is non-empty since s e S". Given any s e S" put 

U - {t e S: s" -< t} and let 

U / - U - { u e U : u  i s  a n  e n d p o i n t  o f  t h e  d e n s e  l i n e a r  

order <(U; } „ 

Let u be the •<-least node of the A-closure of u'. 

As above, both {w e U' : u -<g w} and 

{w e U'; u -< w} are densely ordered by © . Because 

the only points deleted from U to form u' were endpoints, 

{w e U; u -<g w} and {w e U: u w} are also both 

densely ordered by © . Hence u e S and "s -<Q U. 

By the same argument, v e S* is found such that 

s v, and the claim is established. 
__ » 

Although S is a substructure of Y with all nodes 

of degree 2, S may fail to be a sub-object of Y e 

due to an inappropriate interaction between the level 

g* 2" 
structure of S (defined from -< ) and the well orderingj< . 

The substructure W s S* of is defined by an 

obvious inductive construction so that W e and all 

nodes have degree 2, so W <=. <^Y. If <p : S—• S is a 

fixed injection which satisfies (Vw e S)(w •< <J>(w)), then 

it is easy to carry out t-he inductive construction of W 
* 

so that W also satisfies 

(Vv ,w e W)(w < v *-»• (f>(w) < v w < 0.(v) -*-+ <J>(w) < <f>.(v)). 
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Let X e be the unique o^-structure which 

satisfies 
r • 

(i) X is a substructure of W 

(ii) (Vn E u) C |X r\ W(3n)[ = 1 S X W(3n+1) = X W(3n+2) = 0) 

(iii)- (Vw E W - X) (Vx e X)(w -< x w -< Q x) 

( i v )  (Vx  c  X)Cdeg^(x )  =  deg^Cx) )  

Let X = {(f>(w): w is the immediate successor in W of 

* • -

the -^-immediate successor in W of.isome x e X}. 'Let' 

X = A-closur-e CX \J X') with structure inherited from Y. This 

construction of X is essentially the same as the construction 

at the end of the proof of Theorem 3.25, and it is easily.checked 

that X c with skeleton X. X satisfies X <= <=Y and' x's.S. [ 

For any finite partition /c:[q]^ »- r we found 

X .E such that X <=• <=• y and sc"[x'~]^ 2. Using 

Lemma 4.2, this result translates to the assertion that 

there exists a subset P £ Q of (<) -order type n such 

that -c [P] ̂ 2 . We also found that both isomorphism 

types ^ and are represented as the closure of pairs 

from X' when X e itj is any sub-object X c <=Y. 

Using Lemma 4.3, this result translates to the assertion 

"*• 2 that there is a partition •c: [q] —>- 2 such that for 

every subset P =. Q, if P has ©order type n , then 

I /c": [p] |=2. This is an unpublished result, of Fred 

Galvin which he proved in 1969. It is usually stated 

using some variant of the standard partition arrow notation. 
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Thee-rem 4 „M (F „ Galvin 19 69) 

'  , n , L / 2  a n d  1  f n ) < w / l  •  

1 i r_*_jn 3^31 When 8 and y represent order types arid 

r;,'. a the notation 3  ̂(y)1! , means that for <• to / c 

.ry ra'.red set Q of order type 8 and any partition 

j_0 j' — r of the n-tuples of Q with r < ai colors, 

<:!".••. i . -j v. -bsfct P £ Q of order type y such that 

) /' '' [F jn j c The slash through the arrow indicates 

• h<- r-vg,-it :> n of + his statement,, 

F.T:r k j _i/ Thinking in terms of the category we 

2 : ^ •!.-u- ' —h~ (n because there are two iso-
/ .1 

m \ ypes of closures of pairs from Q „ It is simpler 

• - i>' ' h vi T here are two possible interactions in a 

p-i . l>: • 't-en the well ordering on Q and the 

- r -jv i 0̂  on Q„ Applying this reasoning to the 

:'i.v- •_ i n- !. uple, there are n! possible interactions in 

-.ir; r:-'. ...pie between the order-ings < and @ „ But if we 

• : : i • k ,i' the order type, n-set Q as the rational numbers 

jnJ ; . •. j k t an arbitrary n-tuple â  @ â  © . . . £) 

i he i i-. i j ! i ve distances between© -adjacent members of the 

• -: r ; r. aiio provides a means of classification and there 

•\ivr- •. ri- i > * distinct possibilities here. Thus we have 

.•lei-} i f ied n'. (n-1)! distinct types of n-tuple from which 

r r <i i partition /c : Q n—*- nICn-1)! can be defined 



by mapping the distinct types of n-tuple to distinct colors 

from nl(n-l)!. It is easily checked that each of these 

nJ(n-l)! types of n-tuple is essential to any P <£ Q 

of order type r) and therefore the above partition 

•c: [Qln—• n! Cn-1)! shows that n -/•»- (n )<u/n . (n-D j 
o 

Along with proving the theorem ri »• Cn ̂ 2 » 

Galvin conjectured results for higher exponents etc. 

Among these was the conjecture ri (n)  n <w/nlCn-1) I ' 
Richard Laver (in late 19 69) translated one of these con­

jectures into a tree theorem (essentially Theorem 1.3) 

which he then proved (without knowledge of the Halperin-

Lauchli result by a long and messy argument — unpublished). 

Consequently Laver showed that 

I A 

n 

1 j1j•.•^ 1 where d is the number 

of n's in each column. 

( /<w/d! 

Given positive integers d, k^k^, "t^ie notation 

In 
n 

\ klSk2 5  . . .  ,  k d _ x  

means that for any M-vector' 

Q0 \ of d disjoint order type n sets, 

Qis (i e d) 



and any partition 

: IC s U Q.- :  (V i e d)(|C n Q.| = k.) }—*-r where r < w , 
ied 11 

there exists a d-vector 

/ 

P, 

Pd-1 

of order type H sets <~ (i e d) 

iuch that |c"{C s .U.P. :(Vied)(|Cnp.|=k.)>$ q. led 1 1,1, i ' I 

It was thought that the same ideas used for the result 

1 j 1. j i j 1 / n  
n 
. ' —> 
> i y! 

/n\ 
n 

dl 

where d is the number 

of n's in each column 

could be extended to prove Galvin's more general conjectures 

but such an argument was never carefully written down and 

is in fact Calvin's conjecture n *-Cn )*} , ,, J <a)/n ; (n-1): 

false. For example, we will show (by translating to the 

category C-3 and using Theorem 3.26) that n —^ ̂<(0/16 

and n ,'ic- Before doing this, the pictorial ti) ' -L 0 

notation for representing the isomorphism type of finite 

objects cf Cj is first simplified. The proof of 

2 2 
r> — (r. > j £ n ^^y/i involved looking at the 

isomorphism types (of closures of pairs) 

^ A-closure ((0>,(l,0) } and 

f\ A -closure {(0,0),(l)} , 

The object fj z. 3* ^ i - A-closure {(0) s {l,0)} = 

{(0), \1 ,0>, 0} is definable knowing only the 'meet type' 

of p.-n.-i o.l degree zero nodes and knowing the <-well 



ordering on the nodes. This information is simply repre­

sented pictorially by where the dots are used only to 

represent the degree zero nodes, the vertex represents the 

meet (and thus the meet type), and the <-well ordering 

is represented by the vertical level relationships in the 

picture„ 

The following 8 objects and their mirror images gives 

a catalogue of all the isomorphism types which are realized 
* 

as the A-closure of a triple of nodes from Q = Y - Y. 

For example e d"3 denotes the A-clqsure of 

{<0>, (1,0,0,0), <1,0,1>} = {<0>, <1,0,0,0),<1,0,1) ,0,<1,0>}, 

(where the closure is of course computed in <T;a^). 

It is clear that the 8 objects above along with their 

mirror images constitute all the canonical objects 
C-

A e vj-g such that 

(Va,b e A)(a*< b -+• a <n b or a *<n b) .and 
u 1 

|{a e A: deg^(a) = 0}[ = 3. ( 



Hence by Lemma 3,. 2 4, the isomorphism type of the A-closure 

of any triple from Q is represented by one of these objects. 

Lex A. be one of these objects „ To show that 

Y \ " 
^1 * 0, let A denote A considered in the context 

and note thot clearly fjM i 0 (since ^Y;-<J>is the 

/ y 
binary tree)„ Given an isomorphic embedding f e 

define f r_ exactly as in the proof of Theorem 3.2 6 

( fCa) if degA(a) > 1 
f(a) < A 

| y such that y = f(a) if deg^(a) = 0. 

Since any X e ^ such that X •=• ^ Y is isomorphic 

to Y, this shows i 0, and in this sense each of the 

16 objects is essential. Using Lemma 4.3 this translates 

3 3 
as r, -/* (n)<o;y15 ' The assertion n—• 

follows- from the above discussion and 16 applications of 

Theorem 3,26 followed by Lemma 4,2. 



. .. Note'that the analysis of the type of a triple based 

only on the interaction between the ordering < and © , 

and on the ordering of distances between © -adjacent pairs 

fails to distinguish between 

and /\ (and likewise for mirror images) 

(and likewise for mirror images). 

If the degree zero nodes are labelled p,q,r in^-the order 

p @ q (£> r, the distinction between these pairs of iso­

morphism types can be described as depending on whether 

or not (3z e Q) (q © z © r £ z <§) q £ z © r 5 p © z) . 

Theorem 1. 7 n —• Cn)5u/lj,(n) and 1 "A 

where <f>(n) is defined by recursion beginning with 

(f)(1) = 1 and then <j>(n) ~ (2̂ -1)̂  ̂̂ . Here 

(^-l) denotes "the standard binomial coefficient . 

Note <j) (2) = (i)<}>(1) 4>(1) = 2 

4>(3) - <f>(l) 4>( 2) + ^ <p(2) <f>(l) = 4*1*2 + 4*2*1 = 16 

3 proof; Following the analysis of r)—>• a^d 

3 
n—* C11]^ /25s "the problem is simply that of counting the 

number, <Kn) , of essential types of n-tuples i.e., 



the number of canonical structures A e &^ such that 

| {a. e A: degA(a) - 0} | - n and 

(Va ,b c A)((a -< b -+(a °<q b or a «<^ bj)-

Given such an A, let b e A be the *<-minimal node 

(the root of A) and put {a £ A: b -C^a} and 

A^ • {a e A: b -<^ a}. Let d = | {a £ Aq : deg^ (a) = 0}| 

and r - j {a e A^: deg^ (a) = 0}| so 1 + r = n. 

When structured by inheritance, ^o'^l e ^3 anc^ ̂ or> 

fixed 0 < /t,r < n such that I + r = n there are 

$(1 ) •$( r) possibilities for the isomorphism type of the 

pair ^Aq^A^^o We have A = AQ u A^ u {b} and the 

structure A is completely definable from the isomorphism 

type of the structures Aq and A^ along with the well 

A A order-ing , The well ordering < interlaces the 
Aq A.. 

well orderings < and < and adjoins b as the 
A0 ^-minimal node of A. The number of possible ways < 

^1 A and < can be interlaced to form < is the binomial 

coefficlent 

I A
0 I  *  | A 1 |  \  I | A |  -  1  \  

IAo' I I'Ao' ) 
and each of these possibilities corresponds to a different 

<-structure on AQ u A1 u (b}„ It is easy to check by 

induction on n that (A J = 2n - 1 (where remember 

n • |[a e A: deg^(a) = 0}|) and hence the binomial 

coefficient is | ^ The total number of possibilities 

for A e 3-g satisfying n = | {a e A: deg^Ca) = 0} | and 



(Va,b £ A)((a -< b •+ fa -< b. or a b)) is therefore 

^2^ 2°-! '4>(n-i ) D 

Before proving the polarized partition theorem 

n fa l,l,a.d,l 
n T1 where n is the number of 
r 

# 

w 

m 

: n's in each column 

H n / <o'Jnl 

and its generalization, it is necessary to upgrade 

Theorem 3„26 so that it deals with a partition 

(Y Y11 \ 
a:: u' a1 1 / —r' Theorem 3.26 rests on Theorem 3.6 

(the partition theorem for anc^ we n,us't begin by 

upgrading this theorem. For objects in the various 

categories, the notation A^l Cor Xjl etc.) will 

denote as usual, the singleton set consisting of the 

K-root of A. 

Theorem M,8 Given AECK and Y E K anda 

/Y Yll\ 
finite partition .c:K' A] 1/—* r there exists 

X e such that (X,X|l) reduces /C. 

proof; In the proof of Theorem 3.6 objects A,Y e C-

corresponding to A,Y e were defined so that the 

given partition r translated a. jyaastl-t-ion 

^'00—V r an<^ ̂ hen Theorem 2.10 was applied. Loolcin'g 

more closely at this translation, it is apparent that it 



(Y Y 1l\ 
A' A11/ —* r 

to a partition sc: 1^' A^lj—^r' an(^ Theorem 2.11 can be 

applied to give W e ?( " such that (W, W]l) reduces 

,-c. With W - e the specific X con­

structed in proof 3.6 such that X e ^ in 

fact satisfies X*|l = W]1 = W"|l = Y^l = Yll and hence 

CXjXli) reduces /C„ [] 

Theorem ^ „ 9 Given A e 3^ and Y e Xj and a 

(Y Y11\ — A|l) *" r there exists X e 

such that (X,Xll) reduces /c. 

proof: Reread proof 3.26. As above, the translation from 

'"c: (a) 4 r to (a)—r entails the translation 

from :(*;*]!)_ r to ^:(*| Xj j)—'> r <whare 

A,Y e correspond to A,Y e ^3)- The combinatorial 
• *s • # 

Theorem 4 , 8 gives W e K-^ satisfying (W,W|l) reduces 

/h„ The construction in Theorem 3.2 6 of X from W yields 

X]1 - Wl1 - Yll = Yll and hence (X,X]l) reduces /c. Q 

For the sake of completeness we mention: 

Theorem ^ ,10 Given A e ?^ an^ Y e and a 

/ Y Y11\ 5~ 
finite partition ^:(a' All) * r there exists X e K. 

such that (X,X]l) reduces /c. 



proof; Reread proof 3.16 with modifications as above. 

Definition 4„11 For a positive integer d define 

as the (unique canonical) structure whose (canonical) 
e 

skeleton, , satisfies 

(x) if b e Y^ is the root (the -<-minima}: node) 

then dego. C b) = d 
d 

(ii) if y e Y^ is not the root then ^eg^ ~ ^ 
d 

For fixed X e , let b denote the root of 

X, and as usual X denotes the skeleton. For each 

i e deg^(b) define = {x e X: deg^(x) = 0 and b ̂  

so x' - iecteg (b)^i* In par"ticular f°r a fixed d e 

and object Y^ e we denote 

{y z Yd: degy (y) =0 £ root(Yd) -<\ y} as Q.^. 
d 

Lemma M„12 Given any X e and fixed dew, if 

(X,X]l.) <= (Y^jY^ll) then for i e d the sets 

©> are disjoint sets of order type r| and 

proof: Clear from Lemma 4.2 and its proof. [] 

Lemma 4,. 13 For i e d let S. £ Q., If each S. 
l xi i 

has © -order type n then there exist subsets P^ £ 

such that ieclPi ~ ^o:r some X e ^3 satisfying 

(X,X]l)c c: (Yd,Yd|l). 



proof: Clear from Lemma 4.3 and its proof. [] 

Theorem 4 , 14 For positive integers d-.kgjk.^, . 

n1 
ri 
t 

/n\ 
n 

kg ,kl9 ..., kd_1 

o 

n "^Uj/l^kgjk^, . . . 5 

'rf 
n 1" i ini 0̂ ®̂ 1'̂ 2'*'*'kd-l 

inj [n; <u*/\p (kQ ,k^,. . . ,k^^^)-l 

where tj> (kg ,k^ ,. . . k^_^) is defined from the function 

<p (of Theorem ^,7) by 

(O^.k,,.,..,^ ,) = (T1 (2k,-dIr TT(f,Cki) 
1 1 d-i \ied /' ied(2ki-l)! * 

kg kx kd-l  l j .  Note that when 

- « . jk̂  -, ) = dJ which is Laver' s result. When 

1, the theorem reduces to Theorem 4.7 and indeed 

<!•' (kg ,k1 , „ . »-d_1 

iHkg) •- 0(kg). 

proof of 14 In analogy to the proof of Theorem 4.7 

we use Lemma 4„12 to translate to the object e . 

For each A e ^ such that 

( i )  ( V i  e d ) ( | { a  e A: deg^(a) =0 S root(A) -<^ a}|  = 

( i i )  deg^(root(A)) = d 

( i i i )  ( V / a , b  e  A ) ^ ( a  t  r o o t ( A )  &  a  • <  b )  — ( a  b  o r  a  

the translation induces a part i t ion on a] i^* 
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Theorem 4,9 is then used repeatedly (once for each A which 

satisfies the above conditions) until finally X £ 

is produced such that (X,X]l) <=ii=(YJY')l) and the 

/ X X11\ 
partition is constant on each I a'a îJ' 

If C s satisfies (Vi £ d)(|C n Q.I = k. ) 
led 1 1 xi1 l 

then clearly /^-closure (C) e satisfies conditions 

(i) (ii) (iii) and its isomorphism type has been accounted 

for. For any A satisfying the conditions clearly 

IYd' Yd^ l) f 0 and-since any X e such that 
I A , A11 / 3 

CX,X| 1) c. CY^jY^"] 1) is isomorphic to Y^s we have 

(a' All) ^ Lemma 4,13 translates this last fact back 

to the context of n order type sets and shows that whenever 

Pn- £ QT are subsets of order type n Ci £ d) and A e f o 

satisfies the conditions (i) (ii) (iii) there will exist 

C. £ U such that-
ied 

(Vi e d)(|C n P^| - ki and the A-closure'of C is isomorphic to A). 

The only thing left to do is count the objects A. For . 

i t d let A^ = {a e A: root (A) •<. a} and note 
i i 

| {a e A^: degA (a) = 0}| = k-, |A^| = 2k^ - 1, A^ e )k 

and there are <J>(k^) possibilities for the isomorphism type 

of A.., A =• . U  A .  u  {root(A)} 'is built from the A. i led i ^ i 

by interlacing the well orders < 1 and prefixing the 

3 

root(A). The d-nomial coefficient 

'. K - o ^ 
^C2k0-l), (2^-1), ..,,(2^-1)^ 

^ 
C2k0-1) J C2k1-l)I... (2kd_1-l) 

gives the number of ways this can be done. Q 



CHAPTER 5 

A BASIC ULTRAFILTER CONSTRUCTION METHOD 

Defin 11ion 5.1 A filter on a set, S, is a collection,T, 

of subsets of S satisfying: 

m 0 / i 

( ? > X £ J and X £ •/ £ S -> Y e T -

(3) X,Y e 7 - X n Y £ T 

A filter- ' U s  (P(S) which satisfies the further 

c ondition 

(") (V X £ S)(X E U. or S - X e U ) is an ultrafilter. 

Tc avoid triviality we also require the condition 

(0) XsS & |X|<UJ - 3 - X E T , so for us , every 

filter extends the Frechet filter {X^S: | S — X | < to 1. 

A filter or ultrafilter which satisfies (0) is usually 

called non-principal, but we will automatically assume 

the non-principal condition whenever the word 'filter' 

or 'ultrafilter* is used.. 

The definitions of an ideal and maximal ideal are 

dual, in the sense of the boolean algebra 

tc the definitions of filter and ultrafilter. Again we 

i n c l u d e  i n  c u r  d e f i n i t i o n  a  n o n - t r i v i a l i t y  c o n d i t i o n  ( o ' ) s  

so for us, every ideal includes the finite subsets of S. 

8 4  



Definition 5,2 an ideal on S is a collection, X, of subsets 

of S satisfying: 

C o ' )  X S S and | x |  < u •+ X e X  

Cl') S tf. J. 

(2') X e J- and Y <= X s S -• Y e J. 

(3 ') X,Y e J- X u Y e J-
A maximal ideal satisfies the further condition 

( 4 ' )  C ^ X  s  S ) C X  e  J .  o r  S  -  X  e l )  

In addition to these familiar definitions we define 

a co-ideal on S as the compliment in (PCS) of an ideal on 

S. 

It is easily checked that a co-ideal, M , on S is 

characterized by the conditions 

(O") X s s 6 J XI < UJ + X j. & 

Cl") S e i 

(2") Xe& S XsY^S + Ye# 

(3") X U Y e X e # or Y E 

Definition 5.3 A collection (B £ (PCS) is a basis for 

a co-ideal on S (or ultrafilter on S) iff 

& ~ {X e S:(3 B e (g) (B £ X)} „ 

Given an ideal, X , on S let iZ = (PCS) - J. be the 

corresponding co-ideal and T = {S - X: X 0 X) be the 

corresponding dual filter. For any" ultrafilter t( on S, * 



we have, 

3c s U. U s. it . 

Thus an ultraf liter- on S can be viewed as a minimal co-ideal, 

a maximal filter, or the complement in (PCS) of a maximal 

Ideal 

As an illustration of a standard technique, we con­

struct a Ramsey ultrafilter assuming the continuum 

hypothesis (CHK 

Defini t ion 5 , ̂ An ultraf ilter, "U. , on a countable set S 

is Ramsey iff for every partition : [s]] —• 2 of 

the. unordered pairs from S into 2 colors, there is an 

X r u which is homogeneous with respect to /c (i.e. iv. 

2 
is constant on fx] ). 

This property of the collection of sets L( is denoted 

u — [UJ 2 

Definit ion 5,5 Given a collection, •A , of sets, the notation 

A M" for cardinals n and r, means that for any 

partition ^c; [S]n * r where S s there is a 

set T = S such that T e ̂  and |/c"[T]n| < r. 

We will usually be interested in cases where n,r e to. 

The notation ^ means of course, the 

negati.on of •i — M so for some S e ^ and 

some part ition SQ. : [S}n—> r we have |/c [T]n | = r 
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whenever T e S and T e ̂  . In case this S satisfies 

(VT e )(T s S), then" a single 'counterexample partition" 

,-c: [S]n—*• r satisfies CVT e ,4.) C |/C "[t] n | = r), and 

for any non-empty we have also —/-> 

We use the notation to indicate 

Ji •+ [ A ] ( w h e r e  r +  i s  t h e  s u c c e s s o r  o f  r )  a n d  t h e r e  

exists G e ^ such that (VT e J). )(T s S) and there 

exists a partition sc: [S]n—> r such that 

(VT e & )( [/C " [T~\n | = r) . 

Example So 6 Let Q be the rational numbers and put 

~ (P £ Q: P has order type r|K Galvin's theorem says 

Example 5.7 Given an ultrafilter on w , 11, is Ramsey 

2 
1 " iff u «—- [u] 2 

To build a Ramsey ultrafilter on uj, we start with the 

co-ideal, , of infinite subsets of w and note that 

«—• [&~ii (this is just the infinite Ramsey theorem 

for a partition of pairs). For the purpose of later general­

ization we put S = co, n = 2 and r = 1. Using 

0 1 ( ^ 
2 = »S^(CH) we can enumerate all partitions /c: [s] —• r + 1 

as : y e 10^ and all subsets of S can be enumerated 

as y e . A basis, ^ 0 wl ̂ ' "^or 
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u i t.r a f i i i er U is constructed by induction of length = 

Let Bc •• $ -: M . Having B , choose By+i such 

t ha t 

1) B y . tL 
2 ) • B i ^ E 2 ) • 

V V] y 

3 ) i y r " Te . 1 r* f ; - t i. -

4 ) B. . S i  o r  « 1 

Since [p | £ , there exists B e Q such that 

B e. B and I /T. * j Bln | <• r 1„ Now 
> y - -

B  ( B n  ̂  }  u  ( B  rs - 5 )) sc property (3") of a co-
v Y 

ideal csr he- used to put B , , : B n S or B : Bfl (S - S,,) 
y-f 1 y Y + 1 Y 

so thai the properties (1J through O) above are satisfied. 

T c  « • n r  t n u e  t h e  i n d u c t i v e  c o n s t r u c t i o n  a t  a  limit 

ordinal a e  ,o,  we assume that for p v e \ 
I. 

(, u • . - E - B t/ iX ) • Note that this condition is 
M ' 

trivially ma ,.n• air;ed at the .-accessor step def ined above. 

We need t 1 ird B- i" Jl such that for y < v B, - B,, i K A U ' 

The existence a s u c b. a follows from the countable 

ccmpl et c-ne ? -the cc-ideal U , defined as follows: 

Def m 11 ion 5 . 8 /\ --.-.-ideal & on S is countably complete 

iff given any decreasing sequence Cr : n e such that 

(Vn F. io)(C f. •M- C 5 C ,) there exists C e Jl n n n +• 1 

which satisfies fVr, e wKC - <j t,I ), 
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Lemma 5.9 A co-ideal & on S is countably complete 

iff given any sequence <( B : y £ * /* such that X e to , 
r J* 

e fa , and ((/y ,v e A)(y < v -*• - B̂  f &. ) there 

exists B e ^ such that (Vy e A)(B - B $ & ). 
H 

proof: (<= ) Trivial. C =£ ) With : U e X/1 as above, 

let f: to X be a bijection and put C = 0 B.p, J ^ n m<n fCm) 

so S = Cg 2 2 Cj... Using the co-ideal properties 

of iX and (y < v -*• B - B i & ) it is easily seen that 
v H 

(vn e w)(Cn Since iZ is countably complete 

let B e ,££ satisfy (Vn e w)(B - ji! •& ) . Since 

(Vy e X)(3n e £ B.^), clearly (Vy eX)(B-B ^j&). Q 

Lemma 5^10 The co-ideal of infinite subsets of w is 

countably complete. 

proof: Clear. [] I 

In our construction of the ultrafilter base, ^B^jy e 

the combinatorial assumption & —»- [^]p+2 » is used at 

successor stages, and the countable completeness of ^ is 

used at limit stages. We must verify that 

U = {X s. S; (3y e w^KB £ X)} is an ultrafilter on S 

and satisfies U » • [X]^ • Properties (1), (2), (4) in 

the definition of an ultrafilter (5.1) are clear by construction, 

and U s so the 'ultra property' (4) implies'(0). 
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Tc verify condition (3), since li satisfies (4) and (0) it 

suffices to shew X,Y e U —* XAY^O. But X,Y e U. 

means for some y,v e s X and B^ s Y, Assume 

without loss of generality that U < v, so 

Bv - B^ f/ & and hence B^ n B^ e & (using property (3") 

of a coideal) so X n Y / 0. The construction guarantees 

U [Uj and. thus U 1 " TU]" follows from 

U «— Ftf]" and U s & -

By locking at the assumptions used, for the construction of 

the Ramsey ultra filter above, it is seen that the following 

theorem has actually been proven. 

Theorem 510 If U is a countably complete co-ideal on a 

countable =et i and U satisfies Ji »—-*• [/£(]£ where 

n,r •- then assuming CH, there exists an ultrafilter 

U or, 3 =tj<rh that U s iZ and U *—* 

Mi i1:ken ' s theorem and the partition theorems of 

Cha.pf.er 3 are good sources of co-ideals, & , which satisfy 

it i L̂ Jr icr' £oine n, r e a)„ 

Example S1.1 Let Y be the infinite binary tree, Y = U n2 , c ' new ' 

structured, as an object of !(. , Let 

(B> IX E Y: X e lC and X c c Y} and let 

& [2 £ Y;(3 B e <$) (B £ Z) } . 

We claim that & is a co-ideal on Y and satisfies the 
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•h-- pnjri.it ion property- & «—* [&] 7 • Example 2.2 shows 

-hot g «—[(p>] ̂ and thus jh *—»• ^ . Clearly 

h. bansfies properties Co") Cl" ) and C2" ) in the definition 

.1 a co-ideal (5,2), The condition (3") that 

:• 'J T £• iL -*-(S e u or T c & ) can be regarded as 

• h< partition assertion M —v ^ , Using Theorem 2,10, 

c=:.y par tirion ^•(ylil—' ̂ can re<3uced by some 

• V , and thus (ft —[<B] ̂ and & —*" [#] \ •> 

H<-:nce H is a co-ideal on the countable set Y which 

iif .es. & 1—v \Jjly - Unfortunately5 if we consider 

'sequence YQ 2 Y^ - ^2 ~ *"* w^ere 

Vr •'y • Y: <"Vm < n)(y(mj - OJ], it is clear that is 

'jniatiy complete, and hence not directly usable for 

r. : : r ! mg an ultra filter-,, 

A countably complete co-ideal can be built from 

• i..r:'<Hbiy m^ny copies of >£? <, The following definition 

g-. * --ri^es the standard construction of a sum of ultrafilters. 

F f.- : .on 5.12 Given co- Ideals U and Cn c. to) on to, 
— n 

/; r|i 'A n {X s. u>*w : (n '| {m ; (n,m) e X) E & 

fc I & is easily seen to be a co-ideal on ojxw.. n f. to n 



Lemma 5,] 3 i? I if (where % , & are as above) is — new n ' n 

countably complete iff $ is countably complete. 

Proof: (—^ ) Let (c^: n c u) be a descending sequence, 

C e H and C ^ C ,, „ Then {c x to: n e u) is n n n+1 \ n / 

a descending sequence with C y w e M £t ft so there <=• ^ n new ̂ n 

exists C c. H £ Ji such that new ' n 

(Vn e to) C - (C x w) £ £t S t „ Put 
n r new n 

C = {n e w: {m: (n,m) eC}e^} so C e and n 
(Vn £ w)(C - C 4 U ) 

n 

( <— ) Let : n e w be a descending sequence, 

^n e^n£io^n' and put Cn r fp: *q: (p>q) e C
n* £ ^q}* 

Then ^ cn : n e W/> is a descending sequence, Cn e & . 

In case O C c$L , let 
new n 9 

C ^ Up,q):  p e nQwCn  E (p,q) e Cp} so clearly 

(Vn e w)(C - C 4 31 I it ) and C' e i/ Z $ . 
n r new n new ̂ n 

Otherwise, $ & and there exisrs C e Q. such 

thar (Vn fw)(C -  C i  U )„ and we can assume 
n ' 

C = U C n (C - C . n ). Let 
new n n-»l  

C = {(p, q ) ;  3 n ( p  e C n (C^ - c
n + 1)  & Cp,q) £ C^)}. 

Again Cci^ and (Vn e u) (C - Cn ft ̂  tR) . ft 

Definition 5U1M The product i/ © U n where & and H 
1  U  c  

are co-ideals on w is defined as the sum H Z & new n 
where ^ — il — »••»» 
™ e  e  0  1 2  
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Lei' j! be the co-ideal of infinite subsets of w 

:-.nd let Hq be the co-ideal of Example 5.11 which 

sat •:.= lies *—*• [^gl 7 C was previously referred 

r o as JH ) „ Then If & ^ is a countably complete 

C.-J-ideal on to x Y from which an ultrafilter can be 

„ The problem now is that in passing to the product, 

t v H q , the combinatorial principal U Q *—*• I q̂] 7 
I 

hai been lost. In this simple case where we are only 

; or;y. i d-.-.-r ing partitions of pairs it is not difficult to 

.•analyze all types of pairs which occur in w x Y. In 

a pair ix,y) £ w x Y occurs in a single 'column', 

Ix.y) £ In) x Y for some n, its type is determined by 

•; ;.'.\ving lx,y} as a subset of Y so the combinatorial 

properties of such pairs are governed by the partition 

pr-cper-t y Jtt ̂  »—>• E q̂] 7 - It can be shown that a pair 

i H)y which does not occur in a single column (so for some 

;• v. >' t in} >: Y and y e {m} Y) Is one of three 

essential types so that J£<g) Q *—*• [#<2> «^0TlO * 

I r;: kind of analysis will become unwieldy as soon as we 

:-v:5; der partitions of n-tuples where n > 2„ For n > 2, 

an r:-rup'ie which does not lie entirely within a single 

•could be spread across anywhere from 2 to n columns 

in many different ways. 

Rather-' than develop' a whole new notation and vocabulary 

for dt; crib.ing r Inter— column ' types of n-tuple we pursue 

a different: formalization which is analogous to the develop­

ment 01 the notation and theorems for the category C. We 



will define the category C. ~ of" ^ An object 

of % is intuitively a countable set of trees from K a 

Actually an object Y e ^ is a very highly structured 

countable set of trees in which the various types of 

finite substructure can be classified using isomorphisms 

to finite objects A 0 cF „ The details of our formaliza-J to 

tion of the category are somewhat arbitrary as usual„ 

The goal is the partition theorem analogous to Theorem 2.10 

but in the context of C „ to 



CHAPTER 6 

A PARTITION THEOREM FOR AN INFINITE FOREST 

Recall from Chapter 1 the definition of T = U noi neai 

with structure (T; = ^Tsa^ . 
' n / n £ to \ / 

Definition 6„1 

T^m^ = (tET: jtj > m, t(0) = m and for 0 < n ̂  m tCn) = 0 

and put T = U TCm) , 1 w mea) to ' 

The set is referred to as the m'th column 
03 

of T and T Cn) = {t e TJ ItI = n + 1} is referred 
w (0 11 

to as the n'th level of T . Note that 0 e T - T and 0) 0) 

T CO) {<0>} sTCl). Put Tin = U T (p) and u) (o' p<n w r 

T^m - U T(m') w p<-m a) 

T t s T inherits the partial order •< from T and the 
/ \ 

-'-minimal nodes of T are called roots. Each column , T,, a) ' to 
Cm) 

has a unique root. In particular, T^ has the node 

f: m + I —f-m + 1 defined by 

m if i = 0 
f'(i) '• 

( 0 otherwise 

as its root, and this root is the unique -<-minimal node 

of T which lies in T Cm), The root of T is the tO tO 03 

< -maximal element of T Cm). 0) 

We note that T^ is not closed under the operations 

of T, and hence We let T inherit only the relational 0) 

structure, << (n e 03) , from T. New operation 

9 5  



0) 

03 

The same idea is used to define A for x.y e T to 

symbols A and A are interpreted in instead of 

T A and A. Given x.y e T , if x A yeT then m to' to 
T T A (or A ) is defined to agree with A, x A y = x A y„ 

T The definition in the case x A y d T is made somewhat T (a) 

arbitrarily 

x A y  i f  x A y c T ^  

x  A  y  =  ^  x  i f  x A y ^ T ^  a n d  x < y  

if x A y j, T and y < x 

is used to deJ 

x A y i f  x A y e T ^  

x A y = <(x if x A y f! and x < y 

y if x A y $ and y < x 

Note (Vx,y e T^)Cx A Y = x A y) iff (3m e co)(x}y e T^m^). 

If x A y = x then in case x A y = x we conclude 

x 2^ y and for some m; x,y e , but in case x A y i x 

( m ̂ 
(while x A y - x) then we conclude x e T and co 

C n) 
y e T  w h e r e  m  <  n .  

to 

The similarity type interpreted by T^ will be denoted 

 ̂ a<o so a
u 

='{"<'<*<<>VA'A}neu) ' 

In analogy to the definition of \ as a class of infinite 

canonical substructures of {T;a)> , here we define the class 

?C of infinite canonical substructures of \T ;CT >. (0 \ (0 tO / 

Definition 6.2 Let the objects of be the set of sub-
03 

structures of <T ;o with universe X s. T which x to to f (0 

satisfies: 
/ \ 

(i) (Vm e to) XnT^ is non-empty and closed under 

-<-predecessors in T . 



(ii) Every f e X has a non-empty finite initial segment 

of immediate ^-successors; fo, fi, fa, .... fn-i 

for some n > 0„ This n is called the degree of f 

in X, deg^Cf) = n„ 

Given X e 9/ define 0̂1 

X(m) = X 0 = the m'th column of X, and let oj 

x1m = Ux(p). 
p £ ;n 

Put XCn) = X fl T (n) = the n'th level of X and let 
(0 

X]n = p^J^XCp). Note that Xfn i {x e X*. |{y e X| y -<x}| < n 

(unless n - OK 

Remark 6„3 We have chosen to use the symbols A and A in 

the context of in order to emphasi ze the distinction 

from A and A „ But it is clear that when restricted to 

a column of T , A and A agree with A and A respectively 

More to the point, given X e we consider 

X^m^ ~ X A as an object of V, even though technically 

X^m^ interprets the wrong similarity type, o^. Given 

X e k , then X - and X can be viewed as an w mew 

infinite collection of objects from , but in addition 

t h e  c o n n e c t i o n  b e t w e e n  t h e  d i f f e r e n t  o b j e c t s  X ^ m \  m e w ,  

is highly structured. 

For m e oj , X(m) (\ X^m^ - {the root of X^m^} = 

(the <-maximal element of XCm)}. For n < m, XCn) 0 X^m^ = 0. 

For n > m, XCn) 0 X^m^ = X'm^Cn-m), where here we consider 

X^m^ e !C and >JmVn-m) denotes its level n-m. 



The category ^ will be a set of canonical,representa­

tives for all isomorphism types of all possible finite sub­

structures of objects X e . In general, a finite sub­

structure A of some X e may have several roots 

( = < -minimal nodes) and in fact there may be several 

roots on the same level in A (where the level structure on 

A is inherited from X, rather than being defined from *< ). 

This fact makes the definition of a canonical representative 

of the isomorphism type of A somewhat awkward since in . 

each level, T (n), contains just one root of T . } 03 ' J 0) 

Definition 6.4 Let the objects of be the set of all • • to 

substructures of \T ;a with universe A S.T 
\ to to f w 

satisfying: 

(i) A is non-empty and finite 

Cii) (Va e A) C Vt e T. -A) Ct -< a •+ t *<n a) t o  u  

(iii) If A n T (n) i 0 and for some m < n A satisfies 
to 

Vi Cm ̂  i < n -• A fi T (i.) = 0) then 

I{a e A 0 T Cn): a is a root of A}| > n - m. 1 w 

Given A e J define 

height(A) = |{n e u: A nT^Cn) i 0}| = the maximum cardinality 

[S| where S sA is linearly ordered by <<, For 

n e height(A) let A(n) = {a e A: [{b e A: b << a}| = n} 

and let Ajn = jjjĝ ACn) 

As in the past the symbol X or A etc. will denote 

both an object and its universe and superscripts will only 
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rarely be used to distinguish between a symbol in the 

similarity type, , from its interpretation in a 

particular structure. 

Definition 6.5 Put C = ? u TC and let A e 3" , 
(H) to (0 01s 

X e It and Z e C „ As usual we define a) to 

C^(A,Z) - {<A,cj>,Z)| <j>: Ac—*• Z is an isomorphic embedding 

of the a,-structure A into the a -structure Z} and to to 

C <X,Z) = {<X,4>,Z>| 4>: Z is an isomorphic embedding 

of the a -structure X into the a -structure Z and to to 

(Vx  c  X)(degv(x) = deg„(<f>(x))} .  C  is a category (with 
A u CO 

composition defined as composition of maps) and ̂  and 

receive their morphisms as full subcategories of . 

Lemma 66 Every isomorphism between objects of Cw is an 

identity map, 

proof: Given an isomorphism f: Ws—»Z between infinite 

objects W,Z E: k' •, for each new f restricts to 

an isomorphism between W|n and Zln . But W]n and 

Zfn are finite canonical objects, so it suffices to con­

sider only isomorphisms f: Ac—*•> B where A,B e 3- . 

Since f preserves the well ordering <, thete are no non-trivial 

automorphisms and we must show A = B. 

Assume A and B consist entirely of roots and put 

r = |A| = |B[«, If height(A) = 1 then A = T̂ tn) for 

some n, and we must have n+1 ^ r and 



V i ( 0 ^ i < n  A  n  =  C o n d i t i o n  ( i i i )  g i v e s  

| {a e A n T^(n) ! a is a root of A} | > n so n+1 >s r > n, 

and n •- r-L Using (i.i) and the closure of A under A> 

C i ̂ this means A ~ {x| x is <-minimal in T (r-1) n T„ * for 1 to w 

some i such that 0 ,< i ̂  r-l) = B„ 

When height(A).> 1 the idea is just the same -- the 

conditions Ciii) and (ii) are used as above to pin down 

precisely the set of roots in each level of A and B„ When 

A and B do not consist entirely of roots the *<n-structure 

and condition (ii) are used to pin down these other nodes 

and show in general that A = B„ [] 

Definition 6„7 "the class of structures isomorphic (by 

a unique canonical isomorphism) to some object in . 

is the class of structures isomorphic (by a unique 

canonical isomorphism) to some object in . 

r & u /fc with morphisms defined by the correspon 

dence to C = & u )C ,, , 
W to to 

Lemma 6.8 The finite subset A s Z where Z e C is 
to 

a sub-object. A £ ? and A <=. <=. Z iff A is a sub-
to 

structure of Z„ 

proof: ( <£= ) The construction of the canonical isomorphism 

p^: A 6—A into T , whose, image is a 

canonical object, P^(A) e d- can be carried out by an 

inductive analysis of A very much like the proof of Lemma 6.6 
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Lemma 6,9 Let Y e JC ' 'arid an infinite subset — 

be given. Z is a sub-object of Y, Z e and 

iff ... 

Ci) Z is closed under A in Y 

Cii) (Vz e Z)(degz(z) = degy(z)) 

(iii) (Vn e w) (3l z e Z(n))(z is a root of Z). 

Here ZCn) = {z e Z: |{we Z: w << z}| = n}. 

proof: routine. [] 

As in the case of objects of ?£ , the structure of an 

object ,A definable from 

<y and we could state conditions on a structure 

so that the definitions yield an object 

^X;cr^^ (like Lemma 1=21). As in the case of an 

object of "J" , however, an object e 3-^ is not 

definable from <^A;K,<^. 

In the context of C^s we are aiming to prove theorems 

analogous to the results of Milliken for the category £ 

(Chapter 2). For example we will obtain: 

and a finite 

X e £ such that X 

Our proof of the theorem will proceed along lines 

parallel to the proof in the d context, where it was 

Z s Y 

Z ̂ <=Y 

Theorem Given A e ? and Y e 

/ Y \ W " 
partition L )—• r there exists 

reduces /c. 



necessary to state and prove more detailed theorems in 

order to construct inductive arguments. 

Lemma 6.10 ( = Lemma 2.4- for' the category C )  

Given X,Y e an̂  new, if (X,Y"]n) <=• <=-(YsYln) 

then X|n+1 is isomorphic to Yjn+10 

proof: By the degree preservation condition for sub-objects 

(XjX'Jn) c <=: CY,Yj n) where X,Y e 1C , clearly Xln = Y^n 

We define (JjiY^n+l6—»Xjn+l for y e Y^n+1 by 

(the root of X n̂̂  if y = the root of 
* ( y )  =  <  

/ the -<-least x e Xln+ls.t„ y ̂  x otherwise 

It is easily checked that <f> is the required isomorphism 

(Yjn+l9Yln) S (x1n+lsXjn). [] 

Lemma 6.11 ( ~ Lemma 2.5 for the category C )  to 

Given Y e and A c- <= Y where A e 5^ , let 

a' = A]height(A)-l , and suppose n satisfies 

A7 = A n Yin i A n Yln-1. For any finite partition 

(XjX'jn) reduces /c. 

proof: The proof here is considerably more complicated 

than the proof of the analogous Lemma 2„5, although like 

2.5 the proof essentially rests on the Laver Pincus 

Theorem 1.26. 

there exists X e, such that 



We can assume Y e and A e & . As a first TO CO 
IY. A'\ 

—• r, IY A' step toward fully reducing the partition c: ^ 

we find Z e it which satisfies the very weak reduction 

property expressed by the following: 

(Z,Zln)<=. «= CY,Yln) and for any B,C e 

if {b e B | (3x e B)(b < x)} = {c e C: C3x e C)(c < x) } 

then /c(B)«= ^(C). 

/Y A' \ 
Some notation will be useful, so for any D g J 

let dj = {d e D| (3X g D) (d < x^ . The above property 

becomes (Z}Z"|n) «= <=CY,Y'|n) and. 

Vb,C ê a' A') = C 'C(B) = ,-cCC)). Having found such 

a Z e satisfying t 9 there is a natural induced 

partition —*• r defined for E e A ] by 
(A, A' / U,  A'/ 

(•c(B) if there exists B e (?' I s.t. B 
etE) = 1 \A> A/ 

[ arbitrary otherwise 

Using the natural induced partition it is clear how to 

iterate the very weak reduction | |A — A" | times until 

finally reaching X e ^ which satisfies 

(X,Xln) c c(Y,Yjn) and /C is constant on A')* 

The construction of Z e K satisfying f is split 

into cases depending essentially on .whether there are any 

roots of A in A - A' , 

Case I A sY n̂ 

By assumption A' 0 Y(n-l) i 0 , so by A-closure of A , 

(Va e A » A' )(]a' e A n Y(n-l)(a' •< a) and thus there are 
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no roots of A in A - A' . Intuitively, we restrict attention 

to Y n̂ and apply Lemma .2.5„ Formally we must translate 

to the category C. by defining 

y = y''11 u {t e T: (3y e Y(n-l))(t^y)} 

A = A u {t e T: C3y e Y(n-l))(t y)}. 

When A and Y are structured by inheritance from <^T;a), 

it is easily seen that Yefc , A e 3" , A ccY, 

There is a natural 1-1 correspondence between 
Y> AM , / Y, ~R, 
a, a'/ and iff, a • 

(where as usual ~K - A^height (A)-1) . Note that 

YCO) = {0} = TCO) i T (0) <=T(1) so Y(n) = Y(n-l) and (jl) 

A = A^n+1 - Y^n+1 = {t e T: (3y e Y(n-l)) (t y)}. 

The correspondence induced partition we denote 

•c* ] —• r and it is defined for B e /^' \ 
\a» "a / \ A, A 

by cCB) = /c((B - A) u A' ). Note that n+1 satisfies 

Y/n+1 = A = A n Yjn+1 /AH Yjn = Yfn so Lemma 2.5 gives 

Z e It such that CZ,Zjn+l) reduces 

The translation back to an object Z e is carried (j0 

out by defining the columns of z, z o y^  ̂

(so Z n Y p̂̂  s. since Y is canonical), for each p e w, CO 

and then letting Z = p âj(Z n Y^P^)„ Let L be the set 

of levels of Y used by Z , L = {1 e (0 | Y(l)o Z i 0}, 

so note Zjn+1 = Yjn+1 a Yjn —> 0,1,2, „„„, n-1 e L. For 

pen let Z n Y^^ = Z" n Y^^ . Additional columns are 

now added to complete Z to an object of % (being careful 

to have exactly one root on each level of Z)„ For p ' L 
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let Z H y p̂̂  be empty. For p e L - n, note y p̂̂  

has its root at level p in Y, and y^P^ e 1C . We let 

Z f\ YCp) be any subobject, Z n Y(p)̂ c yCp) (in the 

sense of st ) which uses levels L. - p , i.e., 

{ J! e to| (Z n Y(p)) n YCn i 0} = L - p. Since Z 0 YCp) 

"uses level p" we note for future reference that whenever 

Z 0 Y p̂̂  is defined to be non-empty (i.e. p e L) then 

{root CZ Y(p))} = {root (Y(p))} = TCp) n T Cp) and 
to w 

hence every root of Z is a root of Y. 

It is easily checked that Z e when structured J £0 

by inheritance from Y or T , and (z,z1n) <= <^(Y,Yjn). 

i ~a\ (Z A' 
Following the 1-1 correspondence between / and I ' 

{ A, A / \A, A' 

we conclude (Z,Zjn) reduces ,c, and thus certainly Z 

satisfies the much weaker assertion f . 

Case II A ^Y n̂ 

In this case there is at least one root of A in A - K . 

Z e k which satisfies "[" is produced by a sequence 

of two constructions, Ila and IIb„ First we define for any 

•X e where (XjXjnJc1 <^CY,Yjn) and for any 

D s j , "the projection of D to minimal level in X" 

by ir^CB) = A' u {x e X(i)| (3d e D)Cx^:d)} where i e to 

is minimal such that (Vd e D - A" ) (i3x e X(J?).)(x ^ d). 

Since we are assuming A ^ Y^ n and (X,X]n) <= czCYjyjn), 

clearly J! n and tt̂ CD) is isomorphic to D and A. 

The minimal level, /? , is determined by which column of X 

contains the <-greatest element of D (= the element of D - D). 



If D - D s X(p) then i - p and 

tt̂ CD) - tt̂ CD) = {the root of X p̂̂ }„ 

Construction Ila will yield Y e It which satisfies 

(Y,Yln)c<=.(Y,Yjn) and for any B,C e | ŝ ^ 

tt_(B) = it (C) -f/cCB) = ,e(C). 
Y Y 

Construction lib will yield Z e ft such that 

(ZjZ'jnJc <=• (Y,Y]n) <=• <=. (Y}Yjn) and Z satisfies t , but 

^ A 
the method used to construct Z will depend on whether A = A. 

In case Ilb(i), A = K (i.ec |A - A"j = 1 and we are still 

1 n assuming A £ Y' ), a simple construction inside Y gives 

Z e which satisfies (Z,Zln) (Y,Yln) and /C is 

constant on (a' A') ŝo cer"ta;i-nly 2 satisfies t )• 

In case Ilb(ii), 'A i A' (and A ^y''11.), the construction 

of Z is more complicated. First we define for any X e 

where (X^n) <= <= (Y,Y]n) and any D e the 

"completion of D in co-minimal level of X" by 

tr̂  = X*JJ? u{xeXCO| (3d e ̂ )(x ̂  d)} where I e id is 

minimal such that (Vd e D)(3x e XCi'-lKx ̂  d)) and | > n. 

The co-minimal level, $ , defined above, can also be determined 

as £ = max {n, p+l} where X p̂̂  contains the <-maximal 

element of "D. Note that (T7*(f)))' = X'] Jf (where the : 
•i 

"prime" notations-has the usual meaning of restriction to 

height (ITXC'S)) - l) and ^x^' ~ X^ where H > n„ 

The construction of Z in case Ilb(ii) will yield 

Z e such that (Z,Zln) <=•<=( Y,Y|n) c; c (Y,Yln) and 



for any B,C e A' j J 1T2 B̂̂  = ^2^^ *^/c(B) = ••c(C). 

Then for any B,C e ^ ̂ such that B = £ we have 

(B) = iTg CC) so .c(B) = ^(C) and Z satisfies t . 

Construction Ila A sequence of objects Y e K is 

n 
constructed for t e co - n beginning with Y = Y and 

satisfying 

( i )  v  B-c  e  (l; a:) 

if tt̂ CB) = ir^(C) £ Y t 

then /c(B) = /c(C) 

t+1 t+1 t t 
(ii) ( Y, Yjt) c= c (Y, y|t) 

We claim that condition Ci) is satisfied vacuously by 

n 
Y = Y. Since we are in case II where A - A" includes 

a root of A, B - A' includes a root of B„ Since 

B n Y ( n - l )  = A '  n  Y C n  -  1 )  ̂ 0  a n d  B  i s  c l o s e d  u n d e r  A ,  

this root of B ocurrs in some Y^*^ for p > n. But then 

TTy(B) 0 Y(p) * 0 so 7ryCB) <^Y|n. 

t t+1 
Given Y satisfying Ci), Y is obtained by a modifica­

tion of the technique used in case I of this proof. By 
t 

following the canonical isomorphism : Y e—»- ^ 

Y 

t t 
we treat Y as a canonical object Y e „ In analogy 

11+1 11 
to case I, we will restrict attention to Yf (not Y1 

which would be the exact analogy to Case I — a crucial 



difference). Define 

Y = Y t̂+"*" u {x e T|3y e Y(t) (x *< y)} and for fixed 

D e which satisfies — Y^t+l £ S.Yft 

Y Y 
• t 

(i.e. D - D £ Y^^) define 

D = D if {x e T |3y e Y(t) (x *<y)}.. [Vote for the first 

few values of t = n, n+1, n+2, .there may not exist 

t 
/ Y A i 

any such ^ e f a' A' / ' ŵ ^-ĉ 1 case "the combinatorial 

t+1 
arguments used to construct Y are vacuous and we can 

t+1 t -j 
simply put Y = Y . J 

When D *and Y are structured by inheritance from 

{T; a}, the following facts are easily checked: Y e ?C , 
_ _ _ _ ^ 
D e? , D <= c Y } YCt+1) = YCt), 

_ t • 
Y(t) = Y(t-l) u {the immediate °< -predecessor in \T;a^ of 

rootCYCt))}, and d" = D^t+l = Fjt+1 = 

t 
{x e T|3y e Y<t) (x < y)K Note that the <-maximal node, 

y, of Y"|t+1 is not a node of Y (nor of T ) and deg^C^") = 1 

so (Vz E Y)(y •< z -*• y *<Q z) . 

{B E (a' A') '7rt(B) = and -') ' Given' 
' Y Y D̂' D / 

B e / j such that = then B e Y +̂"*" 

* / v v 



tCt) 
and BOY is the <-maximal node, b, of B. Letting 

y e Y be the <-maximal node of Y'jt+l, we have y -<q b. 

Put B = B u Y'jt+l and now it is easily seen that 

B" e ^ I . Going the other way, given B e ( ^ 
\D, D/ 1 D, Dj 

t ^ . 

put B = (B - D) u A so ® e (a' A* ) an̂  ^t^^ = * 

Y Y 

The induced partition /-c: ^, ] —*• r is defined for 
ID» D J 

I — ~'1 

B e 1' S by ^cCB)= ^((B - D) L> A'). NOW 
- \Dj DI 

Y'jt+l = D = D fi Yit + 1 i D n Ylt = Y^t so Lemma 2.5 gives 

X e it such that (X, Xjt+1) c c. (Y, Y'jt+l) and /c is 

/ Y D" \ IY A 
constant on ' , . In other words, for any B,C £ 7' 

^D, D/ \A, A 

if B,C £ X and = ^t^^ = then /c(B) = /t:CC). 

Y Y Y 

By repeating the argument which produces X , for each of 

the Cat most finitely many) distinct projections, tt̂ CD), where 

/ Y A' \ x 

D e I g I satisfies Cir̂ CD) c Y'jt+l & tt̂ (D) ^ Y]t), we 
Y Y 

construct a finite chain of sub-objects of Y. The last of 

these sub-objects we again call X (in order to avoid extra 

notation) and X e satisfies: t 

(X, X|t+1) = <=(Y, Y'jt+l) and for any B,C e , 

if . B,C s X and 
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t t 
(Ctt̂ CB) = irt(C) s y]t+l) £ C C B) = tt̂ , CC) ̂ Y t̂)), J:lTexr 

Y Y Y Y 
t 

•c(B) = -'c(C). Now the inductive assumption (i) on Y 

t t 

says (VB,C e /^' g) Ktt̂ CB) = tt̂ CC) e Y]t —•/c(B) = ^(O). 

Y Y 

Hence the property satisfied by X =• <= Y can be strengthened 

to read: 

t ' \ t 
(VB,C e (*> %\) CB,C s X e ttt(B) = irtCB) £ Y^t+1 ->/c(B) = /c(O). 

Y Y 

The translation from X e \ back to an object 

t+1 1 Y  e r i  i s  c a r r i e d  o u t  b y  a  m e t h o d  s i m i l a r  t o  c a s e  I .  L e t  0J J 

t _ 
L = { 8 e 101 Y(l) H X i 0} so note 

Xjt+1 = Yjt+1 ̂  Y|t -=> 0,1,2 o.. t-1 e L. The important 

t+1 
columns of Y which control the partition property Ci) 

t+1 
for Y are defined for 0 < p < t+1 by 

t+1 t, x "tr % t+1 t, . \ 
Y n Y p = X 0 Y ^ . For p e L - t; Y n Y p̂ *u is 

defined arbitrarily as any sub-object of (in the 

sense of K.) which uses levels L - Cp+1)« For 0 ^ p ^ L, 

t+1 t(D+l) 
the intersection of Y with column Y p is defined 

t+1 t, X t 
to be empty. ... Note that rootC Y nY ) e Y(|) where 

Jl e L is minimal such that f ^ t„ Typically t j! L, 



Ill 

t+1 t(t) 1 
so rootC Y 0 Y ) is not a root of Y. More generally 

t+1 "tfn+l i "t 
for p e L, rootC Y n Y ^ ) e Y(f) where x e L is 

minimal such that f > P+lj and since this is minimal,. 

t+1 t t+1 ^ 
Y is closed under A in Y. Also {rootC Y 0 Y )} = Y(0), 

so for every I e L, there exists exactly one root of 

t+1 t t+1 — 
Y in Y(J), and it is apparent that Y e X and 

t+1 t+1 t t t+:Hh+i 
( Y , Y]t) c c (Y, Ylt). Since Y ̂  1 £ Y >r 1 we note 

t+1 

that V B,C e (I ; £) 

t + 1 ' t 
(7ft + iB) = ^t + l^ - Y1t+1) + (TJt (B) = TTt(C) £ Y "jt+1) . So 

t+1 
the construction of Y from' X gives 

t+1 
C^t+^CB) = c Y'jt+l) ecCB) = /cCC) 

Y Y 
t 

Having defined the sub-object chain Y for t e to-n, 

~ Pi t t+l t 
put Y = J I Y , and since Y It = Ylt , note 

tew-n ' 

Y = t̂ _nYlt e ?CW and IY# Y^n) <= «= (Y, Yin). Given 

/ y A' \ 
B,C e I I with = tt̂ CC) , for some t e to-n, 

t+1 _ 
^t+iCB) = irt+̂ (C) e Y|t+1. Hence Y satisfies the conclusion 

Y Y 
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of construction Ila, 

/C (B) = /-c(C) . ( V B,C e (ĵ  CTT?CB) = TT?CC) 

Construction Ilb(i) A = A and A ^ Y n̂, We have 

CY, Y]n) <= <=• CY, Y^n) satisfying tt , and now inside Y 

we will find Z e ̂  such that CZ, Z"|n) cc(Y, Yin) 

and rc is constant on (a' A' ) " Since % = h' means 

|A - A' | = 1, for any B,C e ̂  

= TTyC C) +-+ B - B and C - "6" are in the same column of Y. 

For each c e r let 

L = {p e w) B - % e Y p̂̂  /c C B) - c} so n = L (vacously) 
c c 

and. Lg o L-^ u ... uLp ^ - u. One of these sets (call it L) 

must be infinite. Define the columns of Z e by letting 

Z H Y^^ be empty if p ^ L, and for p e L define 

Z n as an arbitrary sub-object of Y^Cin the sense of It ) 

which uses levels L - p (i.e., 

{ fl e oi | (Z O Y(p)) n YC* ) i 0} = L - p). Since n s L, 

CZ, Z|n)t=r <= ( Y, Yf n) c c CY, Yfn) where Z e and 

clearly CZ,Z]h) reduces /c. 

Construction IlbCii), A / A' and A =Y n̂„ We want 

Z e such that CZ, Zln)^^ CY, Yjn) and to ' 

(VB,C e ̂  )(tt|CB) = ?r|CS) +/cCB) = /cCC)). 

Let ^ = {D e | J D - D is a root of Y} 

= {D e (I; A') •B = YD}) 
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Note that any Xcc Y, X e such that (i) 

(Vx e X)(x is a root of X •+• x is a root of Y) will satisfy 

(VD e X)(ttv(D) = tt (D)) and 
X Y 

= {D 0 i D - D is root of X}. A sequence of 

t _ 
objects Z e % is constructed for t e w-n beginning 

n ^ 
with Z = Y and satisfying: 

t 

(i) For any B,C s 

t 
(ir*(B) = tt*CC) s Z)t) ->/c(B) = *s(C) 

Z Z 

t+1 t+1 , t t 
(ii) ( Z ,  Z 1 t )  «  (z, Z ] t  )  

t+1 t 
(iii) every root of Z is a root of Z, 

.Recall for any (X, X]n)<= c.(Y, Y^n) and any D e 

the definition of tt*CD) requires X]n S tt*(D) . Hence 

n 
• 17 \ ^ n 

for Z  =  Y  there is no D  0  j such that 7 t * C D )  =  Z^n 

n 
and condition (i) is satisfied vacuously by Z. 

t t+1 
Given Z satisfying Ci) the construction of Z which 

satisfies Cii) and Ciii) is essentially the construction of 

case I, but this time it will not be necessary to translate 

all the way back to the category C . 
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"** / t 
Given a fixed D e J such that ^ it *(d)j = Z]t 

' ' Z 

put 5" = tt*(E>) e 3"^ (not 9") and to simplify notation 

Z 

_ t _ _ 
let X = Z e X (not % )«, Note that co 

D = X^t = D r\ X "Jt i D A X"1t-1 where DccX (in the sense 

of C ) s and D £=X^ (since 

( \/d e ir*(D))(3z e Z(t - l))(z -< d) . For any finite partiti 

c: —¥ ry case I of this proof gives W e 

(W corresponds to the Z mentioned at the end of case I) such that 

(W, W}t) reduces sc and 

(Vw e W) (w is a root of W + w is a root of X w is a 

root of Y) 

The partition /c: ^]t)—* r which we have in mind 

is defined from /c be following +-he natural 1-1 correspondence 

between ^ and {B e | tt̂ C§) = D}. 

Given E e ^ le"t /c(E) = /c(B) where B e 

is the unique element such that E = B U X*]t (i.e. , 

B = (E - Xlt) 0 A' u (the <-maximal element of X(^.) where 
i 

E = E n X^+l i E r\ X 1 ? }). By following the correspondence 

which defined /E from •c, the fact that (W, W]t) reduces /c 

implies 

VB,C e (| 

if ir̂ -(B) = 7r̂ (C) = D and B,C = W then «c(B) = /C(C) 
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* 

_ t 
Recall now that X was duplicate notation for Z and 

t • t 
D = • where D e (J satisfying = Zlt 

Z ' Z 
_ t 

was fixed. By repeating the argument which produces W «= c z 

completions', D = tt*CD), where D e sat-isfic 

for each of the Cat most finitely many) "distinct 'cominimal 

t 
I • 

.es 
/ 

Z 

^ , t 
(tt*CD)) = Z]t, we construct a finite chain of sub-objects 

Z 
t t+1 

of Z. The last of these sub-objects, we call Z and 

t+1 _ 
Z e V satisfies: 

w 

t+1 t+1 t t 
Cii) ( Z , Z 1t) cc(z, Zlt) 

t+1 t+1 t 
Ciii) CVz e Z Hz is a root of Z z is a root of Z) 

V BjC e (|) 

t + 1 
if (tt*(B))' = (7r*(£))' = z]t and B,C £ Z 

Z Z 

then •c(B) = c(C) . 

t+1 

Given B,C e ^ ̂  J such that 

t+1 
^t^iCB) = £ Z^t+1 then using properties (ii) and 

Z Z ' 

t+1 ^ t 

(iii) for Z , we have tt̂ CB) = S:Z"|t+l. Either 

Z Z 
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( u*(B)j = (tt*(C) ̂ = Z'jt , in which case ^ gives 

Z Z 

^(B) = r-c(C), or 7r*(B) = 7t*C6) s Z'jt, in which case 

Z Z 
t t+1 

property (i) for Z gives /cCB) = /c(C), Hence Z 

t 
satisfies (i) and the inductive construction of the Z, 

t e to - n, can continue. 
t 

Having defined the sub-object chain Z for all t e to - n, 

t t 
put Z = j.O ^ = LJ Zlt and note that Z e ?d satisfies 

tew-n tew-n 1 to 

CZ, Z^n) <=: d(Y, Y^n) and 

(Vz  e Z)(z is a root of Z -> z is a root of Y) „ 

Let D,E e satisfy tt|(D) = ir|CE) „ We want 

to show cCD) = ^c(E). Put B = Tr2 D̂̂  anc* ^ = ° 

Note that since roots of Z are roots of "Y in fact B = ti_(D) 
Y 

and C = tt CE) , We have B,C e I f ]  and 
Y [1/ 

tt|C§) = ir|(6') = ir^CE) = 7r|(£)» Hence for some tew-n 

t t 

B,C e and tt|(B) = tt*(C) s Z'jt so /c(B) = cCC). 
Z Z 

Since B,C,D,E e satisfy tt <"D) = t̂ CB) and 

IT (C) = TT (E), property TT gives finally 
Y" Y 

/c(D) = /cCB) = .cCC) = ,«(E). [] 



Lemmas 6.12, 6.13, 6.14 are proved by exactly the same 

arguments which prove their counterparts back in the category 

Lemma 6.12 (= Lemma 2.7 for the category 

Let & = ̂  , Y e ̂  and new satisfy 

(i.) V A e (J] CA" = A r\ Yfn i A.n Yln-1) 

(ii) V A,B e (A' = B' —> A is isomorphic to B) 

For any finite partition —* r "there exists 

X e such that (X, X^n) weakly reduces /c. 

Lemma 6.13 (= Lemma 2.8 for the category C ) 

Let A <=, , Y e fc. and new satisfy 
^ to to 

(i) V A E (JJ ^a' = A n Y|n-l) 

(ii)VA,B e (A' = B' •+• A is isomorphic to B) 

For any finite partition ^c:^jj—• r there exists 

X E ̂  such that (X, Xjn) weakly reduces fc. 

Theorem 6.14 (= Theorem 2.9 for the category C ) 
——— to 

Let £ ^ Y e ̂  , n e to, C e ̂  satisfy: 

(i) CccYjn , C £ Yln-1 

Cii) V A e (J) (A A Yin = C) 

(iii) V A,B e (height(A) = height(B)) 

(iv) (Vm e to) (VA,B E |JJ ) 

(Aim = Bjm A|m+.l is isomorphic to B|m+1). 

For any finite, partition —• r there exists 

X e ft such that (X, Xln) reduces /C. 
to ' 1 

Theorem 6.15 (= Theorem 2.10 for the category C ) 

For any Y e ft and any A E.? and any finite J to J to 

partition ,'C: (A) v "there exists X e such that 

X reduces cc. 
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proof: By using isomorphic copies of Y and A (if 

necessary), we can assume A =• <=Y where Y is a substructure 

of <^T ;a ^ and satisfies { J? e w: Yr\ T d )  ̂ 0} = co - 1. N til (0 ' (jl) 

Let e satisfy { Q e u: Y 0̂̂  f\ T (!) i 0} = u 
£0 

and Y(0)«=cT(0)), Put Y = YC0) .u Y. Let A = AuT(0), 
0) (0 

When structured by inheritance from clearly 

A e ? , Y e ^ and there is an obvious 1-1 correspondence 
or to ^ 

between 

(I; In) »< (I). 

Given B e ̂ |5 let /c(B) = ,c(B - Yll). Let C = Yfl, 

n = 1, and ^ | Yjlj0 con(3itions of Theorem 6.14 

are satisfied giving X e % such that (X, X"|l) reduces sv. 

Let X = X - X 0̂5 . Clearly x e reduces sc. [] 

Theorem 6.16 (= Theorem 2.11 for the category C )• 

Given Y e and finite n > l, let 
w 

i = {Xln: (X,Xll)<= <=(Y,Y11) where X e£ } 

For any finite partition ' r ther,e exists X e 

such that (X, X|l) reduces rt:. 

proof: This follows from Theorem 6.14 just as Theorem 2.11 

follows from Theorem 2.9. [] 



CHAPTER 7 

ULTRAFILTERS CONSTRUCTED ON TREES 

Let Ye be a fixed object and let 
to J 

&= {S = Y: 3X s X <= <=• Y and X ^S}„ Since any partition 

/C: ̂1̂ .) —h 2 can re<3uced by some Z e  ̂ %L is 

a co-ideal on Y. If every X <=<=Y where X e has 

nodes of arbitrarily large degree, then every S e $£ 

will clearly have infinitely many distinct types of pair, 

triple, etc., so we have the partition property $L t • 

for 2 < n < to. If, on the other hand, there exists 

X <=• «= Y such that {deĝ (x) |x e X} is bounded, then by 

partitioning the nodes according to degree and applying 

Theorem 6.15, there exists z ccx = =Y, Z e such 
' lv-a) 

that for some fixed dew (Vz e. ZHdeg^Cz) = d) . For 

such a uniform Z put deg(Z) = d„ Since any sub-object 

W <=• <= Z where W e also satisfies degCW) = d, 

W is in fact isomorphic to Z„ Hence the partition properties 

of = {S s Z: 3W e ?<, , W <=- <=. Z and W s S} can be 
L (0 

determined by analyzing the finite substructures of the 

uniform object Z. 

Example 7.1 If deg(Z) =2, a pair {x,y} e [z] 2, 

is classified according to the isomorphism type (in the sense 

of ' c? ) of the A-closure of {x,y}. Since each column, 
ill ' 

Z^\ of Z is isomorphic to as an object of K. , 
lit UJ 

the type of any intra-column pair, {x,y} £ Z^' for some 

pew, is one of the 7 possibilities enumerated in 
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Example 2.2. The possibilities for the type of any inter-

column pair, {x,y} such that x e S ye Z^^ 

where p / q, are enumerated as follows: 

• . = {<0,0) , <1,0>} 

• . = {<0), <1,0>} 

' / = A -closure { <0,0) , <1,0 ,0) } 

= {<0,0> , <1,0,0) , <1,0> } 

' \ - A-closure { <0 ,0) , (l ,0 ,l) } 

= {<0,0) , <1,0,1) , <1,0> } 

/ * = A-closure { <0 ,0,0) , (1,0) } 

= { (0,0,0), <1,0> , <0,0> } 

\ * = A-closure { <0 ,0 ,l) , <1,0) } 

= {<0,0,1) ,(1,0), (0,0)} 

2 
Hence —• [#z]13 (where Z e ^ , deg(Z) = 2). 

More generally the finite substructures of Z which are 

closures of an n-tuple can be counted to give a finite 

number, <J>(n), which satisfies i—^z-^ c|> (n) * Assuming 

CH there exists an ultra-filter V, on Z such that 

VL s and U. satisfies these same partition properties 

but we are not quite ready to apply Theorem 5.10. 

Lemma 7.2 Given Y e Jjf such that C\/y e Y)(degy(y) 2 ) 

let Jl = {S s. Y: (3X e ) (X <=•<=. Y and X ̂  Z) } . & is not 
ui 

countably complete. 
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proof ; Let " w = L be a partition of w into £ new n 

infinitely many disjoint infinite sets. For each mew 

let Rm = SUL Y(U) satisfy \/p C |Rm n YCp) | =1). 

By an easy inductive construction (using (Vy e Y)degy(y) >2) 

we can also assume (Vr.r' e Ur ) (r it' 6 r'*^r). 
mew m ' ' 

Given re U R , suppose r e R and mew m • m 

let e \ satisfy X^ and 

(X nY(J)i*0«-»- fe L 8 3y e Y(l) (r ̂  y)), Put 
r m 

Bn = U(Xr f r e Ĵ R̂ . We claim Bn e  ̂ ôr a11 new. 

We know R s U Y(JO satisfies (Vp e w)(|R r\ y p̂̂  | = 1), 
n A.eJj n 

(0) 
so beginning with Rn C\ Y = {rQ}, a sequence 

^r^jiew^) c R^ can be chosen such that 

(Vi e w)(r. << r.,n S r. a r. = r,). ' Let 
1 l + l xa 1 + 1 1 

L
n  ~ {leu: for some i, r^ e Y(J( ) } s L n, and for each 

i e w let X e % satisfy 
ri 

Xr. . " 
Xr. & (Xr. n YU) ̂ 0 ̂  U e ln s 3y e yc/x  ̂< y))j 

Put X = ,UWX , so clearly X e % and X «=.<=. Y 
i w 

(see Lemma 6.11), Since X = LL X ^ B we conclude 
reR r n 

n 

b e $. 
n ^ 

Clearly BQ ̂  B]_-p Suppose B e $ 

satisfies Vn (B - Bn> ^ H , and we may as well assume 

B s Bq and B = X for some X e ^ , X ^ Y. 

Let x = root(XC0)) and let L = { I e w| .X n Y(|) t 0}. 

Now X^^ s. Bn, so for some re U R , xeX. Since 
0' ; mew m r 



distinct r,r-' e U R are -<-incomparable, 
' mew m ^ ' 

x e S BQ -»• X̂ . For some mew, 

r  e  R  a n d  { J e w  :  X  n  Y ( l )  ̂  0 }  £  L  s o  L  s  L  .  
m r m m 

But C V i e  L )CB n Y(Jf) = 0) and hence X fl B - =0, m m+1 m+1 

contrary to X - Bm+1 j $t . Q 

This counterexample to countable completeness of 

is based on the fact that there exist W.X e ^ such ' Û) 

that W c cYj X <= o Y, and Vn (W n Y(n) i 0 X n Y(n) 

Given a fixed Ramsey ultrafilter R , the smaller co-ideal 

{S s Y: ( 3x  e ^ )(Xcc Y £ {J? e u ) | X n Y C J ! ) * 0 } E (R  £  (i) 1 

X s S)} avoids this counterexample, while Theorem 6.15 

can be strengthened to prove partition properties for this 

smaller co-ideal. 

The method used to strengthen Theorem 6„15 is applicable 

quite generally and is,based on some descriptive set theory 

and a theorem due to Mathias [[63° 

Definition 7„3 A class of infinite sets k — [w]W• is 

Ramsey iff ]S e [w]w such that 

c[s]*> =4 or [s] £ [u:u -A ). 

A topology is induced on [w]W by identifying each 

S e [wjW with its characteristic function, 'Xg e W2, 

where the topology on W2 is the Tychanoff product 

topology and 2 is the two point discrete space. Silver 



proved [ 9^ that every analytic set ^ <= [wjW is Ramsey. 

Mathias strengthened this result. 

Theorem 7. (Mathias [6 ] ) 

Let (R. be a Ramsey ultrafilter on u. If 

^ [(i)]u is analytic then 

( 3 S  e  $ .  ) (  [ s ]  w  s  4  or  [ s ]  W  s  [co ]  u  - 1  ) .  

is in addition dense 

then in fact 

proof: Since S e (E is infinite and is dense in-

[w]W , [S]W e [wJW - i-s impossible. [] 

Theorem 7.6 Let (£ be a Ramsy ultrafilter on w. For any 

Y e Jk. , A e "S7 , and any finite partition /c: ! r uj co \ *\ f 
there exists X e ^ such that X reduces sc. and to 
{(e wj X a Y(J! ) i 0} e (R. . 

proof: Let s4 = {L s oj| (3x e ^ ) (X reduces •c 6 

L = {He. 031 Xn YCO i 0})}. Using Theorem 6.15, is 4-

easily seen to be dense in the partial ordering ^ 

The theorem will follow from Corollary 7.5, once s4 is shown 

to be analytic. For this we use the basic fact from 

Corollary 7.5" If the analytic set A 

in the partial ordering > 

(i.e. , (VT e [a)]w)(3s e A MS s T)), 

(3s e ($, ) such that [s] Ji . 



descriptive set theory which identifies the analytic subsets 

of with the Z1, definable subsets. There are 

many ways to state this fact precisely, and here we will 

give the minimum of detail for a formalization most suited 

for use in this proof. 

2 Let Ljg be an applied second order language for the 

natural numbers. N (or to), which has first order variables 

n,s,t,u, etc. ranging over to and second order variables 

S,T,U,etc. ranging over A set S e [w]W can 

be regarded (by some fixed scheme) as the code for a countable 

sequence, ^(S) n:new^, of sets e  T h e  

2 language includes a parameter for the decoding function 

(which takes a set variable, S, and a number variable, n, 

as arguments to give the set ^)^ ). A number s e to can 

be regarded (by some fixed scheme) as the code for a finite 

sequence of numbers <^(s>n: n e |h(s)^ where ^h(s) e u) 

is the length of the finite sequence. There are parameters 

in Lĵ  for the length and the decoding functions (which 

take number variables as arguments). 

2 The enlarged language has in addition, constant 

parameters for all S e [to]Wo 

We need a formula of defining £ [to]W, which 

begins with a second order existential quantifier and all 

other quantifiers are first order. Here is our previous 

definition of JL stretched out somewhat: 

L e A- iff 3 s  e [co]CO such that S is the code for some 
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X which satisfies, 

* Ci) X is a substructure of Y 

Cii) (i/x e XHdeg^Cx) = degy(x)) 

(iii) (V B , C  e F u)(BsC e |*j ->-yc(B) = c(C)) 

(iv) (VI e io)( I £ L e X n Y(f)) 

Let fk Yt—*•> to be a fixed bijection. Put x Y = f(Y) =w,s 

and induce the structure ^Y; A^,^^new so 

• 
that f is an isomorphism. Although -< ecoxto, 

Y k e toxooxto, etc., by coding finite sequences as singletons 

we can regard these as subsets of to. In this sense, *) 

has been coded as a countable sequence of subsets of (D. • 

This sequence in turn is coded by a single set which we refer 

to with the constant parameter Y^ . As an example, we 

illustrate a formalization of the assertion that as a 

relational structure, X is a substructure of Y. 

V s,t (s e (S)t ->• s e (Y)t) £ 

(Vs)CVt > 0) Cs e (Y) £. Vi < fh(s)((s). e (S)n)) s e (S) ,>-* c i U t 

With parameters A. and which refer respectively to 

codes for the structure A E ? and the partition 

—»- r, the clauses (i) through Civ) can be formalized 

without the use of second order quantifiers. Hence X is 

definable by a formula in the language and is 

analytic. [] 

example 7.7 Let Y e be the uniform object of deg(Y) = 2 and 

£ = {S s Y|_ C3 X E £u) (X = =Y 6 { Si e- co | X n Y(Jt ) i 0} e (fc S 

X £ S)}, where IR is a Ramsey ultratfilter. Then by Theorem 7.6 
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. r\ 

and Example 7.1 we have a-* W];3. 

Lemma 7,. 8 Let (R. be a Ramsey ultrafilter on u). Given 

Yefu let # = "{S s Y: (3xe j^KX "Y & 

{i?eu)|XnY(/)?!0}e(!l S X e S)} . iS is a countably 

complete co-ideal on Y. 

proof: Given any —y 2' Theorem 7.6 gives X e ̂  

such that X reduces /c and { ie tu: X n Y(/) t 0} e (R. 

so is a co-ideal on Y, Let 2 = S2= ... be a 

decreasing sequence where (Vn e oj) CS e M- )» and let 

X s S satisfy X £ & 9 X <= e: Y. and 
n  ~  n  J  n * * ' n  '  

Vn VI CX ... a YCJ? ) i 0 •+ X t\ Y(H ) / 0). We will find • X e & n+x n 

such that X <= <= Y and (Vn e w)(X - S i U ). Define 
n ' 

f:co —*- w by induction beginning with f(0) = m such 

that xq0) s y(m) and put lq = {i?: xq a ycm) r, y(j?) i 0}. 

Having f(n) and L define fCn+1) = the least m such that 
n 

(i) m > f(n) 

Cii) Xn+1 n Y(m) i 0 

' Ciii) {!: X 0 YCm) f\ Y(f) i 0} ̂  L . n+1 1* n 
put Ln+1 = {(: Xn+1 A YCm) (\ YCJl) i Oh Note 

Vn (Ln e (R, & ^n+1 ^ S n t Hi+1 e n ̂  < fCn+1)). 

Since H L = 0 ,and L - L i 0 we can define 
new n , n n+1 

g: Lq » £i) for t e Lq by gCt) = n such that 

2 
t e Ln - Ln+1- Define the partition ^c: Elq1 * 3 ôr 



s,t e L0 and s < t by 

0 if g(s) < g(t) S s<f(g(t)) 

c({s,t}) = ^ 1 if g(s) < g(t) S s > fCg(t)) 

2 if g(s) £. g(t) 

Let L e be homogeneous for /c, and let s e L be 

the least member of L. If /C"[L [}2 ={2}, then 

(Vt e L - {s})(g(s) g(t) ) so for some n < g(s), 

L
n ~ Ln+i e <R- contrary to L

n>Ln+1 E ^ • 

If ^"IX]2 ={!}, then (Vt e L - {s})(s >f(g(t))) 

and since f(gCt)) ̂  (g(t)) this means s gCt), which 

gives the same contradiction. Hence /="[l} ={0}, 

For any s,t e L, we have s 0 and t e ^g(t) 

(by the definition of g) and if s < t then g(s) < g(t) 

so Lg(s) y LgCt) Sives teL g(s). That is L - s s Lg( 

and for each s e L we can find Xs <=eX / \ ft __ g(s) 

(a sub-object in the sense of 1(.) such that 

{ £ e w| Xs f\ Y(£)•?* 0} = L - s. Note that these Xs are 

sub-objects of distinct columns, y, and the 

ropt of Xs is on level Y(s)„ Let X = Uxs be 
seL 

structured by inheritance from Y, We claim 

(i) { I? e co| X r\ YCJ) t 0} = L e <R. . 

(ii) (Vx e X)(degx(x) = degyCx)) 

(iii) (V J?e L)(X A Y(f) contains exactly one root of X) 

-(iv) X is a sub-structure of Y 

Cv) Vn (X - Sn) 4U . 



Ci) is clear„ 

(ii) follows from the sub-object condition 

Xs C e X f ^ on c0iumns Qf X. g(s; 

A root of X is a root of some column of X so (iii) 

follows from { £ e tt)| Xs r\ Y C jI )  i 0} = L-s and Ci). 

Since X is the union of columns X which use levels 

L - s ,  t o  s h o w  c l o s u r e  o f  X  u n d e r  A  i t  s u f f i c e s  t o  s h o w  

(Vx,y e X)(x << y S y is a root of X •+ x A y = x) . But 

x << y means for some s < t. e L, xeY(s) and y e Y( 

Since y is a root of X, ye fi and hence 

y e But s<t -*-s<f(g(t)) so 

x e Y(s) g ye X A y = X. Since X is 

closed under A, X is a substructure of Y, 

By the construction of X . 

X - Sn s U(XS: seL 6 gCs). < n} and since 

CVs,t e DCs < t -v gCs) < gCt)) this means X - S^ is 

contained in a finite union of columns Xs so X - S i H -
n T 

Condition Ci) through Civ), show X e ^ Cusing 

Lemma 6.9) and with condition Cv) the countable completeness 

of has been demonstrated. Q 

Theorem 7.9 CCH) There exists an ultrafilter U which 

1X3" satisfies "U. >—*• [U,]2 

proof; Lemma 7.8 shows that the co-ideal,$, of Example 7.7 

is countably complete and Theorem 5.10 gives U ^ & such 

that U * Mi3* • 
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2" 
The basic technique which gave H *—D^li3 above 

can be modified in many ways. Most trivially, the construction 

can be carried out in the context of a uniform object Y e ft 

of ,deg(Y) = 3 (etc.) in which case an ultrafilter satisfying 

^ 1—y [K] 32 fete.), is produced. Additional properties of 

these ultrafilters can be discovered by looking more closely 

at the construction procedure. 

We need some standard terminology for discussing ultra-

filters on countable sets. 

Definition 7.10 Given an ultrafilter K. on the countable 

set S and functions ° and g with domain S , 

f is one-one (ModU) iff (3x e t( )(f]K is one to one) 

f is finite-one (ModU) iff (3x e t^KfjX is finite to one) 

f is infinite-one (ModU) iff f is not finite-one (ModU) 

f = g (ModU) iff (3X e U )(Vx,y e X)(f(x) = f(y) g(x) = g(y)) 

f ̂  g (ModU) iff (3X- e U )(Vx,y e X)(g(x) = g(y) f(x) = fCy)) 

f -< g (ModU) iff f < g (ModU) and f W g (ModU.). 

f is principal (ModU.) iff (3x £ U )(Vx,y e X)(f(x) = f(y)) 

f is trivial (ModU) iff f is one-one (ModU) or f is 

principal (ModU) 

U is a p-point iff every non-trivial function f on S is 

finite-one (Mod U) 

is a q-point iff every finite-one function is trivial (Mod U) 

Given a map fi S—»- S' , the image of f, 

f(t() = {P s s': f_1fP) e l( }, is an ultrafilter on s'. 



Given an ultrafilter Y on s' , theRudin-Kiesler relation 

V K. holds just in case there exists f: S—»- s' 

such that f( U) = V, 

The ultrafilters t(. and V are isomorphic iff there 

exists a bijection f: Sfi—» s' such that f (t|) = V. 

The notation V -< U. indicates V ̂  U. and V K . 

The Rudin-Kiesler relation, , on the class of ultra-

filters on w (or on countable sets) is reflexive and transitive 

The minimal Cnon-principal) ultrafilters with respect to 

^ are the Ramsey ultrafilters. 

f =* g (Modtt) f(10 s* g( U.) but not conversely, 

f •< g (ModU.) •+ fCU) •< g( U) 

Definition 7.11 The level projection map, tt̂  : T^— 

is defined for t e T by tt• (t) = n such that t e T Cn (jl) ( co 

(i.e., = I'M ~ 1)» The column projection map, 

ttc: T^—*-> to, is defined for t e T^ by = m 

such that t e Ttm). 
w 

Lemma 7.12 Let Y e \ be a fixed canonical obiect and • (0 

let U - {S = Y| fax e H ) (X<= ̂ Y 6 X £ S) } Any ultrafilter 1 ^ 03 

U. on Y such that U s ̂  will be a non-p-point and 

a non-q-point. 

proof; Since Y is canonical we can consider and ttc 

restricted to Y and its subsets. is finite-1 (ModU) 
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but not (1-1 ModK ) „ ir is infinite-1 (ModtO but not 
c 

principal (ModK). 

Lemma 7.13 Let Y e be a uniform object with deg(Y ) = d 

and let & = {S £ YI GX e X ) (X = «=. Y & X £S)}. Suppose 1 to 

an ultrafilter K. on Y satisfies U •= & and 

(Va e?)(A= = Y s A is the closure of a pair in Y -*• for any 

finite partition r^Hx n l[ such that X is 

homogeneous for sc . )  

If f with domain S is non-trivial (ModU.) then either 

f =" irc(Mod'U) or ir^ f (Mod11)„ tt̂ (U) and C) 

are Ramsey ultrafilters» 

If d = 1 and f is non-trivial (Modl() then either 

f =* ttc (ModU) or f = tt̂  (Mod W.) . 

If d = 2, f and g are non-trivial (mod 10 and 

•< f (modU) and tt^ -< g (ModU) then f =" g (Modt/(). 

^c({x,y}) = 

proof; Define /c: [y] —y 2 for a pair {x,y} by 

0 if f(x) = f(y) 

1 otherwise 

Since Y is uniform, there, are only finitely distinct A e d"^ 

such that A c e Y and A is the closure of some pair 

{x,y} e [Y]2. For each such A e ^ a partition — 

2 is naturally induced,from so: [y] —y 2, and finitely many 

applications of our partition assumption gives X e ^ n 1C 

such that for every such A^/c is constant on 



case 1 

Suppose there exist x,y e X with x << y and f(x) = fCy). 

Put A = A-closure of {x,y}, so /c = {0}„ Put 

Z = {z e X; y 2} and note (Vz e Z)((A - {y}) u {z} e ) 

But Z is a sub-object (in the sense of ?C) of some column 

of X„ Since Y is uniform, so are X and Z with 

deg(Y) = deg(X) = deg(Z) = d„ Hence every possible type} E} 

of intra-column pair which ocurrs in Y (= the isomorphism 

type of the A-closure in the sense of ^ or?) is represented 

by the closure of some pair {z,z' } e [z]^„ Since f(z) = fC 

^ *(bj= anc^ we conclu<3e (Vx,y e X)(irc(x) = -^Cy) -•f(x) = 

so f ̂  ttc (Mod U) ° 

If f •< ttc (Mod U) then for some x,y e X we have 

f(x) = f(y) and ifc(x) = Trc(y). Using our case 1 assumption 

we can also assume this x,y satisfy x << y. But with 

A = A-closure {x,y} we note that every pair of columns 

X^ \ X^m\ fl ?*. m has x' e X^ ̂ and y e X^m^ such that 

A-closure {x' ,y' } e so f(x') r fCy' ) and f is 

principal (ModU.)„ Since we assumed f was non-trivial, 

7T "= f (Mod U.) „ 
c 

case 2 (Vx,y e X)(x << y -+ f(x) t f(y)) . That is 

(Vx,y e X)Cf(x) = f.Cy) -> n^Cx) = n^Cy)) or t< f Mod ( U )  

Suppose the f above is f = g°ir where g:oj—• w. 

Certainly for some x,y e X Cx << y & g»ir Cx) = g»ir (y)) 
0 c 

so the case 1 shows that g»irc is either trivial (Modt/O 

or giirc = ttc (Mod U.), so g is trivial (Mod TrQ(t()) and 

ttg( U> is Ramsey,, 
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Suppose f above is f = g0̂  where g:to—»• to. 

Then (assuming g»?r is non-trivial Mod U) either 

ttc = goTr| (ModU) or iTj ^ (ModU) But irc = g»if| (ModU) 

is impossible and 7^ g»7r^ (ModU.) -*• g is one-one (Mod tt^ C U.)) 

so ttj ( 10 is Ramsey. 

Suppose d = 1 and Trj ^ f (ModU.) where f is non-

trivial (mod TO and X is as above. Any pair x,y e X 

such that tt̂  (x) = ir^ (y) . has the type , -

B1 = {<0,0>, (1,0)} e ? and s ince d = 1, and by our 

assumption on X, either *2 "|g j .10} or «*(* .  UK 

But /c |d ) = {1} + f is one-one on X and hence trivial (ModK). 
\Bl/ 

Thus I = {0} and ir^ = f (Mod*U). 

Suppose d = 2 and 7T^ < f (ModU). Any x i y e X 

such that Wj(x) = ^ (y) has possible type or 

B2 = {<0,0>, (0,1) , <0>} =AeT(jt). If ) = {0} 

then •c "Id 1 = 0 since the d = 2 assumption implies the 
\ 2 j 

existence of distinct x,y,z e X such that {xsz},{y,z} e ^g J 

and A-closure {x,y} e j „ Since ir^ -< f (ModU) entails 

Tij t f (ModU) we conclude ^ {0} and any non-trivial f 

such that 7t| •< f (ModU) is characterized by 

(Vx,y e X) (f(x) = f(y) «-»- {x,y} e ^g j ) . £] 

Remark 7. 1M- Obviously the technique used to analyze the 

cases above with d = 1 or d = 2 is applicable also to the 

case d > 2 and similar results are obtainable. 



Theorem 7.15 (CH) Let R be a Ramsey ultrafilter on a), and 

let Y e with 
w 

& = {S £ Y | OX e •= =Y g X s S 6 { 1 e tt) | X a YCjf )̂ 0} e 

There exists an ultrafilter on Y such that IX — $ And 

for any A e 3̂  and finite partition <i: —*• r 

3 X e such that X is homogeneous for /C. 

Remark 7.16 Any such H is a non-p-point, non-q-point. If 

Y is also uniform then for any non-principal *y 

( V c$'U.~>-V'='7rc(tOor tt̂ .( U.) < V ) and there is a 

function <f>:w >• w (depending on deg(Y)) such that 

2 . fi,i2 
13 

If d = 1, H*— If d = 2, lAv— [U] 

proof of 7ol5: There are only countably many A e such 

that ^ 0 , so using. CH let <(c^,:y E be an 

enumeration of all finite partitions -—*- r for all such 

A e Let A denote the type of the object being 

partitioned by Let ^S^:y £ be an enumeration of 

the subsets of Y„ Just as in the proof of Theorem 5.10, a 

basis, e ^ , is constructed for "U. by induction. 

Let Bq = Y and having B we use Theorem 706 to 

find such that 

Ci) By+1 e & 

Cxi) By+1 = By 

(iii) /Cy is constant on ̂  

(iv) B ,, = S or B ,, s Y - S , 
Y+l Y Y+1 Y 
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For a limit ordinal . X. e w , having B for y < X 
x y 

use Lemma 7.8 to find B^ e H- such that (Vy eX)(B^ - B^ 

<\B̂ : y e 03̂ is clearly the basis for an ultrafilter 

on Y which satisfies the. requirements of the theorem. [] 

The combinatorial theorem used to produce the ultrafilters 

of Theorems 7.9 and 7.15 was essentially Theorem 6.15 although 

for countable completeness a strengthened version (Theorem 7.6) 

was actually used. 

Recall that the motivation for stating Theorem 6.15 stemmed 

from consideration of a co-ideal U © UQ where M = [V]^ 

and was a co-ideal on some X e % . >&(>£> is 

automaticahly countably complete, so our attempt at formalizing 

, the partition properties of in terms of and 

Theorem 6.15 has not entirely succeeded. The category (L must 

be modified to deal with the combinatorial properties of U($ . 

In Chapter 3 the category C and Theorem 2.10 were modified 

to produce categories Cj» and with their associated 

partition theorems. The situation now is analogous with C 

and Theorem 6.15 playing the role of d and Theorem 2.10. 

Actually we are not so interested in modifying the category 

C as we are in the ultrafilters constructable from such a) 

modifications. Hence, the formalization of new categories will 

be omitted and we go directly to the construction of ultrafilters. 

Our constructions will give very specific examples from which 

similar results can be inferred using the same techniques. 



Lemma 7.17 Let $ be the co-ideal [iii]"1 and let Y e .K. be 

the binary tree, deg(Y) = 2. Let 

UQ = {S £ Y: (3X e K )(X c <=• Y S X £ S)}6 Then 

2£Q i—• [#<$ ^qIio-

proof; First we must show that for every S e U-Q and 

every partition /ta |~S[]^ —• 11 there exists Z. e & ® ̂  
n 

such that |/c *[zj j < 10. But for any such S there is an 

injection w x Yc—• S such that for any P e &<£> it , 

ip "p e if OP ii-Q „ Using 'p , the partition /C can be 

pulled back to a partition of [to * Yj^ and by following 

ip ^ and tp it clearly suffices to consider the case of a 

partition [w x Y]2 ->• 11. 

Let Y e be the unique object such that degCY) = 2 

and let oj x Yc—K>Y be the unique bijection such that 

(Vn e w) <J)|{n}xY e^~*> a bijection) E 

(Vy,z e y)(y <y z —4" <j>(n,y) <j>cnaz))^o Following-

the correspondence . <j>: to x Y y the partition [y] —• 1! 

is induced from c, and the co-ideal £f ^ S e $ GD 

* • — O- , 
is induced on Y. For any A e it such that A is the J 0) 

A-closure of some pair {x,y} e [y]^ we regard /c as a 

partition of j in the usual way. Using Theorem 6.15 

finitely many times we find X e such that. X <= <=Y 

and for all A e 3"^ as above, is constant on • 

As in Example 7.3 there are 13 possible types, A e ̂  , of 

pair {x,y} e [xl̂ , consisting of the 7 intra-column types 

and the 6 inter-column types. Note X e $ ® 4?g• 
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Let L = {^eoi: X n Y(£) ̂ 0} and let L = LJ L 
new n 

be a disjoint decomposition of L into infinite sets L . 
n -(n) n 

For each n} choose some Z CCX Ca sub-object in the 

— n _ 
sense of ft) such that (Zf\Y(^)/0 + |E L ) and 

n 
I 

n n fn 
(Vz e Z)(Vx e X - Z) (x *< z ->x =*<g z). Put Z = 

Clearly Z e and inter-column pairs of the three types 

* - = {<0,0>, <1,0>} 

\ = A -closure { (0 ,0") , ̂1,0 ,1̂  > 

\ = A -closure { <0 ,0 ,1> , <1,0) } 

do not occur in Z (see Example 7.1 for notation). In this 

context, the type of a pair from Z is of course being computed 

in X e & , as the isomorphism type of the A-closure in the 

sense of £ „ Since o is constant on the remaining 
CO 

13 - 3 = 10 types of pair which.occur in Z, we have proved 

# C5> $ 0 —• x #q"]^! ° Note that for any Z e ft ® 

clearly all 7 intra-column types of pair are necessarily 

represented by a pair from Z and so is the interscolumn type 

, = {<0) , <(l, 0̂ > } . It is also easily seen that at least one 

of the types from each of the sets 

I ' / , • \ > 

and 

t  /  • ,  \  • }  

is represented in Z„ This gives a classification of pairs [y]̂  
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into 7 intra-column and 3-intercolumn varieties which are 

essential to any Z e <#g9 and thus 

J/ <S> U 0 I • " 0 

Remark 7.18 The method used to verify the partition property 

above is essentially the same as the method used to obtain the 

results of Chapter 3 but without defining a category, here, the 

discussion is much less detailed and formal. It is clear how 

to build a category formalism to handle the partition properties 

of the above co-ideal. Such a formalism is perhaps necessary 

for an unambiguous statement of the partition properties of 

with respect to, n-tuples, n > 2„ For the sake of 

brevity we will confine our attention to partitions of pairs 

where a detailed analysis is especially interesting because 

of the implications concerning the Rudin-Kiesler relation. 

Theorem 7„19 (CH) Let Y z % be the uniform object 

with deg(Y) = 2„ There is an ultrafilter U on Y such that 

U— M210. u is a non-p-point and a non-q-point. For 

any f: Y —*• u, either f is trivial CModU), ttc •< f (ModU) 

or f =" n -< tt£ (ModU)c irc(U) is a Ramsey ultrafilter. 

proof; The co-ideal $ & # q or $ ^ from the 

previous example and Theorem 5.10 immediately give an ultra-

filter U on Y such that U I • The maps ttc 

and TT ̂  show that "U — ® $ G is not p-point and not 



139 

q-point respectively. Given f: Y—• Wj the partition 

cc:[y]^—»- 2 defined for {x,y} e J Y| ̂ by 

(0 if f (x) = f(y) 
c({x,y}) = J 

I 1 otherwise 

can be analyzed just as in Lemma 7.13 to prove s<T f (ModU) 

or f = IT (ModK). But in this case, clearly IT -< rr. CmodU). 
c c x 

Since deg(Y) = 2, for some X e K. every pair {x, y> e M2 

such that it̂  Cx) = tt̂  Cy) must satisfy, 

(A-closure {x,y} is isomorphic to { ̂0 ,0^>, (o , 1) , (0) } = A e ^ . ) 

Hence for non-trivial f (ModU,), ^ f (ModU) -* f (Mod*U ) 

so either ir -< tt„ "= f (ModU) 
c I 

or f =" IT -< ir> (ModK). 
c f 

irc(U) is Ramsey be the same argument used in Lemma 7.13. 0 

The .same techniques are now applied in the context of the 

partition results for the categories C^,.C2J and Cg. 

Lemma 7.20 Let Y^ E 

be the uniform object with degCY^ = 2. Let . Y2 e 2 be 

the unique object with binary skeleton, ^2 e 1 SUQh "that 

degCYg) =2 (as in. Example 3„17). Let Yg e % 3 be the 

unique object with binary skeleton Yg e such that 

degCYg) = 2 (as in Example 3-26). Put 

#1 = {S s Y : (3X e 1̂)(X c. e. Y1 S X s S)} 

J i 2  =  { s  S Y 2: -(3X  E % 2 ) ( X ^ ^ Y 2 e x=s)> 

&3 = {S £ Y: GX e ffg)(X &«=Y3 S X s S)>. 

& = 
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Then 

n {u&&{\2 

__ [&®£2 ]  I 

&®u 3  *— 

proof-sketch; It suffices to only consider finite partitions 

2 * i 
sc: [to x Y/{ —*• r Cas in Lemma 7.1.7). Let e fC be 

the unique object such that degCY-^.) = 2, so (as in the 

proof of Theorem 3.6), a partition of [^1 ̂ corresponds 

(trivially) to a partition of 2 , and by the same 

identification a partition of fw x corresponds to 

p f « 2 
a partition of |_w x „ More to the point., partitions of 

2 r * 2 
[w x Ŷ | correspond to partitions of [to x Y/J for 

i = 1,2,3 as in the proofs of Theorems 3.6,-3.16, 3.26. 

With Y e ^ such that deg(Y) = 2, the natural 

correspondence between w x Y^ and ¥ induces a partition 

/C: (XÎ  —*" which we regard as a partition of for 

each A e ? such that A is the A-closure of some pair 

{x,y} e [Y ]2. Let X e satisfy X ̂  ̂  Y  (in the sense 

of &) and for all A e ? as above, /C is constant on 
to w ' 

X has 6 inter-column types of pair which are reduced as in 

Lemma 7.17 to three inter-column types occurring in some Z 

where (Vm e co)(Z n X m̂̂  e ) „ The intra-column types of 

pair occurring in each Z 0 X . are now reduced by some 

rn C } 
W s Z n X from 7 to 4, 3, or 2 types (respectively for 
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i = 1,2,3) by applying the techniques of Theorems 3.6, 3.16, 3.26. 

By following the skeleton attachment maps and the correspondences 
• 

between w x Y„ , w x Y and Y, the facts 
x x' ' 

|  [  , <  5  -  i  a n d  |  / C  ' ' ^  I  < .  8  -  i  t r a n s l a t e  

back to 2/1*) f anĉ  "thus finally 

£ .  •— [4/«'̂ i]28.i . • 

Remark 7 .21 There is an obvious alternate proof to the one 

outlined above which appeals directly to the combinatorial 

results of Chapter 3 rather than to the proofs to handle intra-

column pairs, while inter-column pairs can be handled by a 

new combinatorial argument. The advantage of translating 

all combinatorial steps back to the single Theorem 6.15 only 

becomes apparent when partitions of n-tuples, n > 2, are 

considered. The proof outlined above will deal with such 

partitions without further complication. 

Theorem 7.22 (CH) Let Y e % be the uniform object to 

with deg(Y) ~ 2, for i = 1,2,3 there exists an ultrafilter 

on Y such that 1^. '—• [U^g-i" ^ is a q-point 

and a non-p-point „ TT Q is one-one (Mod U.,) and TT CU < ) is 
X C 

Ramsey. For any non-trivial f CMod U.), f = it (ModU«) . 
x c x 

proof-sketch:. Let Y e It be the uniform object with 

degCy) - 2. Using the notation of Lemma 7.20, we have Y^ s Y 

for i = 1,2,3. Let <f>:to x Y —»- Y be the unique bijection 



which satisfies 

(Vn e to) {n}xY <= »> is a. bisection 8 

(Vy}z e Y) (y <Y z •*-*• (|>(n,y) <Y <{>(n,2)̂ . 

For each i = 1,2,3 the restriction of (J) to to x induce 

a co-ideal Jl® M ̂  = {P £ Y: (Se cf>"S £, P} 

on Y which corresponds to the co-ideal U* ̂  on 

to x Y^o • Using <2> it ̂  i—*• ® and Theorem 5.10' 

we have ultrafilters Ui £ ̂<3> ̂  £ such that 

1—• Owjg-i 0 Clearly ti s  o n e - o n e  ( M o d t / ^ ) .  G i v e n  

any f: Y —> 2 which is non-trivial (ModlX^) let ki:[Y]2 

be defined for (x,y} e[V]2 by 

( 0 if f(x) = fCy) 
^C(x,y}) = J 

J 1 otherwise . 

The usual analysis of /c with respect to every possible type 

of pair leads to the conclusion f "= ir (Mod IL) (the analysis 
c 

of an intra-column pair {x,y} 'in $. ® U 3 such that 

/c({x,y}) ;= 0 must be handled slightly differently than 

in Lemma 7 „ 13)„ 

Since ttc is the only non-trivial map (Mod *U^),*'4nd 

ttg is infinite-one (Mod U^) ,K.^ ;is a non-p-point and a 

q-point. Q 

Theorem 7.2 3 (CH) There exists an ultrafilter IX such that 

Z( I—»• [t'Ojj which is a q-point and non-p-point. There is a 

map, IT, such that ttCU) is Ramsey and every non-trivial• f 

(ModU) satisfies f *= ir (ModtO. 



proof: Let Ye have deg(Y) = 1 and put 

& 4 = {S £ Y: C3X e ^ 1)CX «=«=• Y & X s S)}. Analyze it & & 

and an ultraf liter "U  ̂ 2/ Qs> ^ as in Lemma 7.2 0 and 

Theorem 7.22. Q 

All of the ultrafilters constructed thus far have been 

non-p-points (except for the Ramsey ultrafilters) because our 

co-ideals have forced IT to be infinite-one (Mod Xi ). c 

Partition theorems for finite objects' can be used to produce 

p-point ultrafilters. 

The proto-type for such constructions is the well known 

construction of a p-point ultrafilter which is not Ramsey. 

Lemma 7.2H:-Let S - U{n}*(n + 1) and let 
new 

$ = {Z £S: V m 3 n  > m  j({n) * (n + l))n zj > m } .  $j, is 

a co-ideal and satisfies $ \—>• ° 

proof; We will refer to {n} * (n + 1) as the n'th-column 

of S and (w * {m}) OS as the m'th level of S. Given 

a partition —• 2, each column of S can be reduced 

to the nodes of the majority color in each column and then 

an infinite set of reduced columns of the same color can be 

found thus showing that $ —• [$]^ and $ is a co-ideal. 

r 1 2 Given a partition /c: [Sj —*• 2 , S can be reduced 

by a simple induction to a set Z e 2? , Z = S such that 
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all intercolumn pairs from Z are the same color. The idea 

is simply to fix a point x, say in column n, and reduce 

columns n" , n' > n so that x paired with any of these 

subsequent points is the same color. By considering the 

points in each column inductively beginning with {0} * 1, 

a set Z e jtt and a partition /c: [Z]"*" —»- 2 are produced 

such that for any (n,m) and (n'9 m') in distinct columns 

ofZ (i.e.,n^n's say n < n') we have 

FC({(n,ra), (n',m')}) = /C(n)„ Let Z e $ reduce /S and 

we have /c is constant on so ^ is constant on 

all inter-column pairs from Z. We note that the finiteness 

of the columns and the co-ideal property of Q were the only 

facts used to prove that there is just one inter-column type 

of pair., 

The columns of Z are now reduced using the finite 

Ramsey theorem for partitions of pairs to get W £ Z", W e & 

such that /c is constant on the pairs from each column of W. 

Thus a color is associated with each column of W, and by 

taking an infinite set of columns of the same color finally 

we have W s W, W e # such that all inter-column pairs 

are the same color and all intra-column pairs are the same 

color„ That is # —>• [2?] 3 , and by an obvious counter­

example SO Jj 1 • Mg • D 
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Corollary 7c25 Assuming CH, there exists a p-point ultrafilter 1{ 

such that U '—*• [U}22 » 

proof: Countable completeness of •M- (from above) is shown 

by forming a set Z e by a simple diagonal selection 

of columns from a descending countable sequence from -U . 

Theorem 5.10 gives U s such that l( i—*• [U]^ and 

the fact that 1{ is p-point follows from this partition 

property. [] 

To generalize this construction we can replace the use of 

the finite Ramsey theorem by different partition results for 

finite objects. 

Theorem 7,26 Given A,B e $ and r e oj there exists 

C e such that for every partition —• r there 

exists Be? which satisfies B<=;<=C, B" is isomorphic 

to B and /c. is constant on (a) ° 

proof: Apply a compactness argument to Theorem 2.10. The 

technique is illustrated by the proof of Theorem 1.4. [] 

Let Y e be fixed and .put R = U {n} x Yjn+1. r new I 

Note that S = x Cn + 1) can be regarded as the 

special case of R which results from a unary tree, Y. Put 

= (B £ R: VmCiJn > m)(({n} * Y"]n+1) H B is isomorphic to Y ĵ̂ }. 
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The notion of isomorphism here results from viewing each 

column {n} x yfn+1 as an object of . Let 

 ̂- {Z £ R: 3B e (£> CB £ Z)}. 

Given any partition —• 2, Theorejn 7.26 can 

be used on each column to find Z e (J3 such that /G is 

constant on each column. As in the proof of Lemma 7,24 we 

then find Z = Z, Z e such that /c. is constant on 

Thus ^ is a co-ideal. 

2 Given any so:  [ R ] —• 2 there exists Z e such 

that /c is constant on all inter-column pairs (as in Lemma 7.24). 

The number of intra-column pairs depends on the specific object 

Y e % which gave rise to U- . For the uniform object, 

deg(Y) - 2, we have 7 intra-column types of pair (as in 

example 2,2), Thus H i—*• (j£|g ,, 

Theorem 7.27 (CH) There exists an ultrafilter IX which 

satisfies IX <—h [U] g • 

proof: The co-ideal jd- above is countably complete and yields 

our ultrafilter as usual. [] 

Actually much more can be said about the ultrafilter K 

of Theorem 7027„ In analogy to Theorem 7.19 the functions 

f: R—a) can be analyzed mod U . Using our standard technique 

we find that U has a Ramsey ultrafilter as an image, "U, is 

a p-point etc. 
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This p-point ultrafilter K such that L( 1 • [U] g 

is the counterpart (using a partition theorem for finite 

objects) of the ultrafilter of Theorem 7.19. As a counterpart 

to Theorem 7.2 2 we have: 

Theorem 7-28 (CH) For i = 1,2,3 there exist p-point ultra-

filters such tha't t—>• • 

proof: The finite partition theorem (7.26) for is true 

also for $2* anĉ  (and ^ ) by the same compactness 

argument so the construction proceeds just like Theorem 7.27. 

The number of intra-column types of pair is dependent on the 

context ^ 1' ^"2 or ^3 as Theorem 7.22, while 

finiteness of the columns gives just one inter-column type. 

•The p-point- property follows from the usual analysis of 

functions Mod 0 

Although we have been focusing attention on partitions of 

pairs it is clear how to build p-point ultraf ilters' with 

partition properties for n-tuples, n > 2. For example, if 

Ye ̂ -3* with binary skeleton and the-triples in 

R - x Y|n are analyzed (by computing the type in j 1 c* (1/ 

the sense of- "fc^) we find 5 inter-column types of triple 

and 16 intra-column types. With a co-ideal V- on R defined 

as usual we have }l 1 * [&] ̂  and (with CH) a p-point 

ultrafilter "U such that ^ \ • "[UI21 ° âc"t p-point 



148 

ultrafliters with simultaneous partition properties for all 

n-tuples, new, can be constructed as in Theorem 7.15. 

Our examples of ultrafilter constructions using the 

partition properties of various 'tree-like' objects has 

demonstrated the existence of ultrafilters with a great 

variety of properties. The techniques of construction have 

not been presented in a completely uniform manner, however, 

and many variations on the definitions of the categories 

c„ easily come to mind. There are many Questions. 

What is common to all of these categories and their partition 

theorems? What are the limits to the basic technique being 

illustrated by our examples? Can an ultrafilter U such that 

constructed by these methods for every 

n e w ?  
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