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ABSTRACT

Let n represent the order type of the rational numbers.
'n unpublished result of F. Galvin asserts the partition
©1pion of  on ——+[n]§ where we use the standard partition
JArcow notation: given a 'coloring! f:[Q]z-—+ 3 of pairs of
it “onals with three colors there exists a large subset
{ = Q which avoids a color. The subset is large in that X
nas order type n, and X avoids a color in that there is
c £ 2 such that p e [X]Z::> £(p) # c.

Proving this theorem leads naturally to the inductive
construction of an order type n set where the steps of induction
are labelled by the nodes of a full binarv tree of height w. A
toznslation of the Galvin theorem entirels into the languare
o boinary trees was stated by James Baumgartner. A definition
Lo the 'bis subsets!' of an infinite full binary tree was civen,
corcrsonding to the order type n subsets of Q. In the lanruage
0T toees, various generalizations or modifications of the
orivinal theorem are easily conjectured. For examnle, tiwe
name definition of 'bic subset' can be applied to the ternary
zoze to give a partition theorem for pairs in which seven colors
2on be reduced to six on a big subs:t. By chansing the definition
2% 'big subset', different partition theorems result, each
itheorenm with its characteristic number of 'essential colors'.
Baptotiion theorems for triples, quadruples, ete. including
slrrized partition theorems are also naturally conjectured
'n the tree context. While some of the simpler cases of these

v . 0ous tree theorems can be proved 'directly'! in analory to
- o =]
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the proof of the Galvin theorem, the more complicated cases
are most easily deduced from a version of the Halpern-Lauchli
partition theorem as extended by K. Milliken in his unpublished

paper A Ramsey Theorem for Trees.

Let f = £(w) be a co-ideal, = 0 (w) - I, where

I is an ideal including the finite sets. If 2 satisfies a
combinatorial property like b + [ﬁ]g » there seems hope
for an ultrafilter,W, such that W » [u] . with CH, all

possible partitions of [w]2 can be enumerated in order type w,.
The desired ultrafilter can be built using ml-induction provided
the partial order <ﬁ ;E>/T is countably complete [i.e., for
any countable (X < &j(ﬂy sﬂ) such that(Vx £ X)(y -xe D).
Although the simple tree theorems like Galvin's theorem do not
yield directly a countably complete co-ideal, such co-ideals

can be defined on a countable disjoint union of trees. In this
way for example, a countably complete co-ideal £ such that
P [ﬁ]g is built and then a g-point ultrafilter U such
that U — [U]g and U A= [l]g .



ACKNOWLEDGMENTS

I would like to acknowledge a great debt to my thesis
advisor, James Baumgartner, for his invaluable guidance.
The idea of using Galvin's theorem, n — [n]g , as a
tool for constructing a partition ultrafilter is his. Our
constructions of a non-p-point ultrafilter U such that

{0 *—[M]g (Theorem 7.22) and a p-point ultrafilter WU

such that W - [u]ﬁ (Theorem 7.28) are specific reformula-
tions of his results. These constructions served as a
motivating force behind much of the thesis.

The proof of Theorem 7.6 using a theorem of Mathias
is due to J. Baumgartner.

I have also to thank J. Baumgartner for a careful
reading of the final manuscript and his numerous comments
and corrections which contribute greatly to the readability

and accuracy of the thesis.

iv



INTRODUCTION

The combinatorial results of this thesis can be broadly
classified as Ramsey type theorems or partition theorems.” The

most basic infinite and finite Ramsey theorems follow.

The Infinite Ramsey Theorem  Given a function, /c:[w]z——+ 2

from the 2~element subsets of w as domain, there exists an

infinite subset S8 = w such that @ is constant on [SJQ.
The function ~ is referred to as a partition of [w]2
into two colors and the set S is said to be homogeneous with

- respect to the partition ~.

The Finite Ramsey Theorem For any h,n e w there exists

r € w such that for any partition fc:[rﬂn —_— 2 of the
n-element subsets of r there exist Her with |H|] = h
and H 1is homogeneous with respect to m (i.e., @ 1is

constant on [H]n).

In Chapter 1 we introduce a basic partition theorem for
infinite trees due to Halpern and Lauchli [5] and prove some
equivalences with similar theorems. In Chapter 2 we present
and prove some consequences of the Halpern Lauchli Theorem
due to Keith Milliken [7]. One of his theorems concerns
partitions of finite subsets of an infinite tree and the

infinite Ramsey theorem is-a special case of this theorem.



In Chapter 3 the structural notions used by Milliken to
define embeddings between trees are modified and some new
partition theorems result.

In Chapter 4 one of the results of Chapter 3 is reformulated
as the result n —* [n]g due to F. Galvin and generalizations
to Galvin's theorem follow from the reformulation.

Chapter 5 describes a standard procedure for constructing
ultrafilters with specific combinatorial properties using the
continuum hypothesis.

In Chapter 6 the Milliken partition result for partitions
of the finite subsets of a tree is generalized to a partition
result for the finite subsets of an infinite set of trees.

Chapter 7 uses the partition results of the previous
chapter to construct square bracket partition ultrafilters
with a great variety of properties. The techniques illustrated
in this chapter go beyond the specific ultrafilter constructions
which are presented as examples. More detailed information
can easily be deduced about the ultrafilters which are con-
structed and further modifications to the partition theorems

of Chapter 3 and Chapter 6 are easily conjectured.



CHAPTER 0

STANDARD NOTATION

Terminology and notation which is not specifically defined
1s quite standardized in.modern set theory and logic texts
(eg. [3] and [1).

We will use the convention which identifies an ordinal
with the set of its ordinal predecessorgs so in particular
the symbol "0" will denote the least ordinal, the empty set,
and the empty sequence. The letters n,m,r will invariably
denote natural numbers and this will usually be indicated as
n,m,r £ w. |

A sequence will often be indicated with angle brackets,
so for example <{1,0,1) denotes the function f ¢ 3,
defined by £f(0) = 1, f(1) = 0 and £f(2) = 1. The concatenation
notation £} denotes the extension of £ to the function
g € "2 defined by f£(i) = g(i) for i e 3 and g(3) = O.
The restriction of g +to the domain 3 is indicated by g]B
sO in our example g]3 = £,

The restriction symbol is also used to restrict a model
to a smaller similarity type. We will give specific definitions
of another use of the restriction symbol in the text.

Given a function f: A— B from the set A to the set B,
typically an element of A will be denoted a e A with image

f(a) e B. We use f“A +to denote {f(a): a e A} usually

{f(a): a ¢ A} is also used.

"

but the notation  f(A)
The cardinality of a set A is denoted |A| and [P(A) denotes

the power set. [A]" means {B = A: |B| = n}. We use



A - B to indicate {fae A: a ¢WB}; The symbol "qIn
means "there exists a unique ...".

A tree is a partially ordered set, {X;<), such that X
has a unique minimal element (called the root of X) and for
any x € X, {y e X: y <x} is well ordered. We will be
interested only in finite or height w trees so
(Yx ¢ X)(]{y € X: v <x}| € w). For a height & tree every
node X £ X has a well defined immediate predecessor except
the root. The degree of a node in X is the numbef of its
immediate successors in X. Typically we will be interested
in infinite trees where all nodes have finite but non-zero

degree. More of these standard tree definitions can be found

in Drake [4] and Milliken [7] .



CHAPTER 1

A PARTITION THEOREM OF HALPERN AND LAUCHLI

We begin with a presentation of some known partition
theorems on trees. As various relationships are pointed out
between these theorems, a notation and vocabulary will evolve
which will then be used to state and prove some new results.
First we define a canonical set of objects on which partition

theorems are considered.

Definitions 1.1 Let ¥ be the collection of subsets

= U nw such that
new

(i) X is non-empty and closed under %-predecessors.
(ii) Every feX has a non-empty initial segment of immediate
successors, fo, £1, £35 ... Fl-1
Any such X e X when structured by the inclusion rela-
tion, € , is a finitely branching, height w tree, without
maximal nodes. The tree partial ordering will be denoted
= and =< will denote the strict partial order, f~ g +* f =8

We define

X(n) = {feX: |[f| = n} = the n'th level of X.

X{n = {feX: |f| < n} = the first n-levels of X.

Note X(0) = X71 = {0} for all XeA&.

Theorems and definitions stated for canonical objects
will have obviocus restatements for objects isomorphic to
canonical objects but it is often notationally and concept-

ually convenient to deal with definite concrete objects



rather than axiomatically defined structures. Definitions
of additional structure on the objects of X will be needed
soon, and these definitions are particularly easy to write
down and understand in the context of objects X'Evégwnw.

The following definitions are based on concepts or

similar definitions in the paper A Partition Theorem by

Halpern and Lauchli [57.

Definition 1.2 Given Y ¢ & and A,BES Y, we say

A supports B iff (vbeB)(TacA)(a =¢b)

B dominates A iff (VaeA)(dbeB)(a =b)

A is level in Y iff (dnew)(A =« Y(n)).

Typically A is level in Y\ is abbreviated by ‘A is level
when the context Y is clear. If A is level (in Y) we say

B is a matrix over A (in Y) iff B dominates

{yeA: daeA (a<y & |a| + 1 = |y|} but no proper subset of
B dominates this set.

B is a level matrix over A (in Y) iff B is both level (in Y)

and B is a matrix over A (in Y).

B is a matrix (in Y) iff for some level matrix A over Y(0),

B 1s a matrix over A.

B is a level matrix (in Y) iff B is level (in ¥) and B is a

matrix (in Y).

With these definitions we state a deceptively simple

looking combinatcorial theorem.



Theorem 1.3 Given YeK letJ= {A=< Y : A is a matrix over Y(o)}

For any partition.c:d— 2 of 5 into 2 'colors', there exists
a matrix in Y which is homogeneous with respect to «. That

is to say, for some matrix B in Y,.c is constant on (XB)n § .

A proof of Theorem 1.3 seems to require the statement
of a much more complicated theorem as the basis for inductive
constructions. The Theorem 1 in the Halpern Lauchli paper [5]
can be regarded as an example of one such inductive hypothesis.
Another complicated theorem suitable for inductive proof is
the theorem of Richard Lavesr, "A pigeon hole principal for

trees" which is stated and proved by Keith Milliken in his

paper A Ramsey Theorem‘for Trees [7] . Following a somewhat
circuitous route, we will state these two theorems and some
generalizations. It will be trivially apparent that
Theorem 1.3 follows from any of the more complicated theorems..
Conversely, we will prove these theorems from Theorem 1.3
vgwhile we never actually prove Theorem 1.3 here). The
Halperin Lauchli proof of their Theorem 1 is very difficult.
In comparison, all of our deductions from Theorem 1,3 to
various theorems in chapter 1 are quite immediate. It is
for this reason that we consider all of the results in this
chapter as "closely related" or even "equivalent".

Our objective in Chapter 1 is to state these various
known theorems and demonstrate their close relationships.
Theorem 1.3 1is now assumed as a basis for all of the

following results.



Theorem 1.4 Given YeX and

b = {A=Y : A is a matrix over Y(0)} there exists new
such that for every partitionne :,b—-* 2, there is a homo-

geneous matrix B with respect to (¢ such that B = ¥In.

proof: Suppose the conclusion fails so we can define for
each new, the non-empty sets, Cn’ of 'eounter-example

colorings', Cn = {rc:A—-'- 2 such that for every

matrix B « Yijn o is not constant on P(B)n § }. If n < m

then Yin = ¥|m so Cn:: If we regard 2 as a discrete

.l C L]
m
topological space, and 2’2 as the Tychonoff product

topology, we have a chain CO = Cl?_ .+. of non-empty closed

subsets of a compact space. Let ¢ € anCn. By Theorem 1.3
there is a homogeneous matrix, B, with respect to 2.
Since B is a finite subset of Y, for some new, B = Y1n and

hence < £ Cn' But this contradiets c ¢ anCn. O

Corollary 1.5 Given Ye{ and

A ={A=Y : Ais a matrix over Y(0)} there exists new
such that for every partitionmzﬂ—-r 2 there is a level

matrix B = Y(n) which is homogeneous with respect to .

proof: Let n be as in Theorem 1.4 and let /C:J—-—-* 2 be
given. Let ¢ : Y)n— ¥Y(n) be any fixed map such that
(vyeY¥In)(y < ¢(y) € Y(n)). We extend the definition of

¢ to act on subsets of Y|n in the usual way, so in



particular for any A e n (P(Y‘[n) we have ¢(A) e 4 n P(Yin)).
Define @ : A n P(Y n)— 2 for A e dn P(Y n) by

< (A) =m($(A)). By Theorem 1.4 there is a matrix Be Y)n
which is homogeneous with respect to . Since $(B) < Y(n)
dominates B but no proper subset does, ¢(B) is also a
matrix in Y. By the definition of & from <, in fact the

level matrix ¢(B) < Y(n) is homogeneous with respect to.c.[]

This finite consequence of Theorem 1.3 can now be

turned back to give the stronger result:

Theorem 1.6 Given Ye¥ let

d={A=sY: Ais a matrix over Y(0)}. For any partition
c:A—+ 2 there is a level matrix in Y which is homogeneous

with respect to w.
prcof: Clear.

Since the matrix asserted to exist here is level, the
theorem could be stated in terms of a partition of
A = {A eY: Ais a level matrix over Y(0)} without any
real loss of power.

In order to strengthen this result further we define
a k-matrix over A where A is level in Y. Recall that a
matrix over A dominates all the immediate successors of

elements a e A.



Definition 1.7 Given level A =Y and k € w, B is a k-matrix

over A in Y iff B dominates {y e ¥ : (GactA)(a x y and
la] + k = |y|} but no proper subset of B does.

Hence a l-matrix over A is just a matrix over A, and
a O-matrix over A is a minimal dominating set. Note that
4 - {AseY : Ais a l-matrix over Y(0)}

= {AsY: Ais a O-matrix over Y(1)} ,

Theorem 1.8 Given Y € ¥ let

A = {AeY : Ais a level l-matrix over Y(0)}. For any
partition rc:,A’ —+ 2, there exists some A sA, such that
Yk € w there is a level k-matrix over A in Y which is

homogeneous with respect to .

proof: Suppose the conclusion fails, so to each A Egb’ we
can assign #(A) = the greatest kX & w such that there is a
homogeneous, level, k-matrix over A. We define a new tree
tree Y' (not a canonical tree, Y £ X ) with each level
Y' (n) of ¥ chosen as some level Y(f(n)) of Y. The
function f: w > w 1s defined inductively by

£(0) = 0

f(n+l)

1+ f(n) + sup {#(A): A e A n PY(EMN?
For example, f(1) = 1 and £f(2) = 1 + 1 + #(Y(1) - ¥Y(0)),
and since 4 n (P(Y(£f(n)) is finite, f(ﬁ+l) € wand £ is an

increasing function.

10



The <-structure on Y = AEQY(f(n)) is inherited from

<Y;-¥ >, and clearly <Y';<¥§is a finitely branching
height w tree.without terminal nodes. Since Y (1) = Y(1)
and Y (n) is level in Y,
A P’y ={acs Y : Ais a level l-matrix over Y’'(0)},
rc restricts to a partition on 4'n (P(¥’) and Theorem 1.6
gives a level homogeneous matrix B in Y’ (technically we
must stretch the implications of Theorem 1.6 here since
Y” is not canonical). Hence for some n € w there exists
Aed n Py (n)) = A'n P (Y(f(n)) such that B is a level
1-matrix over A in Y’, and o is constant on {P(B) n 3.
Put [ = f(n+l) - Ff(n). By the construction of ¥/, B is a
homogeneous, level, P—matrix over A in Y. But

P> sup {(#(A) : A e 4'n (P(Y(f(n))} so 1 > #A = the
greatest k € w such that there is a homogeneous, level,

k-matrix over A, and we have a contradiction. []

At this point we begin to develop a very general
framework for stating partition results. The point of
view reflected by our choice of notation is inspired by

the paper of Nesetril and Rodl, Partitions of Finite

Relational and Set Systems[8 ]. After setting this nota-

tion we will return in this chapter to statements of known
results using the notation.
The set of objects  will now become the set of

objects of a category which we also denote by’k, In order

11
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¢ define the morphisms of the category, the objects of &
are formalized as first order structures in which a fixed
similarity type, ¢ , 1s interpreted. A category, 37, of
finite objects will also be needed. The objects of X
and F are all substructures of a single structure, T,

which we ncw define.

Definition 1.9 Let T = AELn” The binary function symbols

) 'pass-meet'
N "meet!

and the binary relation symbols

" 'tree partial order!
< 'ievelwise left-right linear order'
< '‘level partial order'

- {new) 'n-extension partial order'

1l

cemprise the similarity type, O.

The interpretation of these symbols in T is defined for x,y € T by

X Ay s Ulz e T: 2z ex & 2 =y}
x] |y if |x| > |y]

T .
x &'y = vl [x] if Jy| > Ix|

T .
XA Y if x| = |yl
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X< ¥ iff X =V
'y properly extends x!
x <Ly iff x| < |y|  or

Clx| = |yle x#y & =x(|¥ Ayl < y(lx,/@ y[))
'x is younger than y'
x <y arr x| < |yl
'x is lower than y'

X <"y iff Xn €y

'y 1s an n-extension of x!'

Let <T;0) be an abbreviated notation for the fixed

structure <T;-<T, <T, <<Ts %hTs AT, ﬁ?> new

Definition 1.10 Let the objects of ¥ be the set of all

substructures of <T3;0) with universe X < T satisfying
(1) X 1is non-empty and closed under «-predecessors in T.
(ii) Every x € X has a non-empty initial segment of

immediate < -successors; X9, Xis X2, «.. Xn-1. We

will call this n € w - {0} the degree of x in X,

which is denoted degy(x) = |{y e X: x <y & [x] + 1 = y}|.
Let the objects of F be the set of all substructures
of <T3;0) with universe A =T satisfying
(i) A is non-empty and closed under < -predecessors in T
(iii) A is finite.

et C=Fuv ¥

Comments 1.11 We will use the symbol X (or A etc.) ambiguously

to denote both the structure

. X X X X X %> . ,
<x, <%, <7, <<%, *n , A7, A new and its universe.



Typically the superscripts on the symbols <, <, <<etc.
w1ll be suppressed whenever no confusion results.

Condirtion (i) guarantees the closure of a set under
the two operations AT and AT, so we have sensible defini-
tions of substructures of T,

Condition (ii) insures that objects in ¥ are finitely
branching, height w, trees without maximal nodes. The
initial segment condition on immediate successors implies
that for any n & w, an object X e?(_ satisfies
(Yxex) (dyex (x-<n+1y) - JzeX (x < z)). This property
1s not necessarily satisfied by objects in F.

Condition (1iii) insures that any object A €T is a
finite substructure of some X €¥ , but of course not all
fin:te substructures of an X € ¥ are objects in F since
they may not satisfy (i), For any n € w and X e¥ ,

%\n ¢ F but not all finite objects are realized in this

fashion since A a'?'may have a,b ¢ A with a X, b without

1
having any ¢ £ A such that a-<0 C.

To complete the definitions of Si'k, and Cas categories,

the morphisms must be specified.

Definition 1.12 Let AeF, XeK and 2 e C=Fu ¥k . We

define the morphisms from A to Z in the category‘c by
Cca,z) = { (A, b, Z> : ¢:A== 7 is an isomorphic embedding

of the o-structure A into the o-structure Z}.

1l



When the domain is an infinite object there is an
additional constraint on the morphism., C(X,2) =
{ <X, b, Z> | ¢:Xe— Z is an isomorphic embedding of the
o~structure X into the o-structure Z and
(YxeX) (degy(x) = degy(¢(x))},
Composition of morphisms is defined as composition of maps,
and the identity maps are the identity morphisms, so C
is a category.

By requiring that F and ?( are full subcategories of
C (i.e. for X,Y e ¥ and A,B eF K(X,Y) = C(x,Y) and
F(a,B) = C(A,B)) we have defined the morphisms of the

categories ¥ and F as well.

Comments 1.13 The words isomorphic embedding are being

used here in the sense of model theory [:3], so for example,

given (A, ¢, Z? e C(A,2Z), and a,b,c ¢ A and 'n e wi-then
a<? b e star<t oo

a AA b = ¢ & ¢(a) A? $p(b) = ¢(e) ete.
where ¢: A&7 is a one-one mép. In this case we say that
¢ preserves the diagram of A (or ¢ preserves the similarity
type) as contrasted with a homomorphism ¥: A— Z which only
preserves the positive diagram (or weakly preserves the
similarity type) e.g. a qﬁ b % ¥(a) -<§ Y(b) but not
conversely.

By enlarging the similarity type interpreted by

objects in €, the morphisms which we have defined in

15



cases depending on whether the domain of the morphism is
tini1te, cculd have been defined uniformly as monomorphisms
bstween the structures. The only advantage would be a
mere unifocrm appearance of our definitions of morphism at
the expense of a more complicated structure on the objects.
Our chcice of similarity type of objects in C was
designed to make available some useful notation in addition
ro providing the structure which constrains the notion of
a morphism hetween objects. Thus economy has not been
atrtemptred -- e.g. 1s definable from A. On the other
hand, the similarity type 1is not exhaustive and we may

refer 10 defined relations -- e.g. "x is on the same level

as y" x <€ y § y < x. A minimal similarity type

from which the entire structure on objects Z ¢ c is defin-

able, cen be extracted in various ways. When later we
discuss 1somorphisms to non-canonical structures it will
be useiful to give an example of such a minimal set.

For any Z €C, <t is a well orderving of Z (of finite
type 1if 2 aﬁr, and of type w if Z e?() any any morphism
strongly preserves < so there are no non-trivial auto-

morphisms in the category C. In fact,

Lemma 1.14 Every isomorphism ¢: Z«» W between objects

2,W e € is an identity map.

16



proof: Suppose ¢ is not an identity map, and look at the
<-least z ¢ Z such that ¢(z) # z. Let w € Z be the
immediate <-predecessor of 2z, so $(w) = w. Condition (i)
in the definition of the objects in T and ¥ along with the
fact that ¢ preserves <, for all n € w forces ¢(z) = =z,

a contradiction. D

This lemma justifies our use of the word 'canonical' in

referring to the objects of C.

Definition 1.15 For Z e C define

height (Z) = sup {|z| + 1 : z € Z}.

Note for X e , height (X) = w and for any n €
height (X]n) = n. If ¢: Z— W is a morphism between
objects Z,W ¢ , since ¢ preserves <<, each level, Z(n),
of 72 is mapped into some level, W(m), of W. Thus ¢
naturally induces a non-decreasing map,
¢: height (Z)=— height (W), which satisfies
¢(Z2(n)) € Y(¥(n)).

The preservation (by a morphism) of the binary
function parameters A and A, follows from the preserva-
tion of the relations <h(n € w) and <<. The function
parameters are included in the .similarity type for nota-
tional convenience and when the notion of sub-object is

later defined they will impose a closure constraint.



Lcosely we think of a morphism of %:as a map which
preserves the tree partial order <, takes levels to levels,
and preserves degree. This is Millken's definition of a
"strong embedding" [7]u Here we have-the.further condi-
tion that ¢ preserves the 'levelwise left-to-right linear

order', <,
Now that we have a well defined class of canonical
objects =3 v ¥, it is easy to define the general class

of cbjects 1in which we will be interested.

Definiticn 1.16 Let ®% be the category of objects X such

that for some object Y ek, X is isomorphic to Y (isomerphic
ag o-structures).

Let F Ee the category of objJects A such that for
some object B & F, A is isomorphic to B,

U .'E-n

E2)

Let E>=

Note that since the only isomorphisms of C are the
identity maps, any object Z € E'corresponds by a unique

canonical isomorphism Pot Z«»» W, to a unique canonical

—_—

object W ¢ C. The morphisms of the category C are thus
defined naturally via this correspondence.

Notation and terminology which was defined for objects
in C will be translated bf the unique canonical isomorphism

—

to objects in C.

18



Example 1.17 Let X = {f e T : |f| is even and

(V1 ¢ dem(£f)) [(i is even + f(i) e 2) €

(i is odd - f(i) = 0)]} with structure inherited from
<T;U> . X is isomorphic to ég@nz (structured by inherit-
ance from {T;0) ). Let Y = ntgﬁz. The canonical iso-
morphism P, : X—» Y is defined by px(f) = g where
(Vnew)(g(n) = f(2n)). Following this isomorphism we have
for instance X13 = {f ¢ X: |f| € 4}. The natural inclusion
map 1: Xe— Y, is a degree preserving embedding so

(% 1, Y) e C(X,Y).

Deiinition 1.18 Given W,Z ¢ € such that W = Z, if the

natural inclusion map i : We— Z (defined by

(YueW)(1{w) = w)) is a morphism, <W,i,Z> £ E(W,Z), then

we sday W is a subobject of 2, which is denoted WeeZ.

Even though "W is a substructure of Z" may hold
(i.¢. the natural inclusion is an isomorphic embedding of
g-structures), it does not necessarily follow that the in-
clusion map is a morphism -- the condition of degree pre-
servation must also be met when W € T( For finite W E::-,LR,
tne notions of sub-object and sub-structure do coincide,
and the role of the operation parameters A and A is thus

cizarified.

19
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Lemma 1.19 Given 2 eC , the finite subset A = Z is a sub-

abiect, A E'_:}: & Ae<c?2, iff A 1g a substructure of Z.

proof: Clear.

lemma 1.20 Given 2 eEf,'the infinite subset Y& 7 is a

sub-cbieat, Y ¢eX & Yee Z iff Y is a substructure of

2 and (VyEY)(dng(y) = deg,(y)).
proci:  Cieac.

Given Y::%,,it-is easy to see how the corresponding
canonical object Z eK , and the isomorphism py:Yée—> Z can
be determined from the limited structure <Y;-<, <> 5
the map pY:Y t—- T is simply defined by <-induction to
preserve «<and < and then 2 is taken as the image. As a
consequence of this construction, it is clear that for
-any Y E?:, rhe entire structure <Y;c> is definable from
<&@‘<, <> {but obviously not definable from <Y;-<> or
<1Y;<> ). It 1s useful to know some necessary and suffi-
cient conditicns on the structure <¥;-<, *:> so that it
extends to an object <Y;o> e?.. The following technical
lemma gives one such set of conditions and the very obvious
but tedicus proof is included to illustrate some cof the

—

technical properties satisfied by structures of K.



.21 The following are equivalent.
“T) There exists a unique isomorphic ebbedding
Pyt (Y;-<, <>"———><T;'<, <> whose image when
structured by inheritance from <$;c> is an object
K.

LIt <Y;-<, <> extends uniquely to <Y;c> E-?-(- .

"

1 2I1) Define for x,y & Y;
<<y <+ |[{z e ¥Y: z <x}| < |{z e ¥: z <y}].
<Y:-<, <, <<> satisfies
fa) <Y}~<> is a height w, finitely branching
tree without maxiﬁal nodes.

th) <Y;<> is a linear order (not reflexive)

i) (Yx,y & Y) (x<<y > x<y)

) (Vx,y e Y) (Vx’ v g Y) (xyéy 3 y?éx 3 x’?éy' g
y54x & ¥<x & yXy & ¥XKy' -+ x<y)

~roof: T=II clear, II=III clear.

ITI=> T: The map p,: Y~ T 1s constructed inductively

¢*
us-ng the c¢onditions a-thru-d. The <-minimal element of
Y {which ex»>.sts by a) is first mapped to 0 ¢ T, and this
map {(vith singleton domain) is called Pge Having defined
inductively the finite maps g Py .o Py conditions
(a) and (b) show that {y e ¥ : Iy’ ¢ dom(pn)) (y is an
immediate «<~successor of y'} is a finite set linearly

ordered by <. Let Y+l be the <-least element of this

set, wiere y,.q is the immediate successor of say y”.

21
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Ciearly Yail must be mapped by Ph+1 to the <-least element,

t of {t e T : pn(y') ~< t} in order to insure that the

ntl?
image , (JEL @) (Y), will be canonical. Hence we must put
B P, U (yn+l’tn+l) so that py = ek P has a canonical

1mage and satisfies
(1) (Vy’,y e Y) (y'-<Y y b?(&') <? pY(y))
{12) (Vx,y,z e Y)
(x,y are immediate e<-successors of z—(x <Yy++pY(x) <TpY(y))
(111) (Vx,y e Y) (x.<¥ y pY(x) <Z pY(y))
The relation < on a canonical 6bject can be thought
cf as a piecing together of the linear orders on the
(finite) immediate successor sets, to form the total
¢-2rdering of type w. So far we know that Pyt Y— T
preserves the relation <L restricted to any set of
immediate successors of a single node. The purpose of
conditions (IIIe) and (IIId) is to show that <t restricted
1 ummediate successor sets 1is pileced together to form the
linear order <t in exactly the same way this piecing to-
geither is done in a canonical object. A pair of distinet
nodes x,y falls into one of three casés:
Case 1 .,x,y are immediate successors (in Y) of some z € Y.
We know already x <L Y e pY(x) T pY(y).
Case 2 x <% y (or y & x). From (c) x & y and x < y —
pY(x) ¥ pY(y) > pY(x) z pY(y).

i.e. % b4 y = pY(x) z pY(y).
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Lase 3 0w = y &y <& x & 3%,y ,2 € Y such that x° and

are immediate successors (in Y) of z and x'-<Y ®x and

y"<Y v. Suppose without loss of generality that x <Yy

%

s hence asing (d) X’X y/. From Case 1,

Cw Ty o pY{y') so p(x) T ply) i.e.,

e w) <T p,(y). Since <Y and <T are strict
Y Y

rear crders we conclude (Wx,y € Y) (% ¥ y oy (x) <T Py (¥
sl g YEesT 1s an isomorphic embedding of the structure
;o " o,

{z;cﬁ, <> with Py Y e¥k. E

Corollary 1,22 Suppose X E?Z,a function f: w-—w and
Yiny 2 X(f(n)) satisfy |Y(0)| = 1 and
Hrrws ¥y & Y(m)) (dz & Y(n+1l)) (y & 2). Then the
R J?thn} vilth struecture <Y;‘<2 <> inherited from

AN . . , L7
=<, ) extends uniquely to an object <1;U> E?(.

Y o : Y o
h <« defined ac usunl from <. note that
Y] L e y ‘§ 3 . .2 .
fo, o v (y <% g — y <% z). It is easily checked

~wrcirtwons (IIT a-d) are satisfTied by <Y;*<, <>. O

v un the corollary we are not claiming Ye <= X,
<ﬁ <, < iz a substructure of <X;°<, <> s 1in
»he natural inclusion will fail to nreserve degrees

Lo preserve the meel operation.



Before developing our notation further, we can give
a preliminary statement of a theorem which is credited to

R. Laver and D. Pincus (by Milliken [ 7]).

Theorem 1.23 Given ¥ € X , let

4" = fAsY : Ais a level l-matrix over Y(0)}.
, —_
For any partition /C:A-—* 2, there exists X e ¥ such

that Xee<«Y, X(0) = Y(0) and.c is constant on (P(X)n 4 .

proct: By Theorem 1.8, there exists A ¢ A' such that
Vkew there 1s a level homogeneous k-matrix over A in

Y. For k" > k, any k' -matrix over A includes a k-matrix
over A s¢ we can assume that for a fixed color, ¢ & 2,
and for every k £ w, we have chosen Bk ~- a level homo-
geneous k-matrix over A in the color c¢ (i.e,rC”((P(Bk)nJ/)
{cl for all B, ). Ler a,b, € w satisfy A =Y(a) and
Bk_ E.Y(bk). Define f;w~~ w by induction:
fco) - 0
flntl) = bf(n) 1 - a

X £2Y 1s defined a level at a time
I'y induction

X(0) = Y(0)

X{n+1) = {b e B : 1y e X(n) y <b}

f(n)

X = ntgwx(n)

Now fcr every y ¢ Y(bf(n)+l) (3! b ¢ Bf(n+l)) (y X b)

gince Bf(nkl) 1s a bf(n)+1-a matrix over A.

24
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Hence for any x € X(n+l) = Bf(n) = Y(bf(n))’
degX(x) : dng(x) and X with structure inherited from Y
is a sub-object, X eX , Xe =Y, X(0) = Y(0). By con-

struction <" (PX) n &) = ce 2. [J

7’
Corollary 1.24 Replace /c:,(j—-r 2 in the theorem by

/
T A —+ r, a partition into finitely many colors r e w,

procof: The corollary results from grouping the colors

—_ /
together with a definition of .t :A——-* 2 like

_ 0 1f =(B) = 0 A'
c(B) = 1 otherwise where B € . The theorem

yields X, € % such that Xpe =Y, X;(0) = Y(0) and

—_— ? /

A n Pxg| = 1s0 e 40 P <. By
1iterating finitely many times we get xr—l e ¥ such

that Xr c < Xr_Zc:c: XUC: <Y where Xr—l(D) = Y(0)

-1
and .o is constant on 4" n P(Xr_l). [}

Definitions and Notation 1.25

The notation used by NeS3etFil and R8dl in [ 8] for
stating partition theorems places the emphasis on the
morphisms of a category. In a fixed category :D' of
objects and morphisms they define for f,f” ¢ I (X,Y)

( = the morphisms from the object X to the object Y)
f~f" iff d an automorphism h ¢ P (X,X) such

that f = £ e h. The equivalence class of f with
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respect to ~ is denoted [f]x and {[f]X : fed (x,m}

X

A partition theorem typically involves a partition

is denoted (ilﬂ or (Y)

of some G{() In our category € , for any X ¢ &

C (X,X) = {idx}. Hence the equivalence classes under -~
in € are singletons. This allows (g) to be interpreted
simply as ‘“"the set of sub-objects of Y isomorphic to X"
(since a morphism f € € (X,Y) can be identified by its
domain and image in this category).

This dual interpretation of (i) will bé exploited,
and sometimes elements of (i) will be denoted as sub-
objects of Y while at other times these elements will be
denoted as morphisms (though technically an element of
(i) is an equivalence class of morphisms.) The notation
(i) generalizes the notation for the binomial coefficeent
(;) = the number of ways to choose copies of m (i.e.,
m-element subsets) in n.

The (g) notation is made more powerful by borrowing
the notion of a 'map of pairs' or a 'map of triples' etc.
from topology. In a category Y where there is a well
defined notion of sub-object (i.e. the concept of a
canonical inclusion morphism) we first define for
X'c €X and Ye €Y (where X', X, Y’', Y ¢ &)

I ox,x"y, (v, = {f ¢ D (X,Y) : f is an extension
of some £’ e & (X ,¥)}.

. - . . ’
Here extension means r'leX = 1 of where



e J(X°,X) and i e J(Y,Y) are the canonical

lxr,x

inclusion morphisms.

Y/, Y

This gives the morphisms for a category of pairs of
objects (X,X’) where X'e ¢ X. We let
Y,Y _ ) . .
(X,X) = {[th,X? i Fe BFUX,X)L,(Y,Y'))} where
the equivalence class [f%X X’) is with respect to
3
automorphisme in i?((X,X'),(X,X')). Perhaps a more

natural notation would be

(Ei’%r;) but the inner parenthesis can be eliminated
- 3

without confusion.
For triples of objects (X,X",X") and (Y,Y",Y¥")
where X'ec X, X'e X, Y ¢ ec¥Y, and Y“2 Y, the

generalization of the above notation to
(Y, Yo, v

) is obvious.
X, X7, X"

—

In a category like C where morphisms from a given
object correspond to sub-objects of the target, this
notation is particularly transparent. For example, given

Y:aE Yoy Yl 1s essentially the set of
’ Y2, Yi1

sub-objects of Y isomorphic to Y]2, such that the
isomorphism carries Y]l into Y]l. That is to say, the
sub-objects of Y isomorphic to Y]2 which include Y(O0).

Y , Y11

An element of (
Y12, vl

) will sometimes be denoted as

an object A € ¥ (or even as a pair (A,Y(0)) and sometimes

as a morphism, f.

27



Y o, Y1

Note that Ae
Y12, Y11

) iff A - Y(0) is a

level l-matrix over Y(0). With this observation, the

Laver-Pincus theorem (1.24) can be restated.

Theorem 1.26 For any Y e ¥ and any finite partition

e (Y > Yll)—~+ r there exists X e ¥ such that
Y 2, v11/ - -
feeay, X1 = ¥]1 a i (x g X11
) = nd . is constant on .
Y{2, X1

By an obvious extension of our sub-object notation
to the situation of pairs etc., the conclusion of this
theorem can be stated,

"there exists X € ¥  such that (X,X|1)e= «(Y,¥{1)

and X is homogeneous for c~."

Corollary 1.27 Given any Y e ® , n € w and a finite
Y y Yin
Yin+l, Y]n

partition ,c: ( >-—+ T there exists X € §

such that (X,X1n)=:c=(Y,Y1n) and X is homogeneous for «c.

proof: Assume n > 0. The idea is simply to consolidate
Y|n to a single point which acts as the root of a new
object Y’ € X , in which the sub-objects being colored

are Y » ¥ 11 . The details of the obvious construc-
Y12, Y11

tion of Y’ are justified by Corollary 10.8.

28



—

In case n = 0, the object Y’ ¢ ¥ is formed by

adjoining a new root,d&, to ¥ == i,e., A =<y for all
y € Y. Clearly T, Y10 = Y corresponds to
Y11, Y]0 Y1

y' o, ¥
. 7 and the corollary follows from this
v'2, Y1

correspondence., []

An asymetric version of Theorem 1.26 follows.

—

Theorem 1.28 Given Y ¢ X and a finite partition

°o (Y » Y11 _, r, if ~(Y¥12) = 0, then there exists
v12, Y]1 |
X € ¥ such that (X,X]1) < =(Y,Y]1) and either
(1) X)2 = Y|2 with e ” X 4 X101 = {0} or
Y 2, Y|
. PRI b :
(ii) Y12, {1 = {i} where i e » - {0}.

Eroof: Assume r = 2. Let

¥13, Y11
? - {Y12} =1 A,y A,y .., A }.
Define & : Y o, Y12 5 My for B ¢ Y , Y]z
Yi3, ¥]2 Y13, v)2

by defining the i'th coordinate of w(B) (where i £ m)

B Y1l) is the

as m(B)Y(i) = «=(A) where A ¢

' v]2, v11
unique member which dominates-Ai. By Coréllary 1.27,
there exists Z ¢ ¥ such that (Z,Z12)c.c(YgY]2) and

Z 1s homogeneous for & . In case the homogeneous color



of Z with respect to . has a one in any coordinate, say
the 1'th ccordinate is one, then define X & ¥ by

¥ 4z e 2 : z = Y(0) or (Ja ¢ Ay - Y(0)) (ax 2)}).
since X 1 closed under A, and

(Vs e %) (degx(x) = degz(x) = dng(x)>, we have X € F

and (X,X]i)e <« (Y,¥]1). It is easily checked that

. ”(x ’ 71) - {1}.
v12, |1

In case the homogeneous color of Z with respect to < is
zers 1n all coordinates, then put X = Z. We have

(X:X12)C <(Y,Y]2) and for any A € X 5 X1
Yi2, Yj1

either A = Y]2 sc «(A) = 0 by assumption, or there exists

B ¢ X, X1z such that A ¢ B, Y1 and for
Y13, Y)2 v)2, Y{1
some 1 ¢ m, A must dominate A; 8O 0 = —~(B)(1) = ~(A).

The strengthening of this result to the case » > 2

follocws by applying the r = 2 case to the partition

a0 Yo, vl —_— 2 defined for A £ Y o, Yl
Y]z, Y11 Y2, Y|l

by o’ (A) - jo if a(A) =0

l 1 ctherwise
¢ (2,212) c c(Y,Y 2) is found as in coneclusion (i) of
the theorem (with color 0 with respect to .“) then put
X : Z and we are done. If (Z,Z]1) e = (Y,Y]1) is found
as 1n conclusion (ii) of the theorem (with color 1 with

rezpect to 4’ ) then one further application of Theorem 1.26

1t required to reduce (Z,Z]l) to say (X,X]l) ¢‘=(Z,Z]l)
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which is homogeneous with respect toc w4 and hence has

color < ‘(% 2 11} . {i} where i e r - {0}. []
v{2, ¥l1

As in the case of the Laver-Pincus result, all of the
previous theorems can be upgraded to an asymetric many color

version. One such theorem is worth mentioning.

Theorem 10.14 Given Y ¢ % and a finite partition

< :ﬁ'——* r where & = {A=eY : A is a level l-matrix
over Y(0)}, then either
(i) (Vk € w) there is a level homogenecus k-matrix, Bk’
over Y]2 with color 0 (i.e. o ”(QD(Bk)n ) = {oh
or
(ii) there exists A e 4" sueh that (Yk € w) there is

a level homogeneous k-matrix, Bk’ over A in

coler i e r - {0} (i.e., ”(GD(Bk) an )= {ih.

proof: Theorem 1,28 immediately gives an asymmetric version
of Theorem 1.8 (which deals only with the existence of a
level matrix in Y). The asymmetric version of 1.6 gives

our Theorem 1,29 by the same argument which generalized

1.6 to 1.8 (which deals with the existence of level

k-matrices over some Aed ). []

This theorem is a slight strengthening of the original
Halpern - Lauchli Theorem 1 in [:5]. Their theorem dealt

with only 2 colors and produced k-matrices rather than
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level k-matrices (so their coloring.was of
J = {AeY: Ais a l-matrix over Y}1}). Also in their
statement of conclusion (ii), rather than claiming the
existence of a single A ¢ A" which the k-matrices
dominate (k € w) , they only claim the existence of
some” h ¢ w suech that (Vk ¢ w) (JA e 4 n PYt)) and
there exists a homogeneous k-matrix over A with color 1).
The only aspect of Theorem 1.29 which does not follow
is a completely trivial way from the original Halpern
and Lauchli version is the change from non-level to level
matrices., This change is accomplished by the compactness
argument of Theorem 1.4 (essentially the Halpern -Lauchli
Theorem 2) and then the strengthening from matrix to
k-matrix takes place in Theorem 1.8.
The analogue in the new coﬁtext (of level k-matrices)
to the Halpern and Lauchli Corollary 1 (which streﬁgthens

their Theorem 1) is easily obtained.

Corollary 1.30 Given Y € # and a finite partition

/< :z'~—~'r as in Theorem 1.29, suppose also that
W =Y satisfies .
Vondm (y e Y(n)) (Fw € Wim)) (y < w).
Then either
(i) Vk € w there is a level homogeneous k—matrix,Bk 3
over Y]2 with color 0 and B, W or |

(1i) there exists A ¢ A' such that (VYk ¢ w) there is
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a level homogeneous k—matrix,Bk,over A in color

ier - {0} and Bk

e W,
proof: The analogous Corollary 1 of Halpern and Lauchli
is proved by what they call 'the principle', and the idea
here is to modify their 'principle' so it respects lévels.
Let ¢ : Y— W satisfy (Vy € Y ) (y < ¢(y)) and
(Vx,vy € ¥) (x << y) <+ ¢(x) << ¢(y)). The existence of
such a map ¢ follows by a simple inductive construction
from the assumpticons about W. Define ~ :Ai—ﬂ- r for
A e A' by ~<(A) = w(¢”A) where we note that the condi-,
tions on ¢ guarantee ¢“A s;é’; Apply Theorem 1.29 to
T :Aiq- r so k-matrices Ek, k ¢ w exist either as in
case (i) or case (ii) of Theorem 1.29. Let B, = ¢”(§k)
so clearly Bk = W and Bk is a level k-matrix. TFor
any A e (P(Bk) nd” , let & = ¢-1(A5 so Ace @(EK) nd

and w(A) = w(¢$"A) = ,c(A). Hence the B {k £ m} satisfy

k .

either condition (i) or (ii) of the corollary. D

Now from Theorem 1.29 {(or its non-level version,
Halpern and Lauchli Theorem 1) our 'starting point,
Theorem 1.3, foilowé triQially and we have a circle of
'equivalent' theorems. To establish the truth:of all
these theorems we refer the reader to Halpern TLauchli [5]
or to Mi%liken L 7] (where Milliken proves the Laver
Pincus result, Theorem 1.3, from the Halpern-ﬂauchli

machinery).



CHAPTER 2

A FORMALIZATION OF SOME TREE PARTITION RESULTS OF MILLIKEN

All of the theorems of Chapter 1 essentially dealt
only.with the tree partial ordering = , and the level
partial ordering <<(which can be defined from =< ). A
justification for the elaborate structure is now finally
seen in the statement of the following theorem due to
Keith Milliken (which appears in [ 7] as Theorem 4.3).

n—

Theorem (Milliken) For any Y € K and any A e ¥ and

any finite partition w : (z)—+ r, there exists X e ¥

such that X e<«Y and ~« 1is constant on (ﬁ).

Remark 2.1 We can assume in the hypothesis of the theorem

that Y and A are canonical objects without any loss, and
this statement may clarify the structural considerations

which define the set of sub-objects being partitioned.

Example 2.2 Consider a partition of pairs of nodes from

an infinite binary tree. Let Y = AELHZ [ <&;q>
inherit structure from <T;q> ,» and let rc : EY]Z—* r

be a fipite partition of the unordered pairs from:Y. In
genebal? a pair of nodes is not a substrgcture of Y since
it may not be closed under pass-meet (the only é-element
substructures of Y, are the substructures isomorphic to
either {0, O}t e F or to {0, 42) } eF).

By considering the closure under pass-meet, a pair can be

ay
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classified into one 6f the following 7 isomorphism types:

/

{o, 0 1} \¥= fo, 1 1}

>

closure {<0) , (1) 1}

{¢) , <1y , 0}

i1

closure {(0> , <1,l> }
Koy, (1) 5 ) s 0

closure {{0,0) , <l> } /\
{ {0,0p , 1) , <0y , O}

=

>

closure {(O,1> , (1)} <> closure { {0y , €1,0) }
10,19 , 17 , <o) , 0 = {40 , (1,00 , (1) , o}

The Milliken theorem says that any finite parititon

of each of the given sets (3;) ) (;i) etc. can be reduced

by csome X € ¥ ; Xe<e¥Y. The given partition o : [Y]2~+ r
naturally induces partitions on (;) R Lﬁ) ete. and by

iterating the theorem 7 times, »,© : [Y]°— r can be reduced

—

by some X 53{} X «=2Y so that
C?£ﬁjzlé 7. ’ Furthermore, since any X eaV,

¥ ¢ ¥ is isomorphic to Y, all seven types of substructure
generated by closing a pair under pass-meet are essential --
for any one of these 7 finite structures

Ae{/,\,A, ete.}, and any X e<c¥Y where X ¢ ?Z , we

| have (i) 3 O;
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Remark 2.3 Similar applicaticns of the theorem to ternary

rrees (etc.) and partitions of n-tuples are easily imagined.
It is useful to consider the most trivial such application --
the case of an "infinite unary tree". Let Y = #ggl E<T;U> )
and consider a finite partition of n-tuples , : (§1n)*-r.
The existence of X € -?Z such that X =< Y and X is

hcmogeneous for ,~ 1s just the familiar Ramsey theorem

for a rartition of n-tuples from an infinite set.

ln order to prove Millikens theorem, as usual in
partition theory it is necessary to state and prove a more
elaborarte theorem which is more appropriate for carrying
out inductive arguments. The exact form of the elaboration
1s nct very critical and perhaps not even very interesting
in itself. For reasons of economy therefore, we proceed
with 1i1ttle further motivation to state and prove a string
of lemmas which are pieced together to give a general
thecrem {(Thecrem 2.9) from which Milliken's theorem follows
as a special case. It is useful to consider the meaning
¢f each lemma when applied to the unary tree and a parti-
tion of n-tuples. The lemmas and proofs become trivial
in this case, thus highlighting the relationships between
the lemmas so that an analogy to a simple proof of

Ramsey's theorem is seen.
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Lemma 2.4 Given X,Y ¢ X and n e w, if (X,X]n)e e (Y,Y{n)

then X|n+l1 is isomorphic to Y]n+l;

proof 2.4 This proposition follows essentially from the

degree preservation condition which the sub-object relation,

—

X « =Y, entails for X,y e X . []

—

Lemma 2.5 Given Y e ¥ and AccY where A ¢ ?', let

s’

A

Alheight(A)-1, and suppose n satisfies

/

A

[}

AaYln # A A YJn-l. For any finite partition

’
ool (Y ’ A})——* T there exists Xe ¥ such that
A, A

(X,XIn) = =(Y¥,YIn) and X is homogeneous for .,

proof: This is an easy consequence of Corollary 1.27. We

need to induce a partition < : Y > Yin\ o
YIn+l, ¥|n

—

in such a way that any X e K such that (X,X]n)e <(Y,Y|n)
which is homogeneous for < 1is then also homogeneous for .,c.
Without loss of generality we can assume
(A,A" ) = <(Yin+tl, A). Given C € (Y ? Y1n)
Yin+l, Y|n
let C={ceCT: Qae A nYm-1)) Fa e An ¥(n))
a'.<a8a$c}UA,.

Since (Vy € Y(n)) (3! ¢ e C) (y <), it is easily seen

cC , A

that C €
A, A

) . Define <(C) = c(C), and use

—

Lehlma 2.4 to find X € ¥ such that (X,X1n) €« «(¥,¥{n)



and X is homogeneous for (€.

/
Given any C ¢ (X ’ A,) , clearly C extends toc some

A, A
r—y X L) x1n o -
C e (typically there are many such extensions
XInil, X|n
C2C). But w(C) = «(C) so X is homogeneous for &
ALET, |:|

We need to consider partitiors of a set more general
than @ set of all sub-objects isomorphic to a fixed object,

g2 the fcllowing definitions are made.

Definition 2.6 Given ,é g—.’i? and Y € %‘ , let

(i) : tA e} . AcecY}., Given a partition (I)-—*r

we zay X reduces « when X satisfies X ¢ -?z s, X&ae Y,

and A 1& constant on (2{)

(X,%¥]n) reduces & means X reduces , and (X,X‘]n)CC-(Y,Y']n).

—

We say X weakly reduces « iff X satisfies X e K,

X =<Y and for any A,B ¢ (i()
(A?height(A)-l = Blheight(B)-1 —+ c(A) = c(B)).
In this context, for A ¢ (3{ we let A denote
) .
Alheight(A)~1 and J= {A : A ed}.

P

Lemma 2.7 Let ,A €7 5, Y e % and n € w satisfy
(1) ¥ A e (g) (&" = A q Yin # A n ¥{n-1)
(11) ¥ A,B e (}f) (" = B + A is isomorphic to B)

For any finite partition .« : (A)—-r r there

exists X e j?.(. such that (X,X|n) weakly reduces .
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proof: The set {87 : Ace (.AY) } is finite sirce
A = An Yin and we denote this set {A;L’ A'Q, e A;(]
where k e w and Al’ Az’ ces Ak € (Z)Y) have been

chosen such that Aﬂ height(Al)-l = AL,

’

A21height(A2)—l = A,, ete. Conditions (i) and (ii) imply

. L ’
DA P T P EE Ve
4 Ay, Ky A,, A, A, K

Using (i} and Lemma 2.5, we .have Xl e X such that

’
(Xl,Xl'ln)f-‘- =(Y,¥]n) and « is constant on Xl’ Al .
A, A
1 1
Then Xl']n = Y1n and Ay, = Ay N Xl']n AN Xl"n-l so again

—

using lemma 2.5 we have X, € K such that

(XZ,X21n) = e (X;,X;In) and = is constant on

11
(XQ’ A?) & (xz’ Al) . Proceeding through the finitely

’ ?
Ay By A1s Ay

—

many Al’ A2’ Cees Ak we finally get Xk e K such that
(Xk, Xk]n) = C(Xk-l’ Xk_l’ln) ... = <(Y,Y)n) and & is
/ s
constant on the sets Xk’ Ak ) (Xk’ Ak-l s eaes
Ao By Apo1, B2

X, , A |

k 11 . Thus Xk weakly reduces .c. I:]

Ao Ay

T

" Lemma 2.8 Let .4 =F ., YeX and n e w satisfy
. EE 3 Y L4 .
(1) V Ace (A) (A 2 A nY¥Yn-1)

(ii) ¥ A,B ¢ (I) ‘¥ = B’ - A is isomorphic to B)
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For any finite partition m : (j)—-* r there

exists X e ¥ such that (X,X‘,n) weakly reduces. C.

Eroof +  Put Xn = Y and 1'et

- X . ‘- -
An+l—{Ae (An) : AL =A0X|n#AaqX]n 11.
The assumption (ii) and Lemma 2.7 gives X.+1 € K such

that (xn+1’xn+l1 n) weakly reduces

X
/T ( n )-—+ r. Continue by induction +to define
n+l

3 ) P
w41 = 1A E 3 t A= A0 Xk #AQX]k-1]

and let X4l satisfy (xk+1?xk+l1k) weakly reduces

. X -
Vool k —+ v. Put X = anXk' Note
Ak+l

x = Mxdk, xe X, xlk = x]k, and (X,X|n) = =(¥,¥{n).
To show that (X,Xjn) weakly reduces :(AY — 1,
for any A,B ¢ (2{) such that A’ = B’ we must have
<(A) = ~(B). Using assumption (i), for some k » n
¢

A =Anx1k=Anxk1k¢Anxk1k-1=Anx1k-1.

Hence A ¢ Ak’rl and likewise B ¢ 'Jk+l‘ But

L d X .
(Xk+l’ Xkﬂ_']k) weakly reduces ,o : ('4}124-1)_# r @d
X . ‘ ’
(RX]I) € €(Xyyys Kiyy]K) 50 A,B s( k+l) with A’ = B
k+l

and hence w(A) = «(B). [J
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— —

Theorem 2.8 Let ,Z)QSC , Y e K , N E @&, De ¥ satisfy

(1) D =e¥|n, D £Y|n-1
(ii) V¥ A ¢ Cj) (A nYin =D
(iii) V A,B ¢ (Z) (height(A) = height(B))
(iv) (Vm e w) (YA,B ¢ (j() )
(Alm = Bim + Alm+l is isomorphic to Bim+l) .
For any finite partition @ : (j)—-* r there exists

—

X e X such that (X,X|n) reduces .

proof: VUsing condition (iii), we let h = height(A) where
A is any member of (j) . Let d = height(D). The proof
is by induction on h-d.
case 0 h-d = 0, Using (ii) and (iii), h-d = 0 implies
(i) = {D}, and the assertion of the theorem is trivial.
case k+l h-d = kt+l and by induction we assume the theorem
is true for h-d € k. Our conditions (i), (ii), (iv) and
h > d imply the condition (i) and (ii) of Lemma 2.8.
Hence there exists Y'e ? such that (Y', Y’]n) weakly
reduces , : (E)-—* r. Let ,A’= A" : Aed ). A
partition «’ : (y)——+ r is naturally induced from )
ol Lg)——* r by defining m’(A") = <(B) where A'c (E,
and B s(i? is any object such that B]height(B)—l = A",
Now AN aedF , Y ¢ 4 » N € W, De F satisfy (i) through
(iv) where Y A" ¢ (}) (height(A’) = h-1 = h' ).
Since h - d = k, by inductivé hypothesis there exists

X e K such that (X,X|n) reduces n° : (E,)——r r. But

for any A,B € (j) , we have A',B’ ¢ (j;) and



c(A) =’ (A") = o' (B") = ~(B), so (X,X]n) reduces

o (j)——* r. ]

The main theorem of Milliken in [ 7], now follows

easily as an application Theorem 2.9.

Theorem 2.10 (Milliken 4.3 in [7])

Given Ye X, Ae F and any finite partition

ol (z)-—-* r, there exists Xe ¥ such that X

reduces .

procf: Form Y ¢ ¥ by adjoining a new root, A, to Y --
i.e., we assume A F,’Y and define for every y € Y’

(A =~ y) so that Y v {A} can be completed to an

object Y e X in the obvious (and unique) way. In the

same way, given B ¢ Y the structure B = B v {A} is
A

defined by the requirement (¥b e B) (A = b). Let

D = {A} e?,n=landd={'f3-:Be(m}. Now D eF,

YeX®,new, and D e satisfy conditions (i)-(iv)

— —

of theorem 2.9. Define c(B) = c(B) where B e (X), and

we have X € ?(h such that (X,X'fl) reduces <. Put

X = X - {A} (with inherited structure) so clearly X € K

and X 1ryeduces c. []
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Theorem 2.11 (Milliken 3.1 in [ 7])

Given Y e'ﬁ and finite k > 1, let

A = {xlk @ (X,X]1)e e(Y,Y]1) where X e K }.

For any finite partition v : ﬁ§)~+ r, there exists

'
—

X ¢ ¥ such that (X,X11) reduces rc.

proof: Let D = Y]l and n = 1. It is easily checked
that 4 , Y, n, D satisfy conditions (i)-(iii) of
Theorem 2.9, Condition (iv) follows from Lemma 2.4.

Hence Theorem 2.9 gives the required X e ¥ such that

(X,X11) reduces <. []

In addition to Milliken's theorems, other special
applicaticns of Theorem 2.9 can be found just by giving
specific examples of b= ?, Ye¥X ,new and D e F
which satisfy the hypothesis. In this sense, Theorem 2.9
1s more general than 2.10 or 2.11 but the difference be-
tween our proof and Milliken's proof of 2,11 is essentially
a matter of organization and emphasis rather than a differ-
ence in method or content. The objective here has been to
write the proof in such a manner that its generalization

(in the context of a more general category) will be easy

to follow.,
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CHAPTER 3

THREE VARIATIONS ON MILLIKEN'S THEME

Using Theorem 2.10 as a basic combinatorial result

concerning K and ¥ R similar results can be obtained
by mcdifying the objects and/or morphisms under considera-

tion. The morphisms of K anda F respect levels, and

as a first modification, we will drop this requirement.

Definition 3.1 Let oy be the similarity type

= <, <, = Let X ={X‘]01:Xe?<.} where

€1 1
Xlo, is the reduct of X e K to a structure inter-

0> A}nw.

preting the similarity type oy rather than o.

Definition 3.2 Let the objects of :}l be all sub-

structures, A, of <T; <, <, <po N >new = <T;cl>

such that

(i) (Vnew) (A nT(n) # 0 — (VMm<n) |AnTm]| = 1

(11 Yae AWVt e T - A) (t<xa — t <5 a)

(111} A is non-empty and finite. |
Put Cl B 3i u Rl
The morphisms for A € ::Fl’ X e?{l , Z € Cl are defined
by

Cl(A,Z) = { (A,¢,Z> :$ is an isomorphic embedding of the

0,-structure A into the o, -structure Z}

Cl(X,Z) = | (X,¢,Z> : ¢ is an isomorphic embeddihg of

the ol-structure X 1into the cl-structure Z

and (Vx ¢ X) (degy(x) = degy(x))}.

By



3:1 and 'Kl receive their morphisms as full subcategories

of Clo Composition of morphisms is defined of course as

composition of maps.

To insure that we have well defined substructures of

<T;ol> it must be checked that an object Z € Cl is

closed under A in T. This is clear for X € Rl‘ For

A ¢ '?1, suppose X,y € A but x Ay & T - A. Then

XAy =x & xANy=<y, so using (ii) we conclude

¥Ny <5 x & xXANY <9 ¥, a contradiction.

So that we may treat Cl = gi u kl as canonical

objects, we must verify that there are no non-trivial iso-

morphisms between objects.

Lemma 3.3 Every isomorphism between objects of (11 is

an identity map.

proof: Given infinite objects W,Z e X let W, Z ¢ 4

12
be the unique expansions of W, Z respectively to objects
of X (using Lemma 1.21). Note in fact W, Z ¢ X . Any
isomorphism f: W—+ Z is also an isomorphism f: W— Z
and hence by Lemma 1.14, f is the identity map.

There are no non-trivial automorphisms of an object
A e ?ﬁ_ (since A is a well ordering). Suppose distinct
A and B are members of Si‘ with an isomorphism

f: A—+ B and let a be the <-least (in T) element of

(A - BV (B - A)., Assume without loss of generality that
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& n T(n) for some n e w. Since [A] = |B|], wusing
ciidition (1) in the definition of &, 3! b e (B a T(n) - A)
sych that f(a) = b (since f preserves <). But condition (ii)
crd weminimality of a imply a A be An B with

3 A b %P a and anb -<q b for some distince

Ps3 - w. But aaAaAb <b a ~» f(aAab) =anb -<p f(a) = b,

giving a contradietion. D

—

Exactly 1n analogy to the definition of C from C ,

the general category Cl = 3&»u kl is the class of

ftrnetures isomorphic (by a unique canonical isomorphism)
. C e .
o come structure in Gy = ¢] V) kl' The morphisms of

C. re delined by translating back and forth to canonical

cbiecre (as 1n the case of Ch,

Given Z,W ¢ Cl’ ZecW means of course Z & W

and the natural inclusion map, %2 -» W, is a morphism,

- rACh
<2, ;zw,ld> < leﬂ,W)~ In analogy to Lemma 1.19 we have:

temma .4 Given 2 € Cl’ the finite subset A 27 is
4 subechlect, A e .§1 and A ec<?Z, iff A is aisub-
o ture of 7.

Lrezt: (=) Clear. (&= ) We are assuming that the
ratural inclusion map 1 an isomorphic embedding, so it
‘nly remalne te verify A e ?]: We must construct the

nononicdl 1scmorphism Pat A — (T;cl> from A to a

L6



canonical image 0,(A) ¢ F, . The map P is defined by
A 1 A

induction on the finite ordering <A , beginning with
pA(root(A)) = poot(T). Given a ¢ A, letn = |[{b € A: b<al]
and suppose pA(b) is defined for b € A, b < a. Let

pA(A) : the <-minimal member of T(n) such that

Vb e A) [b<a —(¥new (bx a<« p,(d) <_op,a)].

It is easily checked that such a member of T(n) exists

and that A— T is an isomorphic embedding with an

Pp*

image csatisfying conditions (i), (ii), (iii) in the

definition of ’&‘l, 1

—

Suppose Z € kl and X £ Z 1is infinite such that

X is a substructure of Z and (V¥x ¢ X) (degx(x) = degz(x)).
In this case X 1is not necessarily a sub-object of Z.

X may fail to be an object of kl’ due to an inappropriate
interaction between the well ordering X and the defined

level ordering <<k (the definition is the usual one,

x <<t y iff |{z e X: z x}| < |{z & X: z y}l); The

objects X € ?l all Satisfy (Vx,y e X) (x << y =+ x <y)

but the sub-structure Z may have w,z £ Z such that
W «<? z and 2z < w. The simple lemma analogous to

Lemma 1.20 fails.

Lemma 3.5 Let Y e kl and an infinite subset Z =Y be
given. Z is a sub-object of Y, Z € ﬁi and Ze=<cY iff

(1) 2 is closed under A in Y
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(:v) Nz e 2) (deg,(2) = degy(2))

(1r3) Vw,z &€ 2) (w <z - z ?42 W)

przoei:s (= ) Clear. (&) Conditions (i) (ii) show that

the inclusion map 25 an lsomorphic embedding which pre-~
P

werrex degree so 1t only remains to show Z € ’kl' Condition
(1::' allcws an i1somorphic embedding p: Z=— T +to be
defined so that p(Z2(n)) = T(n) (where

Z(n} {z ¢ Z2: |{we Z: w z}| = n}, and thus with the

sbvious definition of p, the image is canonical. D

— —

Thezrem 3.6 Given A r 3& and Y ¢ kl and a finite
Y

partition M (A)—“ r there exists X € Kl such that

—

X reduces —~ (i.e., X =Y and . 1is constant on (ﬁ) ).

Nzte that the notation (z) ) (ﬁ) and Xe<<cY is

~f course being used here in the context of Cl rather

rhan C .

Example 2,7 Consider again a partition of pairs from the

infrnite binary tree. Let Y = Azhnz be structured by
inheritance from <T;ol> and letr . [Y]z-—* r be a
Iitnite partition of the unordered pairs. In general a

Lair ol nodes may not be closed under A, so we classify
the pair according tc the isomorphism type (in the sense

oL -fl) of its ~A=-closure. There are U4 isomorphism types
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wh:ch appear as A-closures of a pair in the binary tree:

K/ : {O’ '\'O\/ } \
/A\ : A -closure ({0) , (1,07} (//\

/
{0y , <1,0% , 0}

{o, (1) }

iF

A -closure {<0,0),<1)}
{ <0,0) , (1) , 0}

Using 4 applications of Theorem 3.6 there is an

X ¢ %%,‘ X< aY¥Y such that |c ”[X]zls 4., Furthermore,
17 A is any cne of the 4 finite canonical objects above,

is a sub-object, 2 <Y, then (g) £ 0

i 4 € 3
and Kl
and all 4 iscmorphism types are in this sense 'essential'.

preof of 3.6 The method of proof involves translating the
given partition o: (X)——*r, to a corresponding partition

Aot (X)-—+r where A e F and Y €% . Theorem 2.10

can be applied, and the result then translated back to the
category E]_

1w 1s enough to prove the theorem in the case where

A and Y are canonical, A € F and Y e K,. Let

1 1
A - the A-closure of A in T with structure inherited from
{T;c5 c0 A& F . Let Y = the structure Y extended to

interpret << and A by inheritance from <T;0> so
v e .
Now A 1s a substructure of A]Gl, so any isomorphic

embedding fe (E) restricts to an isomorphic embedding

f}A € (X)‘ Hence the partition /é:(§>—* r is induced



raturally from /c:(1)~+ T by defining for any fe (z)

ACEY st ]a,

We have A e F, Y e¥ with a finite partition

o {E)—m'lj so Theorem 2.10 gives W e E: such that ‘
We=<=Y (in the sense of ﬁ-) and . is constant on (E).
Fut W N]GI, Let oy .be the canonical isomorphism
from W to an cbject of k. and note that Py certainly

preserves all the structure of W= chl, and demonstrates
that Wa K, and Weey,
To complete the proof, W must be reduced tc some

X «cW such that

i’ '
_ X - ) . . . W
I s (A) r - I]A for some f ¢ (A)J
iz g =urt on X, suppose f,g = (2\ so £ - f]A and g =
M ] 1 .‘7 \ — f o
wher = R fﬁ: Since W reduces o , then A(f) =
ard ki mearns <05 . alg) co X reduces .

The X ¢ f, which satisfies % is defined in-

durt:vely as a csubset of W and inherits its structure

from w Let  x be the = -root of W. Having Xy
tor L e n let X be the <-least member of W{(n) such
that

1f w 1g the least element of-

——

iw ¢ W: w igs an immediate <-successor of some
X, (k € n) and (Vk e n) (w & %, )}

then w = xn.
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It is easily verified that

X - lx ine wl e kl’ Xec W,

(Vn ¢ w)(ixn W(n)| = 1), and

Ve e %) Vwe W-X) (w<x +w <, x) o,

We prove that % holds by induction on [A]. It is trivial

for jA} = 1. For |A| = n, let A = {ad, 815 eves a4}

and let B = {ao, d1s +ees an-2} where a, < a; < @+ a 4.

Put B : the A-closure of B in A. Note that

a << a, << ... << a

L] A .
A and for some m, 0 < m < n

1 n-1

A - B : {am Aa 1> 8, A A 95 ees @7 A an—l}'
for m< J < n-1 we have aj A a._1 <g 3-1 since
a. A a e W - X,

g <

n-1
Given f & (2) let g = f|B and by induction assume

g]B for some g ¢ (g). Define f(a) for a € A by

é(a) . - 1if a e B
feay = g(aj) A f(an_l) if a = aj Aa 4
where m < j € n-1
i(an_l) ' if a = a _q

Clearly f: A—> W is one-one (since (V¥n e W) (|[XaWln)f= 1))

and the 1mage ¥(A) = the A-closure in W of f(A) (which is

pr—

an object of F). For a,b ¢ A and k € w, it is easily

checked thatr a <, b *ﬁ-f(a) < f(b) and since the

k k

full structure on cbjects in F is definable from the

<

k
f?A + f and hence X satisfies *#. D

(k ¢ w), we conclude that f e K . By its definition



. . . Y " :
{ir....cw € iee 7 : K. and A ¥, and suppose

€Y - . Substrusture of Y such that
¢ ¢ degyls)). Given any finite partition

’1{1)~mw t fwhere (;) 1z the set of isomorphic embeddings
A wnt. .. there 2xisgsts a substructure R £ S such

st Ve o RY (gegolr) - deg.(r)) and « 1is constant

i

p:oLis Uiing Lemma 3.%, the only reason that S may fail
1$ in case for some s,t € S,
tww r w7 = By an obvious inductive construction,
weorn timd oa gubstructure. 2 £ S such that
YT (gl v deg (¢) = degy(s)) and
" s ' —
. [ . .D .
V P T B S N A § }A -S): Hence S’ € kl’
SI
« %Y ard the paruvitiosn « restricted to (AL) is

(i Thewra=m 3.6. The theorem gives R € ?(l

[N S H
o e o - P - R
ek thoat kKaeaes =« <2 and 4o  1s constant on Al D

i r "ne puarplse ot proving the next theorem we make
5 s.amwhat artificslal definition of a category &fz. The
T rLoTave (dea behind the cbjects of ?(2 is that they
shooowd 1otk Like zubsets 53 € X where X € *:l’ and S
carixties  f¥s ¢ 3) (dx in the A -closure of S such that
5 <« & degcln) v odegy(x) > 1). Here

5wt & (Ve e 8) (8=t > 8 x)}H.

>
.~
-
1

fhe wbhyeots off k2 will actually be much more highly
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structured (and in this sense, 'artificial') but it will
be zlear (by using a simple .inductive construction) that
any set $ as above will contain in its A-closure, an

<bject from ??2 .

Definition 3.8 An object X € ?cz will be defined by

first giving its skeleton;"k » Which is an object of

p—

kl.

are then attached to this skeleton. X € ?<1 must satisfy,

with (% ¢ X (degk(k) > 1), Nodes of degree 1
(i) X EE<T501> with inherited structure
(i) Yo e w) (J%x nTC2m)| =1 €& |X n T(2n+l)| = 0 )
(iii) (Yt e T - 00k e X) (t <% >t <5 %)
Crvi (V% ¢ X) (degk(k) > 1)
The cbject X & kz is
X .~ X Ul ¢ T: for some % e k, t is the immediate

<0-iuc:easor of %}

— ’

X ulik 0: % ¢ X:, with structure inherited from (T;cl> .

Note thai (Yx e X) (degx(x) > 1 ++ x g X) and if

deg. (%) = 1, then all the < -extensions of ' x are
=

L

<y-exvensicns and all the <~predecessors in X of x are

40~predecesscrs" Although X e k’l’ X  itself fails to

—

be an cbject of kl’ because the attachment of nodes to

»

X oniy as <O-extensions, has caused the condition

X Ty vy 7é x to be violated by ¥X.
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F.oooYa o Ataeg

| Ala) =1 o b ¢ A)(a <4 b))

[

€., a morphism from A to Z
I
embeddirg, @ Ae— 2 guch that

.4 =+ deg, fta) £ 1), A morphism from

CELwhias smbedding Iy Xe— Z such that

7 A}
deg (fix¥)y.
[ =]

s ocomprszivion of morphisms (as maps) is

TPe ldent iy mmaps: are morphlsms so (32 is

y iz murphrsm between objects of Cz is

... phism between fanite objects, this

e 7., ard Lemma 3.3. Infinite canonical

#, e detived in T from their skeletons

sreuph to show that distinet skeletons

L. Bun Xoe E!L is just a stretched out

Initat el XY g ?(L , and the conditions

cmpLy that X 18 the unique skeleton iso-

X since distinct oblects of kl are not

~ooodude that distinat skeletons are not

5



— —

Defirnition 3.12 The general category CQ = 32 v ?(2

1: defined as usual via canonical isomorphisms to canonical

sbjects 1In CQ 5 v kzr
Remark 3.13 An object X & k@ will have a skeleton

—

L

X = Kk which zatisfies X {x e X: degx(x).> 1} and

1
L

¥

X X v {x ¢ X: % iz the i1mmediate -<0-successor (in X)

of zcme x £ Xl

A special skeleton X 55<T501§ as in the definition of
a canonical object X € K 2 will be called a canonical
Lemma 3. 14 Glven Z ¢ (32, the finite subset A £ Z 1is

a wub-ubject, A & 9‘\-?- and AccZ , 1iff A is a sub-

strurture of 2 and Va ¢ A) (degA(a) £1 = degz(a) £ 1).

proct ot (=) Ciear. (&) Since A 1s a substructure
2f 2, iv 1s clear (as in the proof of Lemma 3.4) that

A v §1h Tz show *hat A e ?} )
tVa ¢ A) (degy(al 1 =+ (db e AX(a <, b)). This follows

A must satisfy

from the assumption (Ya e A) (degA(a)~£ 1 degz(a) £1)
along with the fact that : |

degz(a) w1l — (Yz ¢ Z) (a <z - a <. 2) which holds

0
ter every 4 e Cz" D
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oas s.1f 0 Given 2 oe (32, the infinite subset Y & 7Z

—

4 cubethjent, Y e k2 & YeeZ, iff
-0 Y ia o a substructure of Z.

[Vy e ¥Y) (dee (y) - degz(y))

28y
i T _?-(—.,
£
Ll Lo clear.
ihe iwelm c.1b Given A e (;2 and Y e k? and a finite
Ll /f:(z) -— I there exists X ¢ kQ such that

‘oot 2 17 We again consider a partition of pairs from

vt e e e ——

rhe bo-zy, 1ree, but this time the binary tree is a sub-
St ture ofoan object in ;(2 . Let Y = <T;cl> be
“Fe Lty a= canonical skeleten which is isomorphic to the

DT ary T gy égm "y & kl » and let Y be the associated
=i d L ahjeot Y © ¥ u{t e T: for some vy € ?, t is the
mmediiave < extensien of y}. Put S = {y e Y: degy(y) = 1}
wrt o ove {83;<)  ig a binary tree. Let .c: [S]?~—+ iy

i 2 tin:ite partition of the pairs from S. For any pair

-~ tke A-closure in Y is a finite sub-objectiof Y

fir vhe zense of 3:?) by Lemma 3.14% (since the A -¢losure

e ver adde nodes of degree ¢ 1, and every s € S  has
degree 1, the degree condition on sub-objects is satisfied).

fre pairs in S can be classified according to the isomorphism
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type cf their A-closure in Y. There are three isomorphism
types which 2ccur as the cleosures of a pair from the binary

wry

tree S5 2Y.

et

// = {0, {0}
/> i A-clzsure {{07, <1:0> } //\

({C» , 1,0y ,0}

il

A-closure {{0,00 , (1)}
{ (o0,0> , <1> , o}

Note that \_ = {0, 1> 1} £ ?2 since O e'\ satisfies
deg\_(D) = 1 but there 1s no b e \h such that 0 -<0 b.

Usirg three applications of Theorem 3.16, there exists

X = K such that the naturally induced partition is constant
con (;) ) (é) , and L%) .  Thus, with

C coy 2
P ix ¢ X: degy{x) = 1} we have |e [P]°]| < 3. Note

<Fu-<> is a binary tree substructure of <S;-<> . If

A 1s any -rce of the threé finite objects above note that

(X) # 0 , s all three isomorphism types are represented

az the icsuare of scome pair from P. In this sense all three

1gomerph.sm types are essential.

Erccl of 3.i6 We can assume A € I?Q and.. Y ¢ ?{2; We

wtll translate the given partition to a corresponding

Partitian /é:(i}-—w r , where Y £ ?(1 is the skeleton

f Y and A ¢ '?1 is just A 1itself, but thought of in

L ~ [ . .
the coentext &1 rather than &25 Before defining < ,
we need a fixed map which attaches the degree 1 nodes of
Y t5 the skeleton, Y . For veyY- Y = {y ¢ Y: dng(y) = 1},

let y denote the *h-immediate predecessor of y in Y.



! ¢

Nzte that yt— y is a bijection from Y - Y onto Y )
zo typically an arbitrary member of Y will be denoted

g e ¥ where ye Y - Y is the corresponding node of
degree 1, The specific highly organized structure of the
objects Y ¢ ﬂfz was designed so that y - is the immediate
< -zuccessor of y (as well as the immediate -<0-successor
and the immediate =< -successor) and hence

(-Vb}séEY) (3.7<Zf-+3'r'<z+-t-y<é++y<z)u

) the corresponding f: A~— Y is

e

Given f ¢ (
defined for a e A by
f(a) if degA(a) > 1
t{a) .
y such that vy = f(a) if degA(a) <1
t 15 clearly an injection f: A<— Y such that
(Va « A (degy(a) € 1 =+ deg,(f(a)) =1). To show that
I e (1) » we must show that f is an isomorphic embedding

of the cl—stpucture A into the. cl-structure Y. Since

the ernrire structure on A is definable from <A; <"<n‘>n€m’

it suffices to show that f preserves < and <4 for

n ¢ w. Fer distinct a,b € A let y,z2 £ Y - Y satisfy

y - fta) and % = F(b). We have

a < b« f(a) < f(b) ~ y <z +ry <z ++y<z, Since
ita) 15 either y¢ or vy and f(b) is either z or 1z ,
f preserves <., Also

a < b fla) < £(b) <+ £(a) <_z , so if f(a) = £(a)
y (# £(a)),

then a <h b =+ f(a) -<n f(b). If f(a)

then degA(a) £ 1 , so by the definition of Q:Z and ?(2
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(Va,b & &) (¥Yn > 03 (a 7{n b & i(a) 7én f(b)). Hence

1t ¢nly remalns to show a <y b+ f(a) '<0 f(b) where

tfa) = y. But this 1s clear since the assumption

fta) -y £ z implies all < -predecessors of y in Y - ¥ are

<To-ppedecessors and all < -successors of y are

<., =cUucces

in

s o

[4]]

0
s o< b - fla) sy <y £ <, £ =z <

0 0

2 f(a)-<0 f(b)
and fla) =y <, £(b) ~ fla) =y <,y <, £(b) =+ a <, b.

Since f E(X) we can define the induced partition

i (};)-4 by A(f) = ,o(f) , where £ is
defined frem f  as above., Using Theorem 3.6, let Q E ?Zl
zati:ly W <<y and £ is constant on (E)n Now we must
define a substructure X of W such that X ¢ ??2 s X oY
and 1cr any f € (i) the corresponding fe (E) satisfies

: W
£ (A,)'
The skeleten X of X 1s first constructed inside W ,

eRactly in analogy to the way a canonical skeleton is

conetructed 1n T. Defilne the levels of W as usual by

——
*

Win) : oew e W: f{x ¢ W: x <w}| = n}. Let X & kl be

the unique ¢ -structure which satisfies

{1) X W with inherited structure

(i1) (Vn e w (% W(?n)| =1 & X n W2n+l) = 0)
(i11) (Ww e W=X) ke X) (wx ~w <4 x)

(1v) Mk e X (degg(ﬁ) = degp(k))



et X = Xu{w e W: @ is the immediate -<U-successor in
W of some % & ﬁ‘q,

—

wiih structure inherited from Y. Clearly X € k and

2

¥ is a substructure of Y, but ¥ 2 W and
(Yw = W (degw(ﬁ) = degy(w) = dng(ﬁ) > 1) so X fails
to be a sub-object of Y.

We emphaslze now that the dot notation yw—+y is
always being used as originally defined to denote the
attachment bijection Y - Ye»Y , and it will not change

—

meanlng 1n the context of a new object of JQQ which has

11s own "skeleton attachment map".

Let ¥ = X u{y e Y: vy e X -~ X} with structure in-
herited tiom Y , so X 1s just obtained by replacing
the degree 1 nodes of ¥ by their '<U-immediate successors
tn Y. It 1s easily seen that X € ;?2 (in faect X 1is
izcmarphic te %), and (Vx € X) (degx(x) = dng(x)) SO
by Lemma .15 X <c¥,

Let | & (i) and define f: A— ¥ €W for a e A by

. f(a) if degA(a) > 1
fla) , .
y such that y * f(a) if degy(a) ¢ 1
With thisz definition of f , note that
jf(a) if deg,(a) > 1
1) A s
1 y such that vy = f(a) if degA(a) <1

so { and f are related exactly as they were previously

W .
A) assuming

.

in this proof. The verification that fe

i e (i) 1s just the reverse of the verification we have
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B1
already seen that f'a (X) assuming £ € (E). Given
g E (i), let g e (g) correspond to g as above. Using
the definition of & and the fact that W is homogeneous
for < we have e(f) = &(F) = A(g) =(g). Hence

—

X e kz gsatigfies X e<«¥Y and X is homogeneous for .c. []

The combinatorial Theorem 3.16 can be presented in a
somewhat different form by focusing only on the nodes of

—

degree £ 1. TFor W,Z e C any morphism f: W— Z

97
satisfies (Mu e.W)(degw(w) <1l - degz(f(w)) $ 1), so
we could define as objects, {w e W: degw(w) < 1},
and let the morphisms just be restrictions of the
morphisms of é&. Since all < -extensions between nodes
of degree € 1 are <0—extensions, the -<n relations are
not really relevant to the structure of {w € W: degw(w) < 1},
but in the absence of A-closure for the set
{w e W: degy(w) g 1}, wvarious 'meet-type' relations would
have to be introduced with definitions like

V w,z ¢ {we W: degy(w) < 1},
w oAy 2 Aff w A z <, W & wAhz <;z where WA z
is the meet of w and z 1in W. The relevant structure
on the object {we W: degw(w) £ 1} is‘therefo;e the partial
order <X, the well order < , . and the 'meet type! relations
ﬁqu where p,q € w. The point is that there are many ways
to present the same theorem. In the next category the

intuitive structure on objects consists only of 'meet type'!

relations pAq and a well ordering -- there are no
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~« -~extensions. Such objects can be represented as sets of
pairwise =<-1ncomparable nodes in T. As in the definition
of CQ » the Ob?ﬁ?tg of CB' will actually be much more
highly structured than the basic intuitive idea of a set

" of pairwice incomparables. The definition of the objects

of C} 3 9} L ks will be analogous to the definition

of C = ?? v KQ s and the corresponding combinatorial

[a]

thecrem will be proved by the same. technique used for

Thecrem 3.16.

Definivion 3,18 An object X e kﬁ will be defined by

first giving 1ts skeleton, X , which is an object of

—_—

k]" Nodes of degree zero are then attached to this

—

skeleton X g ?(l must satisfy:

(1) ¥ 18 a substructure of <T,015
:i) Wnoe w) (JX aT@3R)| = 1 €
X n.T(30+1) = ¥ N T(3n+2) = 0)
(i:iy) (V1 2 T - %) (V& e ) (£ <x =+t X, %)
vy (Ve o %) (deg*(ﬁ) > 1)
The set of degree zero nodes attached to this skeleton

wil]l be dencted ¥° and

’

X+« {1t ¢ T, 1 ls the immediate <1—successor (in T) of
the immediate <O-successor (in T) of some % e X}

{4 01: % & X}.
X © A -clcsure (X v X)

¥ v¥ v {%x0: % e X} with structure inherited from

<T'F \
. '
)%11)"



Remark 3.19 The intuitively important part of any X € ka

is the set X’ of pairwise = -incomparables. The nodes X’

are carefully attached to the skeleton, X € ?El s for

the purpese of translating partitions into the context of

Cln The nodes ¥ - (X v X*) are a technical necessity.

We note X has no nodes of degree one and

r

X"« {x e X: degy(x) = 0 }  Although X € ﬁ:l , X has

nodes of degree zero and is certainly not an object of ﬁﬁl.

Defintion 3.20 Let 35 = {A e 3’1:‘(Va > A)(degA(a) £ 1)},

L)

Let 63 = Fy v ka. For Ae F, Xe kﬁ, Z ¢ Ca

a morphism from A +to Z 1is an isomorphic embedding,

f: A«—— Z , such that (Va ¢ A)(degp(a) = 0 = deg,f(a) = 0).
A morphism from X +to Z 1is an isomorphic embedding,

f: X= 7, such that (¥x e X u X')(degx(x) = degz(f(x)).

Remark 3.21 The isomorphic embedding condition on a

morphism, f , from X ¢ %53 to 2 e Ca implies

¥x e X) (£(x) e Z). The degree condition implies

(Yx ¢ X7) (f(x) ¢ Z’) and f rpestricted to X is a

morphism from X to 7 in the sense of &11.

The composition of morphisms (as maps) is a morphism

and the identity maps are morphisms so (:3 is a category.
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Lemma 3.22 Every isomorphism between objects of CB is

an identity map.

proof: Just like 30.6.

R . s L)
Definition 3.23 The general category CS = d‘a U k3‘

is defined via isomorphisms as usual. A general object

X e ?23 will have X7 = {x ¢ X: degy(x) = 0} and the

skeleton, X s, of X can be defined as

X = {x e X: (Jy e X" )(y is the immediate -<l—successor
(1n X) of the immediate <, -successor (in X) of x)}.

The special ¥ € <T;01> as in the definition of a

cancnical X g 313 will be called a canonical skeleton.

c C,.

Z the finite subset A =72 is
a sub-object, A € 33 and Aee<?Z , iff

Lemma 3.24 Given

(Ya ¢ A) (degA(a) <1 - degz(a) = 0).
proof: Routine —-'similar to 3.14,

3 the infinite subset Z €Y

1s a sub-object, 2Z ¢ ?(.3 and Z ecY , iff

(1) Z 1is a substructure of Y

Lemma 3.25 Given Y e ?(_

(i1) Wz e 2 v 2 ) (degz(z) = dng(z))

(iii) Z e K,

B4
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proof: Clear. 0

Theorem 3.26 Given A € 33 and Y € k3 and a

finite partition ’C’(K)‘* r there exists X e ks

such that X reduces (t.

Example 3,27 Let Y e X, Dbe the object whose skeleton

is the binary tree. That is, let -& = (T;01> be the
. . . n,. .
unique substructure isomorphic to AEL 2 E’<T’Ull>
which satisfies
(Vn e w (|]YAaT(3n)| =1 & ¥ a T(3n+tl) = Y N T(3n+2) = 0)
and (Vt e T - Y) (¥y € ¥) (£t <y =t <y V). Let Ye K,

be the object with skeleton Y and recall
v’ = {y ¢ Y: dng(y) = 0}. Let /c:[Y']E-—* r be a finite
partition of the pairs from Y~. Forlany_pair in Y7 the

A ~closure in Y is a finite sub-object of Y by Lemma 3.24
(since the A-closure only adds nodes of degree > 1). The
pairs in Y’ are thus classified according to the iso-
morphism type (in the sense of 35) of their closure in Y.
There are two isomorphism types which appear as closures
of a pair from Y’ :

/> = A-closure {{0) , {1,001} //\ A -closure {(0,0),<{1}
{{oy , <1,0) ,0} {o0,0) , <1y , 0}
Note that [/ = {0, <0y 1} ff ?3 since deg/ (0) = 1.

)]

Using 2 applications of Theorem 3.26, there exists X ¢ %135

” .
Xece¥ such that k:”D(]“,s 2., By the definition of

Xec¥Y , we note that the skeleton X e kl satisfies



Xeey so X 1is isomorphic to Y and X 1is isomorphic

tc Y. Hence for A = /\ or A = /> ) (ﬁ) 0

and both isomorphism types are essential,

proof of 3.26 This proof will exactly parallel the pro

0f Theorem 3.18 so some of the details will be omitted.

Assume A e 33

of

and Y ¢ ks and let Y € kl be the

skeleton of Y and let A be just A considered as an

object of 9i, Given y € vy’ s the mar y +— y will
denote the attachment of y to the skeleton,
y = the '<0-immediate predecessor (in Y) of the

-<l-immediate predecessor (in Y) of y. Given

. L]

¥y,2 € Y note that (y < 2 ++ ¢ < z +> y < 2 ++ y < z)
Given f e (E) the corresponding f: A== Y is
defined for a € A by
[ £a) if deg,(a) > 1
fta) = ) )
y such that y = f(a) if degA(a)

f 1s clearly an injection f: A& Y and

=0

Ya ¢ A)(degA(a) =0 - dng(f(a)) = 0). As in the proof

of 3.16 (Va,b € A) (a < b > f(a) < f(b), Also

a <, b e fla) < £(b) « f(a) < £(b) so if £(a)
then a <_ b« fla) <_£(b). TIf fla) # f(a)

(so degA(a) = 0), then for any new and b.e A

a ¥, b. Since deg,(f(a)) =0 also f(a) 7(; f(b)

Y

thus f e (A

)u We define &(f) by &(f) = ().

and

Let We K satisfy WeeY (in the sense of kl) and

1

é(a)
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< is constant on (X). Let ﬁ e K

1 be the unique

o, -structure which satisfies,
(i) X is a substructure of W.
(i1) (Vn e w) (|X aWBn)| =1 &
X n W(3n+l) = X o W(3n+2) = 0)
(i1i) (Mwe W - %) (ke X) (w=<k +w <, %)
(iv) (V& e %) (degy(®) = degy(%) = degy(k) > 1)

Llet X7 ={ye Y: y ¢ W is the = -immediate successor in

1
ﬁ of the <b-immediate successor in ﬁ of some x € k}.
Let X = A-closure (X v X’) with structure inherited from
Y. it is easily verified (exactly in analogy to the proof

—

of 3.16) that X e 3(.3 , X€<eY and . is constant on (ﬁ)

0
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CHAPTER U4

GALVIN'S THEOREM  n ’*[T‘jzw/z AND A GENERALIZATION

in this chapter we fix the object Y as in example 3,27

——
3

where Y g ?(3 has the binary tree Y e ?(1 as skeleton,
and o [Y']z—-.» r was a finite partition of the pairs

ol degree zero nodes, We found X ¢ ;23 such that

X <Y and lc "I:X’]ZI < 2. We also fix the notation

Q =Y,

Definition 4.1 Let ® denote the binary relation defined

for P, e Q Dby p®&g = pAqg <g P (or equivalently
p&q = p q <; .

Lemma 4.2 Given any X ¢ 7<3 if Xee¥Y then <X'; @>
1s a countable dense linear order without endpoints =-- an

order type n set.

proof: Note that X ece¥Y  implies X eeY , and since
¥ is.binary, in fact X is isomorphic to Y and X is
isomorphic to Y. It is enough to show that <Q; ®> is
a set with & -order type 1.
Given p®q ®r where ©p,qs,r € Q, either

PAQ < gATD or gAr X pAq. It is easily seen that in
the first case PAQ = PAT <5 P and in the second case
QAT = pAr X, r. Hence p®&r and <Q; ©> is a
countable linear ordering. Given p e Q attached to

beV, find y,5 e Y such that p <y ¥ and p ~ %

68



Then y©® p® 2 (where y € Q is attached to 'y and

z € Q@ is attached to z ), so <Q;(@> does not have
endpoints. Given Psq € Q , Aassume p® q. If é <p
then let &z e Y satisfy p <y 2 so z Agq = p and
p® 2®q. Otherwise paqeY , say pAg=y, and
we pick 2 e Y such that a < Z. Since vy <y as
y#q and vy <4 q <g 2- Thus p®@z®q and the

ordering <Q5 @) is dense. D

We would like to identify sub-objects of Y precisely
with the order type n subsets of Q, ‘but due to the highly
organized structure of objects X € §3’ the converse of
Lemma 4.2 fails and we have only the following 'partial

converse!'.

Lemma 4.3 Let 38 = Q. If S has & -order type 7

then S contains a subset P such that P = X’ for some

Xeey, Xe K.
procf: Let S = {y € Y: both {seS: v <g s} and

{seS: y <, 8} are densely ordered by @ 1}, We claim

1
that S is a substructure of Y , satisfying

Vs e §)(degg(s) = degy(8) = 2). We must show that

S &Y is non-empty and V5 ¢ EJ(EG,V e 5) such that

‘<0 u and s ‘<i V. Let s be the < -least node .

of the A -closure of S and put

0|

U= {teS: s -<O t} and V=1{te$S:s -<l t}. Then
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U and V are non-empty, Uv VvV =S, and
(Vu e U (Vv e V) (U@ v). Since S has @ -order
type " , U and V are densely ordered by & and

is non-empty since § € S. Given any § e S  put

v

U= {tes5:3s <p t} and let

U” = U - {ue U: u is an endpoint of the dense linear
order (U; @) }.

Let u be the <-least node of the A-closure of U”’.

As above, both {fweU' : 1 <4 w} and

{weU'.u <; w} are densely ordered by & . Because

the only points deleted from U to form U’ were endpoints,

{fwe Us: u <. w} and {Q e U: u <, w! are also both

0

1
densely ordered by @ . Hence T e S

and s -<0 d.

By the same argument, ¥ e S is found such that
s < v, and the claim is established.

Although S 1is a substructure of Y with all nodes
of degree 2, 5 may fail to be a sub-object of Y & ?i
due to an inappropriate interaction between the level
structure of 5 (defined from &g) and the well order'ing,<§
The substructure WS of <§}cl> is defined by an
obvious inductive construction so that W g ?i and all
nodes have degree 2, so We <¥, If ¢: S— S is a
fixed injection which satisfies (Vw & S)(w < ¢(w)), then
it 1s éasy to carry out the inductive construction of W
so that W also satisfies

Vv,w & Ww < v+ dp(w) < v = w < $(v) = ¢d(w) < d(v)).
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be the unique 0,-structure which

Let }.(8 Kf 1

1

satisfies
(i) X is a substructure of W
(i1) Yn e w) (X n W(3n)| =1 & X W(3n+l) = X W(3n+2) = 0)

(iii) Mw e W - DV e VD(w <% +w <. %)

0
(iv) (V& & X)(degg(#) = deg (%))
Let X" = {¢(w): w is the <l-immediate successor in W of
the «b-iﬁmediate successor in W of some % € X}. Let

X = A-closure (¥ v X’) with structure inherited from Y. This
construction of X 1s essentially the same as the construction
at the end of the proof of Theorem 3.25, and it is easily,éhecked

——

that X ¢ ?(3 with skeleton i. X satisfies X =cY ‘and X’=S. |

For any finite partition /C:[Q]z——+ r we found

Xe K; such that Xec<Y and «“[x']%< 2. Using
Lemma 4.2, this result translates to the assertion that
there exists a subset P =Q of & -order type n such
that « [P]2 < 2. We also found that both isomorphism
types /> and /\ are represented as the closure of pairs

f—

from X° when X & K is any sub-object X =<V,

3
Using Lemma 4.3, this result translates to the assertion
that there is a parfition /c:[Q]z-+ 2 such that for
every subset P 2Q, 1f P has & order type n , then
I/c”:[PJQI = 2. This is an unpublished result. of Fred
Galvin which he proved in 1969. It is usually stated

using some variant of the standard partition arrow notation.



Theorem 4.4 (F. Galvin 1969)

— & ol o ok g e T

r ———. : 2 2
r (n){.‘d/2 and n - (n)<w/1 .

fetirtaern 3,31 When R and Y represent order types and

n

cw/o means that for

rLnT w the notation B~ (y)

Ty craesred set Q of order type B and any partition

o~ EQir“w e ol” the n-tuples of Q with r < w colors,
thepe 5w Lbset Peq of order type ¥ such that
v~ 7{F1"1 & ¢ The slash through the arrow indicates

"he o repatoon of thig statement.

Ei%i?ﬁué_fz_ Thinking 1n terms of the category CS we
EE R s (n)fﬂ/l because there are two iso-

mophizm types of closures of pairs from Q. It is simpler

o =4v thut rhere are two possible interactions in a

<Q

ca.: Detween the well ordering oen Q and the

e e trae o on Q. Applying this reasoning to the
35+t -in n-tuple, there are n! possible interactions in
47 n-tuple between the crderings < and ® . But if we
tr:nk W1 the order type n-set Q as the rational numbers
4t t.ok =t oan 4arbltrary n-tuple a. @a, © ... 8 a s
0 1 n-1
the relstive distances between @ -adjacent members of the
neluple ais2 provides a means of classification and there

are  tn=-{)! distinct possibilities here. Thus we have

slas=ifled n'(n-1)}! distinct types of n-tuple from which

L n .
ratural partition wm: Q 7 —> nl(n-1)! can be defined

<l
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by mapping the distinct types of n-tuple to distinct colors

Trom n!(n-1)!. It is easily checked that each of these

n!(n-1)! +types of n~tuple is essential to any PeQ
of order type n and therefore the above partition

/c:[an-—+ n!(n-1)! shows that n =% (n)?w/n!(n~1)!-1 .

Along with proving the theorem 1n — (n)gm/2 )

Galvin conjectured results for higher exponents etc,

Among these was the conjecture n —* (n)zwln‘(n-l5"

Richard Laver (in late 1969) translated one of these con-
jectures into a tree theorem (essentially Theorem 1.3)
which he then proved (without knowledge of the Halperin-

Lauchli result by a long and messy argument ~- unpublished).
¢
' Consequently Laver showed that '

/

l1,1,...,1 where d is the number
of n's in each column.

e wo § %
S ee e e 3 %

<w/dY
Given positive integers d, kogkl, cees kd_l,q "~ the notation

Ky skys ooes K

n I T d-1
n n
o] —
n n <w/q
means that for any 'd-vector'
Qq | of d disjoint order type n -sets,
Q Qq> (i€ d)



and any partition 74

w:i{ce U Qi Vie A |c a Qil = ki)}-—*r where » < w,
red

there exists a d-vector

Py

P.
R of order type N sets Pi = Qi (i e d)
Pg-1

such that |e?{Ce.MP.: (Vi e d)(|CnP,| = k.)} £ q.
i1ed 1 1 1

It was thought that the same ideas used for the result

'n\ n 1,1,.0.,1
"y n where d is the number

:; : of n's in each column

could be extended to prove Galvin's more general conjectures

but such an argument was never carefully written down and

: - Coe . 1 .
in fact Galvin's conjecture 7 —“+(n)<m/n!(n-l)! is

false. Tor example, we will show (by translating to the

category CG and using Theorem 3.26) that n -"+(n)§m/16

and n 74»(n)fw,15u Before doing this, the pictorial

notation for representing the isomorphism type of finite

—

objects ct (33 is first simplified. The proof of
?

S R NT & n -~ (n)?m/l involved looking at the

tzomurphism types (of closures of pairs)

“3 A -closure {{0>,{L,0> } and

/v A-closure {{0,0),{)}
The cbject /:‘; £ 3:3 . /> = A-closure {{0), Q,0) )=
i<0y,<1,0>, 0} is definable knowing only the 'meet type'

of parrs ol degree zero nodes and knowing the <-well
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ordering on the nodes. This information is simply repre-
sented pictorially by f\ where the dots are used only to
represent the degree zero nodes, the vertex represents the
meet (and thus the meet type), and the <-well ordering
is vepresented by the vertical level relationships in the
picture.

The following 8 objects and their mirror images gives
a catalogﬁe of all the isomorphism types which are realized

’

as the A-closure of a triple of nodes from Q = Y - Y.

p

| For example <>; € 3% denotes the A-clgsure of
{0y, €1,0,0,0p, <1,0,1)} = {40y, €1,0,0,05,¢1,0,1),0,¢1L,00},
(where the closure is of course computed in (T;ci?i.--
It is clear that the 8 objects above along with their
mirror images constitute all the canonical objects
Ae ¥ such that

3

(Va,b e A)(a<b +a <., bora <, b) .and

0
|[{a & A: degp(ad = 0}l = 3.



Hence by lemma 3.24, the isomorphism type of the A-closure
cf any triple from Q is represented by one of these objects.

Let A« 33 be one of these objects. To show that

(X) £ 0, let A denote A considered in the context 3&

and nore thet clearly (X) Z 0 (since <Y;<> is the
binary tree). GCiven an isomorphic embedding f e (i)

define f ¢ (X) exactly as in the proof of Theorem 3.26

fla) if degA(a) > 1
fla) .
y such that ¢ = f(a) if deg,(a) = 0.
Since any X e %:3 such that XecyY is isomorphic
to Y, this shows (i) £ 0, and in this sense each of the
16 objects 1s essential. Using Lemma 4.3 this translates
&€ no—e (n)?w/ls . The assertion n — (n)fw/l6

fcllcws frem the above discussion and 16 applications of

Thezrem 3;26 followed by Lemma 4.2.



Note that the analysis of the type of a triple based
only on the interaction between the ordering < and ® ,
and on the ordering of distances between ® ~adjacent pairs

fails to distinguish between

(and likewise for mirror images).

// and /éx\ (and likewise for mirror'images)
/)
/\ and >\

1f the degree zero nodes are labelled p,q,r in-+the order
p® q ©@r, the distinction between these pairs of iso-
morphism types can be described as depending on whether
or not (Jz e V(q@z2O®r ¢ z2z®q & zQ@r & p®z).

n / n
Theorem 4.7 n— (Mg .y and  a~ (T 00y o

where ¢(n) is defined by recursion beginning with

n=l ron-9
(1) = 1 and then ¢p(n) = ?ga (2i_1)¢(9)-¢(n-1) . Here

N

(gn: ) denotes the standard binomial coefficient .
Note  ¢(2) = (§)¢(1) p(1) = 2

I
3

¢(3)

HEISRICEN

) $(2) ¢(1) = H+1+2 + 421 = 16

3
<w/16

n— (n)?w/IS, the problem is simply that of counting the

proof: TFollowing the analysis of n-— (n) and

number, ¢(n) , of essential types of n-tuples "-- '{i.e.,

77
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the number of canonical structures A€ 3:3 such that
|[{a e A: deg,(a) = 0} = n and

Ob or a =-<:L b)).,

Given such an A, let b e A be the <-minimal node

Va,b ¢ Aa<b +(a =<

(the root of A) and put Aj = {a € A: b <4 a} and

al. Let = [{a e Ay degAU(a) 0}]

it

A {a € A: b <

1 1

and r : |[{a e A;: deg, (a) = 0} so l+ v =n,
1 Al
When structured by inheritance, AO,A1 € 353 and for

fixed 0 < 1,r < n such that f+v=n there are
¢(£)-¢(r) possibilities for the isomorphism type of the

pair <A0,Al>n We have A= AL u A, v {b} and the

0 1

structure A is completely definable from the isomorphism
type of the structures AO and Al along with the well

crdering A R The well ordering A interlaces the
A A
well crderings < 0 and <t and adjoins b as the
A
<-minimal node of A. The number of possible ways < 0
A

and <« ! can be interlaced to form <A is the binomial

cecefficient

’A0| + IAll _ |lal - 1
agl |7 Lyl

and each of these possibilities corresponds to a different
<-structure on Ay u A} {b}. It is easy to check by
induction on n that JA| = 2n - 1 (where remember

n = [{a & A: deg,la) = 0}|) and hence the binomial
ccefficient is (g?:i). The total number of possibilities

for A e 333 satisfying n = |[{a ¢ A: degA(a) = 0}| and



(Va,b £ A)«a-< b +(a <, b or a <3 bﬂ is therefore

0

n=l on-2
2 2 1 ¢Dea=b o [

Before proving the polarized partition theorem

n 1513.-0,1
n where n is the number of

e O 3

n's in each column

<w/n!

o
=

and its generalization, it 1s necessary to upgrade

Theorem 3.26 so that it deals with a partition

A, A11
(the partition theorem for (21) and we must begin by

rc:(y’ fil)-—+ r, Theorem 3.26 rests on Theorem 3.6
upgrading this theorem. For objects in the wvarious
categories, the notation AJl (or X}1 etec.) will
denote as usual, the singleton set consisting of the

~<-root of A.

- -

Theorem 4.8 Given A € &l and Y € Kl and a
finite partition T Y, Y11 —> there exists
A, All

Xe X such that (X,X]1) reduces 0.

1

proof: In the proof of Theorem 3.6 objects A,Y e C

corresponding to AY € Cl were defined so that the

given partition rc:(z)-+ r translated ¥o 4 partitdion

/é:(iw-—+r and then Theorem 2.10 was applied. Lodkiﬁg

more closely at this translation, it is apparent that it



entails a translation of any partition /c:(i’ X,‘]li)-——r r
b

to a partition (t: (z’ mi)-——%x and Theorem 2.11 can be
2

applied to give W e K - such that (W, fﬁl]l) reduces

—

.  With W = W]cl ¢ K., the specific X con-

1
structed in proof 3.6 such that X e kl s XecW in

fact satisfies X1 = Wil = W{1 = Y11 = Y]1  and hence

(X,%]1) reduces . [J

—_ —

Theorem 4.9 Given A e 3”3 and Y € ?ca and a

finite partition (C:(Y’ Y11 — P there exists X e -?(_
A, Al1 '. 3

such that (¥X,X11) reduces .c.

proof: Reread proof 3.26. As above, the translation from

T (Y)——-—a r to /é:(¥)~—-> r entails the translation

A A
fy, ¥l1 Y, Y11
from ’C‘(A, ml)——-» T to. /c.(A’ Al1 — (where
AY ¢ Cl correspond to A,Y € Eg). The combinatorial

—

Theorem Y4 .8 gives Woe kl satisfying (W,W11) reduces

»¢. The construction in Theorem 3.26 of X from W yields

X]1 = Wil = Yi1 = Y}l and hence (X,X}1) reduces .cv. []
For the sake of completeness we mention:

Theorem 4.10 Given A e ?2 and Y € X and a

2
finite partition fc:(z’ Ei)-——r r there exists X e K
2

such that (X,X]1) reduces ..

80



proof: Reread proof 3.16 with modifications as above., []

Definition 4.11 For a rositive integer d define Yd £ kB

as the (unique canonical) structure whose (canonical)

skeleton, Qd , satisfies

(1} 1if b e %d is the root (the <-minima} node)

then degy (b) = 4d
d

(i1) if y € ?d is not the root then dng (y)
d

il
%)

For fixed X e ka s let Db denote the root of
X, and as usual X denotes the skeleton. For each

i e degy(b) define P, = {x € X: degy(x) = 0 and b =i x},

/

S0 X ie%ggx(b)Pi' In part;cular for a fixed de w

and object Yd > ks we denote

{y ¢ Yy dngd(y) =0 & root(Yd) ~<i y}l as Q..

Lemma 4.12 Given any X e %3, and fixed d £ w, if

(X,X]11) = e (¥4,Y,]1)  then for i e d the sets

<Pi;(3> are disjoint sets of order type n and P, = Q; -

proof: Clear from Lemma 4.2 and its proof. []

Lemma 4.13 For ied let Si = Qi' If each Si

has © -order type n then there exist subsets Pi_e Si

’ 2, . .
such that ;Eépi X for some X ¢ ?CB satisfying

(X,X11) e C(Yd,Yd"l).

It



proof: Clear from Lemma 4.3 and its proof. [J

Theorem 4.14 For positive integers d,ko,k R 4

1° d-1°?
n N\ Kgakys eoes Ky
n n
. —r—
N n <w/¢(k0,kl, ’“"kd—l)
and
nj h’l‘\ kU :k1:k25 s v skd_l
ni il
kel
n o <w/kgskyse e sky -1

where w(ko,kl,...kd_l) is defined from the funection
¢ (of Theorem U4.7) by

- ¢ (k)
Bk Ky ussky ;) = (‘Z(Qki—l))l T o5

Note that when- kO = kl S e kd—l = 1,

¢(k0,k1 ﬂn.,kd_l) = 4! which 1s Laver's result. When
d = 1, the theorem reduces to Theorem 4.7 and indeed

w(kg) & ¢(k0)u

proof of 4.14 In analogy to the proof of Theorem 4.7

we use Lemma 4.12 to translate to the object Yd e C3.
For each A€ 93 such that
(1) (Vi e d)(l(a e A: degA(a) =0 & root(A) <, al| =
(ii) degA(root(A)) = d
(iii) Va,b ¢ A)((a # root(A) & a=<b)—>fa <g bor a-x<

the translation induces a partition on ¥, Y1 .
A, A1

k.
i

b))

)
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Theorem 4,9 is then used repeatedly (once for each A which

csatisfies the above conditions) until finally X ¢ ks

is produced such that (X,X]l) < =(Y,¥]1) and the
x,x11)

partition 1s constant on each (A,All .

If C s;i%éQi satisfies (Vi e d)(|c n Qil = ki)

S———

then clearly a-closure (C) ¢ T satisfies conditions

3
(i) (ii) (iii) and its isomorphism type has been accounted

for. For any A satisfying the conditions clearly

]

(Yd’ Yd79 0 and- since any X e X such that

A, AlL 3

(X,X]1) = = (¥,,Y.]1)  is isomorphic to Y,, we have

(i’ X%% £ 0. Lemma 4.13 translates this last fact back
, J

to the context of n order type sets and shows thaf whenever

P. = Q.

i ; are subsets of order type n (i e d) and Ae F,

satisfies the conditions (i) (ii) (iii) there will exist

¢ = UP, such that
i1ed
(Vi e dd¢|c n P.| = k; and the A-closure'of C is isomorphic to A).

i
The only thing left to do is count the objects A. For.

ied let Ai = {a £ A: root(A) <i al and note

|{a € A;: degAiga) = 0} = kys |A;] =2k, -1, Ay e K

1 3

and there are ¢(ki) possibilities for the isomorphism type

of A;. A = fgdAi v {root(A)} AlS built from the A,
by interlacing the well orders <t and prefixing: the

root(A). The d-nomial coefficient

PICOEEY ) (;%é(Zk.— 1&!.

(2k0-1)1(2kl-1)1;..czk -1)

(2k0—l), (Zkl_l), «o05(2k 1) d-1

d-1"

gives the number of ways this can be done. - [J



CHAPTER &

A BASTC ULTRAFILTER CONSTRUCTION METHOD

Defintticn 5.1 A fiiter cn a set, S, is a collection, ¢,

ol subsets of 5 satisfying:
(1y 0¢ F
(2 ¥ ¢ F and X =Y =S »YeF
(3) X,¥Y & F - Xn'Ye F
A fiiterr U = (S) which satisfies the further
rondition

(03 (V Xx e5)(x ¢ WU or S -Xeld) is an ultrafilter,

Tc avold triviality we also require the condition
() X =23 & |X| «<w -8 -Xe¥F , so for us, every
filier extends the Frechet filter {X 2 S: |S - X| < w}.
A fiiter ¢r ultrafilter which satisfies (0G) is usually
called ncn-principal, but we will automatically assume
the non-principal cendition whenever the word 'filter!

or 'ultrafilter! 15 uszed.

The definitions of an ideal and maximal ideal are

dual, in the sense of the boolean algebra <XP(S);H 5 U>,
tc the definiticns of filter and ultrafilter. Again we
include in cur definition a non-triviality condition (07),

so for us, every 1deal includes the finite subsets of S.
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Definition 5.2 an ideal on S is a collection, j—, of subsets

of S satisfying:

(0°) X8 and |X] <w +Xe 3
(1) sg¢ L

(2') Xe d and YexXxes »Ye &
(3°) X,Yed +XuYed

A maximal ideal satisfies the further condition

(47) (X eS)Xed or S-Xed)

In addition to these familiar definitions we define
a co-ideal on S as the compliment in ((S) of an ideal on
S.

It is easily checked that a co-ideal, i) , on S is
characterized by the conditions
(0") X8 & [X] <w +X¢ &
(1") se ¥
(2") Xeld & XeYeS >Ye l

(3") Xu'Yed +XeHd or Ye £

Definition 5.3 A collection @ = ®(S) is a basis for

a co-ideal & on S (or ultrafilter on 8) iff

Bz (xes:(3BeB) (B X)),

Given an ideal, & , on S let Y =(P(S) -J be the
corresponding co-ideal and F={S-¥X:XcE J_} be the-

corresponding dual filter., For any ultrafilter W on S,
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we have,
F e U -~ W = &,
Thus an ultrafilter on S can be viewed as a minimal co-ideal,
a maximal filter, or the complement in P(S) of a maximal
ideal.
As an illustration of a standard technique, we con-
struct a Ramsgey ultrafilter assuming the continuum

hypothesis (CH).

Definition 5.4 An ultrafilter,?i , on a countable set S

igs Ramsey 1iff for every partition < [S]Q-—+ 2 of
the unordered pairs from S into 2 colors, there is an
X« WU which 1s homogeneous with respect to £ (i.e. &

1s constant on [X]z)o

This property of the collection of sets U is denoted

U= [Ul3-

Definition 5.5 Given a collection,,é , of sets, the notation

A — [A]? for cardinals n and r, means that for any
partition Pk [S]n—*ﬂ r where S e .4 there is a
set T =S such that Te & and le’ [T]7] < r.

We will usually be interested in cases where n,r € w.
) n

The notation 4 —%= [J]r means of course, the

negation of b [J]g, so for some S e .4 and

some partition .c:[8]"— r we have le [T]"} = o



87

whenever TS and T e, . In case this S satisfies

VT ¢ 4 )(T 2 8), then a single 'counterexample partition"

wc: [8]"— r satisfies' (VT ¢ 4)(|le“[T]"| = r), and

for any non-empty ,45’ e 4 we have also 4 —~ [.J:II;
We use the notation A — [,5]2 to indicate

4 - [,A];h (where r+ is the successor of r) and there

exists S e 4 such that (VT e 4 )(T = S) and there

exists a partition o [S]n-—> r such that

VT e 4 )(e[T]?] = ».

Example 5.6 Let Q be the rational numbers and put

A = {P € Q: P has order type n}. Galvin's theorem says
2
4 v— [4];

Example 5.7 Given an ultrafilter U onw, u is Ramsey

iff M +— [u]?L .

To build a Ramsey ultrafilter on w, we start with the
co-ideal, ¥ , of infinite subsets of w and note thatw
O — [‘d]ZZL (this is just the infinite Ramsey theorem
for a partition of pairs). For the purpose of later general-
iﬁat‘ion we put S =w, n=2 and r = 1. Using
"9

2 = -\'l(CH) we can enumerate all partitions .e¢: [S]n-—--> r + 1

as </c Y E wl> and all subsets of S can be enumerated

Y
as <Sy: Y e wl> . A basis, <B,Y: Y € wl>, for the
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ugltrarliter U ie constructed by induction of length w

ln

le -5 2o, j

Let BC- s« M Having BY s choose By+l such
that
1) B )

y ol
) B ., =B

Y il Y
- v T =0
3) |~ i B Pl ro+ 1

v - gyt .-

4) R = 5 ar B 5 - 5

¥t ¥ y*il Y

- i =n , ‘

Sirne H [ﬂ_l . there ex1sts B e ,@_ such that
BeB and I« ?iB]" < r + 1. Now

Y P
B (En 2 Yo (B0 (S - S'Y)} sc property (3”) of a co-
ideal car be used 1o put By-!'l : B n SY or BY+1 = Bn(S - SY)

¢z that the properties (1) through (4) above are satisfied.

T: e nr-nue the i1nductive construction at a limit
crdinal AW, we agsume that for U v eE A
In
- #/ # ). Nore that this condition is
&

trivial:y ma.nr'ained at the ruccesscr step defined above.
)-

We reed to 1ird B, + & such that for W< v By, - Bu E’JZ

The existerce 2t =2uch a B foliows from the countable

A

coempletenezz . zf~1he co-1deal M, defined as follows:

Definition 5.8 a4 2o-~ideal Hdon 5 is countably complete

b given any decreasing seglience C:new such that
& n

(Vn e wi(c_ ¢+ JH & C,=C ;) there exists C ¢ ak

which sat:sf:es (Vo e w)(C - Cn 7’1_1 ).
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Lemma 5.9 A co-ideal & on S is countably complete
iff given any sequence <Bu: U e A.> such that A e wl s
Bueﬂ, and Hu,v e Adp < v -»B\)-Bu ¢,&1) there

exists Be such that (Yu e A)(B - Bu t;’ab’- ).

proof: (< ) Trivial. (=) With <BH: TR K> as above,

, .. . = N
let f: wen2A be a bijection and put Cn m<an(m)

so S = C0 > Cl = 02.,a

of & and (u<v — B, - Bu ¢4 ) it is easily seen that

Using the co-~ideal properties

(¥n ¢ w)(Cn edl). Since & is countably complete
let Be 4 satisfy (Vn e w)(B - Cn 5i ). Since
Vu e M)@n e w(C = B, clearly (Yue M(B -8B, ¢4, []

Lemma 5.10 The co-ideal A of infinite subsets of ®w is

countably complete.

proof: Clear. [] |

In our construction of the ultrafilter base, <<BY:Y'F wl>,
the combinatorial assumption g [ﬂ]£+l , 1is used at |
successor stages, and the countable completeness of A is
used at limit stages. We must verify that
U= {Xx =28: Ty ¢ wl)(BY = X)} is an ultrafilter on S
and satisfies W+ [U]} . Properties (1), (2), (#) in
the definition of an ultrafilter (5.1) are clear by construction,

and U = 4 so the 'ultra property' (4) implies’ (0).



Tc verify cordition (3), since U satisfies (4) and (0) it

sulfices to show X,Y el = X n Y # 0. But X,vye U

means for some MoV € wy Bu = X and Bv = Y. Assume
withour jose =2f generality that U < v, so

B - B, 7 K and hence B, n B, € A (using property (3")
of a coideal) so X n Y £ 0. The construction guarantees

U —- [ujf;l and thus u.k—~r[u]g follows from

b S — [ﬂ:}? and WU = X

Ry lzocking at the assumptions used for the construction of
tke Ramsey ultrafilter above, it is seen that the following

thecrem bas acrually been proven.

Theorem £.10 If J 1g a countably complete co-ideal on a

ccuntable et 3 and ¥ satvisfies H [}ﬂg where
NaY £ w then azszuming CH, there exists an ultrafilter

W srns :uchthat U = & and U [U.]];

M:ll:ken's thecrem and the partition theorems of

Chapter 3 are good scurces of co-ideals, # , which satisfy

N — [jjjlrj fer some n,r & w.
Exampie §.11 Let Y Dbe the infinite binary tree, Y = nemn2 ’

struntured as an object of k . Let
®  (Xs=Y:XeX and Xcec¥Y) and let
H o {2 =v:(3B e®) B 22)).

We ciawm that M i: a co-ideal on Y and satisfies the



‘he partition property- 4 e [ﬂ]% . Example 2.2 shows

z7

‘Fat (R +—s [@J; and thus b e [bj; . Clearly
b. Al l

U 4 cx-ideal (5.2). The condition (3") that

53]

fies properties (0") (1") and (2") in the definition

0 T ¢ J *(S e X or T cil) can be regarded as
“he partition ascsertion L —— Eﬂ]% . Using Theorem 2.10,

partition /05(511\-»-2 can be reduced by some

12
tJ

XN, and thus B — [B]% and H — [ﬁ]]é »

Hence M is a co-ideal on the countable set Y which

tuxfies s QR E&]g » Unfortunately, if we consider
'ke e juence YO > Yl 2 Y2 2 +«-- where
Y ‘v . Y fYm o< n)(y(m) = 0)), it is clear that g is

~wuntably complete, and hence not directly usable for

rotroaitang an ultrafiliter.

A countably complete co-ideal can be built from

abiy many copies of 4. The following definition

g +ra.sizes the standard construction of a sum of ultrafiiters.
fer.mit.on 5.12 Given co-~ideals H and Zin (n €.w) on w,

I AN

Boe Ag e waesin Hms(n,my e X} el 1 ek 1.

VA &n is easily seen to be a co-ideal on wXw.
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5 ; f . ‘
Lemma 5.13 ‘br.i'w ﬂn (where ¥ , Hn are as above) is

/
countably complete iff H is countably complete.

Proof: (=2) Let <Cn: ne w> be a descending sequence,

C, ¢ Y and C,=2C ;- Then <Cn X w: n € w> is
a descending Sequence with Cn ¥ W E ’Hnéw '&n so there
exists Ce d ntw ‘&'n such that
(Vnew)f-(c x w) ¢ L Put

nes n :

C=1{n € w: {m: (n,m) € Cl ¢ ,&tn} S0 C e ,ifi‘ and

Vn ¢ wi(Cc - Cn 4 .

(&= ) Let <f2_n: n e w> be a descending sequence,

En eﬂn;uﬁn, and put C_ = {p: {q: (p,q) ¢ Cn} £ gq}.
Then <Cn: n e w> ig a descending sequence, Cn e &

: N
In case ncwcn cedl ,

C = {(p,g): p & ]_chn & (p,q) € CP} s clearly

(Vn ¢ (T - C. d Y Zw }_fn) and C e 'ﬁngw ‘&n"

Otherwise, ¢ M and there exists Celf such

cw n
thart (Vn swd(C - Cn ¢ H ), and we can assume

c=rgwcn(cn-c ). Let

n+l

C {(p,q): dntp e € n (Cn - Cn+l) & (p,q) ¢ Cn)}“‘

Again C ¢ ’ﬂnew . and ¥Yn ¢ w)(T - 511 #ﬁném gin). 0

Definition 5.14 The product Yok 0 where ,?1 and .2{0

are co-ideals on w is defined as the sum ¥ I ¥

new ~n
ﬁ = Z = ; = e s e
where 0 ~ 1 22 .



Lav 21 be the co-ideal of infinite subsets of

and ier M be the co-ideal of Example 5.11 which

G
gt ialles .ﬁo — [Jd]% ( ﬂo was previously referred
tooaz MY, Then ﬁ’@)nﬁo is a countably complete
cy-~i1deal on w % Y from which an ultrafilter can be
hiiit. The problem now is that in passing to the product,
PR ¢ » ‘the combinatorial principal b’o — Eﬁo]g
Faz been lost. Inlthis gimple case where we are only
conxadsring partitions of pairs it is not difficult to
anzlyze 211 types of pairs which ocecur in wx Y, In
czze 3 pair {x,yl e w x Y occurs in a single 'column',
tw,v} = {n} =Y for some n, its type is determined by
viewing  (#,yl as a subset of Y so the combinatcrial

propevties of such pairs are governed by the partition

prperity iio — [ﬂo]g . It can be shown that a pair

TN, Y which does ncet occur in a single column (so for some
m w ¢ {nt=*Y and y e {m} % Y) is one of three

B T S, e Ly - . ) - 1- ! 2
Z2.ruinon essential types so that L® ﬂo 3 [ﬂ@ 2.'0__[10 .

Inis kwnd of analysis will become unwieldy as soon as we

~nnmzider partitions of n-tuples where n > 2, For n > 2,

“ziramn 2ould bs gspread across anywhere from 2 to n columns
in many diiterent ways.

Rather than develop a whdlé'ﬁew_hotétioﬁ'aﬁd vocabulary
for dezoribing 'inter-column' types of n-tuple we pursue
a différent formalization which is analogous to the develop-

ment of the notation and theorems for the category C . We
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will define the category Ew @ 9; v kma An object

of Q@ is intuitively a countable set of trees from K .

—

Actually an object Y € ?(w ie a very highly structured

countable set of trees in which the various types of
finite substructure can be classified using isomorphisms

to finite objects Ace ?& . The details of our formaliza-

tion of the category Cw are somewhat arbitrary as usual,

The goal is the partition theorem analogous to Theorem 2,10

but in the context of Cwo

a4



CHAPTER 6

A PARTITTON THEOREM FOR AN INFINITE FOREST

Recall from Chapter 1 the definition of T = égwnw'

with structure <T;K,<,@g«h,A,A>ha = <$;o> .

Definition 6.1

Tim) = {t e T: |t] >m, t(0) = mand for 0 <n g m tl(n) = 0}

and put T = L)T(m) .
W mew ™ w

The set Tim) is referred to as the m'th column

of T~ and T (n)={teT: [t|] =n+ 1} is referred

to as the n'th level of Tw° Note that 0 e T - Tw and

T, (00 {(0>? = T(1). Put Tw1n = gzLTw(P) and
T?m . g plmd
w Pmw

T =T inherits the partial order = from T and the

W
~~minimal nodes of T, are called roots. Each column_,Tim)

T(m) has the nede

has a unique root. In particular,
fim+ L—m+ 1 defined by
‘m if i =0
f(_}_) =
{0 otherwise
as its root, and this root is the unique ~-minimal node

(m) is the

of T, which lies in Tw(m)° The root of T
< ~maximal element of Tm(m),_

We note that T, is not closed under the operations
of T, and hence we let Tw inherit only the relational

structure, < ,<,<«< ,=< (n € w) , from T. New operation
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symbols A and A are interpreted in Tw instead of

A and A. Given X,y € Tw’ if X AT y E Tw then
T

A (or &4 %) T

is defined to agree with AT, Xx Ay = x A y.

T

The definition in the case x Ay ¢ Tw is made somewhat

arbitrarily
x Ay if x Ay e Tw

x Ay = X if x Ay ¢ Tw and x <y
v if x Ay ¢ Tw and y < X

The same idea is used to define A for X,¥ € Tw

x ANy if X Ay € Tw

XAy = % if XAy ¢ Tw and X <y
y if X ANy ¢ Tw and y < X

XAyY) iff (dm e w)(x,y € T

Note (Vx,y ¢ Tw)(x AY im))_

If X Ay = x then in case X Ay = x we conclude
(m)

X Xy and for some m; X,y E Tw s, but in case x Ay # x
(while x A v = %) then we conclude X € T;m) and
Vv E T;n) where m < n.

The similarity type interpreted by T, Will be denoted
by , o) g, =“{<,<,<<,<h,A,A}nEw .

In analogy to the definition of k as a class of infinite
canonical substructures of <T;U> » here we define the class

kw of infinite canonical substructures of <Tm;0w >°

Definition 6.2 Let the objects of kw be the set of sub-

structures of <Tw;om‘> with universe X €T, which

satisfies:

(m)

(i) Ym e w XnTw

is non-empty and closed under

- -predecessors in T e
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(ii) Every feX has a non-empty finite initial segment
of immediate ~<-successors; f}, fﬁ, f;, caee fﬁ¥1
for some n > 0. This n is called the degree of f
in X, degx(f) = n.

Given X € km define

X(m) = X F)Tim) = the m'th column of X, and let
xIm o (Jyx(P)

PEm ‘

Put X(n) =

X n Tw(n) = the n'th level of X and let
Xln = gtgx(p)o Note that Xln # {x e X: |[{y ¢ X| yv <x}| < n}

(unless n = 0).

Remark 6.3 We have chosen to use the symbols A and A in

the context of Tw in order to emphasize the distinction
from A and A . But it is clear that when restricted to
a column of Tw’ A and A agree with A and A respectively.

More to the point, given X € kw we consider

X(m) = X N Tim) as an object of Q} even though technically

(m)

X interprets the wrong similarity type, Oy Given

. (m) .
X e kw , then X = £E$X and X can be viewed as an

—

infinite ccllection of objects from K, but in addition

X(m)

the connection between the different objects s M € W,

is highly structured.

(m) (m)}

= {the root of X

-

For mew , X(m) n X

{the <-maximal element of X(m)}. For n < m, X(n) N x(m - 0,

(m) _ X’.m)(n

For n >»m, X(n)n X ~m) , where here we consider

X(m) > E and ﬁmkn—m) denotes its level n-m.



The category 3& will be a set of canonical. representa-
tives for all isomorphism types of all possible finite sub-
structures of objects X € kw . In general, a finite sub-
structure A of some X € k& may have several roots
( = < -minimal nodes) and in fact there may be several
roots on the same level in A (where the level structure on
A is inherited from X, rather than being defined from « ).
This fact makes the definition of a canonical representative
of the isomorphism type of A somewhat éwkward sincé"in_ T

w

each level, Tm(n), contains just one root of T .

Definition 6.4 Let the objects of 3; be the set of aill

substructures of <Tw;cw > with universe A s=_-Tm

satisfying:
(i) A is non-empty and finite

(ii) ((Va e A) (Yt ¢ T,~AY(t <a =+ t=<, a)

0
(1ii) 1If AN Tw(n) £ G and for some m<n A satisfies
Vimgi<n »A nT,(i) = 0) then

|[{a e A nT, (n): a is a root of A} > n - m.

Given A ¢ 3; define
height(A) = [{n e wt A nT (n) # 0}| = the maximum cardinality
|S| where S = A 1is linearly ordered by <<, For

n € height(A) 1let A(n) = {a € A: [{b € A: b << a}] = n}
and let Aln = AE%A(H) .

As in the past the symbol X or A etec. will denote

both an object and its universe and superscripts will only



rarely be used to distinguish between a symbol in the
similarity type, G, » from its interpretation in a
particular structure.

Ll

Definition 6.5 Put C = F, u %, and let Ace 3,

w
X ¢ kw and Z € Cb . As usual we define

Cm(A,Z) = {{(A,9,Z2)| ¢: A—> Z is an isomorphic embedding
of the o ~structure A into the o -structure z} and
Cm(X,Z) = {(X,¢,Z>| ¢: X=—> Z is an isomorphic embedding
of the o -structure X into the o, ,~Structure Z and

(Vx ¢ X)(degx(x) = degZ(d:(x))}° Cm is a category (with
composition defined as composition of maps) and 3; and

kw receive their morphisms as full subcategories of Cw .

Lemma 6.6 Every isomorphism between objects of Cw is an

identity map.

proocf: Given an isomorphism f: We>12 between infinite
objects W,Z & kw . for each n € w f restricts to
an iscomorphism between W1n and Zln . But Win and
Zln are finite canonical objects, so it suffices to con-
sider only isomorphisms f: A«~—» B where A,B e 3@ .
Since f preserves the well ordering <, thebe are no non-trivial
automorphisms and we must show A = B,

Assume A and B consist entirely of roots and put
r = |A] = |[B|]. If height(A) =1 then A =T, (n) for

some n, and we must have n+l 2> » and
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Vi(g<i<n +An Tw(i) = 0), Condition (iii) gives
[{a e A nT,(n): a is a root of A} >n so nt+tl >r > n,

and n = r-1. Using (ii) and the closure of A under A,

(i)

for
w

this means A = {x| x is <-minimal in T (r-1) N T
some i such that 0 £ i € r-1} = B.

When height(A) .> 1 the idea is just the same -- the
condifions (iii) and (ii) are used as above to pin down
precisely the set of roots in each level of A and B. When
A and B do not consist entirely of roots the -<n-structure

and condition (ii) are used to pin down these other nodes

and show in general that A = B, []

Definition 6.7 g;is the class of structures isomorphic (by

3 o - 3 ] - ('\
a unique canonical isomorphism) to some object in dh.

kw is the class of structuves isomorphic (by a unique

canonical isomorphism) to some object in 'km,

— —

= F
dence to Cw 6 Y km" '

Lemma 6.8 The finite subset AeZ where Z € E@ is
a sub~-object, A é.§w and Accl iff A is a sub-

structure of Z.

proof: (&) The construction of the canonical isomorphism

Pp’ A &—+<Tm;cw> from A into Tm’ whose.image is a

canonical object, pA(A) > ?@ can be carried out by an

inductive analysis of A very much like the proof of Lemma 6.6. []

Cw = 3@ v &h with morphisms defined by the correspon-
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Lemma 6.9 Let Y e kw "‘arid an infinite subset Z =Y
be given. Z is a sub-object of Y, Z ¢ ?@ and ZecyY
iff

(i) Z is closed under A in Y
(i1) Yz e 2)(deg,(z) = degy(z))
(111) (Vn e w) (3! z € Z2(n))(2z is a root of Z).

Here Z(n) = {z ¢ 2: |{w'e Z: w << z}| = n}.

proof: routine. []

As in the case of objects of %f, the structure of an

object <X;-<,<,<<,-<n,/.\,A>n £ ?"('w is definable from

EW
{X3<,<>» and we could state conditions on a structure
<X;<,<) so that the definitions yield an object
'<X5Ub> (like Lemma 1.21). As in the case of an
objeé‘t of ¥ s however'; an object <A;ow> E;d?m is not
definable from <A;=-<,<>.

In the context of E@, we are aiming to prove theorems

analogous to the results of Milliken for the category C

(Chapter 2). For example we will obtain:

Theorem Given A € Sw and Y e'Kw and a finite
- - Y ' i » -
partition rc:(A —+ r  there exists X ¢ kw such that X

reduces .C.

Our proof of the theorem will proceed along lines

parallel to the proof in the C context, where it was



necessary to state and prove more detailed theorems in

order to construct inductive arguments.

Lemma 6.10 ( = Lemma 2.4 for the category E;)

Given X,Y E;?w and n £ w, if (X;Yﬂn)<: e (Y,Yin)

then  X[n+l is isomorphic to Y]n+1.

proof: By the degree preservation condition for sub-objects

(X,X]n) =« «(¥,¥|n) where X,Y e kﬁ , clearly Xln = Y{n.

We define ¢: Yin+le—>Xintl for y e Yin+l by

(n) (n)

the root of X if y = the root of Y

¢(y) =
the =-least x € X|n+ls.t.y  x otherwise
It is easily checked that ¢ is the required isomorphism

(Y]n-l-l,Y’ln) = (XIn+1,XIn). [

Lemma 6.11 ( = Lemma 2.5 for the categoryigw)

— —

Given Y e K and A<c<cY where A€ 3; , let

AI

"

A1height(A)-l ’ and suppose n satisfies

A" = AnpY¥Yin#AnYin-1. For any finite partition

ST LEE ) there exists X aiz such that
A, A w

(X,X1n) reduces . ‘

proof: The proof here is considerably more complicated
than the proof of the analogous Lemma 2.5, although like
2.5 the proof essentially rests on the Laver Pincus

Theorem 1.26.
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We can assume Y € ?Cw and A€ ?w . As a first

step toward fully reducing the partition «: (X’ ﬁ') —+ 1,
?

we find 7z ef which satisfies the very weak reduction

w
property expressed by the following:

(Z,Z2]n)e =« (Y,YIn) and for any . B,C € (i: ﬁ:),

if {b eB| (I3x e BY)(b < x)} = {c e C: (Fx € C)(c < %)}
then ~<(B)-= ~=(C).

Some notation will be useful, so for any D e(i’ 2,)
H

let Di= {d e D| .(3}: € D)(d < x}. The above property
becomes (Z,Z]n) = =(¥,¥in)  and.
t VB,cC B(i’ ﬁ) (B =C =-=.(B) = =(C)). Having found such
3 e .
a Z¢ ?_(-w satisfying 1 , there is a natural induced
partition 2 %’ A‘)——* r defined for E € (,Z\’ A, by
A’ A A, A
_ . . Z, A S
<(B) if there exists B € .] s.t. B =E
am A, A
arbitrary otherwise

Using the natural induced partition it is ceclear how to

iterate the very weak reduction T . |A - A" | times until

——

finally reaching X € kw which satisfies
(X,X1n) « «(Y,¥Y]n) and .c is constant on (i’ ﬁ,)
b
The construction of Z & K satisfying | is split

into cases depending essentially on whether there are any
roots of A in A - A",

Case I A sY®

By assumption A" N Y(n-1) # 0 , so by A-closure of A ,

(Va e A - A'Yda’ e A n Y(n-1)(a" =< a) and thus there are



no roots of A in A - A”. Intuitively, we restrict attention

to Y?n and apply Lemma 2.5. Formally we must translate

to the category C by defining

Y an w {t eT: By e Y(n-1))(t < y)}

It

A

n

Avuv{teT: Oy e Y(n-1))(t < y¥)}.

When & and Y are structured by inheritance from <{T3o0),

—
—~ — —

it is easily seen that Yek , Aed , AccY,
There is a natural 1-1 correspondence between

Y, A Y, A,

(A, A-) and (K, K)
(where as usual A = Alheight(A)-1). Note that
¥(0) = {0}

£
A = Aln+l

T(0) # Tm(O) = T(1) so Y(n) = Y(n-1) and

= ?7n+l = {t ¢ T: (Ay € Y(n-1)) (t <y}
The corre?pondence induced partition we denote )
o (?’ E) — and it is defined for B ¢ (“ g)

A, A/, ' A
by S(B) = «—((B - K v A'). Note that n+l satisfies
¥intl =A =B NTn+l # AN Tn = ¥n  so Lemma 2.5 gives
Z ¢ XK  such that (Z,Z]n+1) r;duces <.

The translation back to an object Z E‘E; is carried

out by defining the columns of Z, Zn Y(P)

(so Z n Y(P) = TN(P) since Y is canonical), for each p € w,

Uz n Y(P))° Let L be the set

and then letting Z pEW

of levels of Yused by Z , L = {{| e w| Y(f) n 7 # 0},

SO note 7]n+l = ?]n+l =2 Y/n — 0,1,2, «»., n-1 e L, For
i (p) .

PEeEn let Z N Y(P) =ZNnNYy Additional columns are

now added to complete Z to an object of k@ (being careful

to have exactly one root on each level of Z). For p'¢ L

-
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(p) (p)

let 2 N0Y be empty. For p €L ~n, note Y

has its root at level p in Y, and Y(P) e X . We let

(p)

z n v'P)  be any subobject, 2z nYPleccy (in the

—

sense of X ) which uses levels L - p , di.e.,

(p) (p)

{lewl (ZnYP')nyY(d) #0} =L ~-p. Since 2Z NnY
"uses level p" we note for future reference that whenever
Z 0 Y(p) is defined to be non-empty (i.e. p € L) then
{root (Z Y(P))} = {root (Y(P))} = T;P)rw T, (P) and
hence every root of Z is a rocot of Y.

—

It is easily checked that Z € kw when structured

by inheritance from Y or Tw’ and (z,Z)n) = «(Y,¥In).

Following the 1-1 correspondence between ( ?’ -5) and (Z’ A)
A, A A, A
we conclude (Z,Z]n) reduces ,c, and thus certainly 2
satisfies the much weaker assertion T .
Case ITI A £y
In this case there is at least one root of A in A - A .

Z € E@ which satisfies T is produced by a sequence

of two constructions, IIa and IIb. First we define for any

X € ku) where  (X,Xn) < <(Y,Y{n) and for any
D e (X’ ﬁf) » "the projecticn of D to minimal level in X"
3
by m,(B) = A" uilx e X(I)]| (Jd e D(x x @)} where le w

is minimal such that (Vd e D - A")(Jx ¢ X)) (x « d).
Since we are assuming A $Y1n and (X,X]n) ¢ =(¥,Y¥In),
clearly { 2 n and my(D)  is isomorphic to D and A.
The minimal level, {, is determined by which '‘column of X

contains the <-greatest element of D (= the element of D - D).



t1

(p) then Q = p and

If D-D =X
wX(D) - TI‘X(D) = {the root of X(P)}o
Construction Ila will yield Y e kw which satisfies

(?,?11‘1) c <(Y,YIn) and for any B,C ¢ (X’ ﬁ,)
3

m (B) = m_(C) —x(B) = «(C),

Y Y

Construection IIb will yield Z e ?{_w ~ such that
(Z,Z]n)c = (Y,YIn) cc.(Y,Y'[n) and 2 satisfies T, but
the method used to construct Z will depend .on whether A" = ﬁ
In case IIb(i), A=A (i.e. |A - A"] =.1 and we are still

r—

assuming A & Y1n), a simple construction inside Y gives

Z e .?Zw which satisfies (Z,Z]n) (Y,¥in) ‘and ¢ is
constant on (i: ﬁ:) (so certainly Z satisfies 7).

In case IIb(ii), INE (and A ¢ Y1n.), the construction
of Z 1s more complicated. First we define for any X e ?m
where (X,X1n) « «(¥,Y)n) and any D ¢ (X: ﬁ') the

"completion of D in co-minimal level of XV by
'rr;; Feh)) = X1l v {x e X(D)| (3 € D)(x w d)}  where ﬂf:w is
minimal such that (¥d ¢ D)(Ix ¢ X({-1)(x x d)) and { » n.
The co-minimal level, ! , defined above, can also be determined
as £= max {n, p+l} where X(p) contains the <-maximal
element of /ﬁ‘. Note that (n;(ﬁ))’ = X]1  (where the"
"prime" nota;tion'ﬂ-has the usual m'eaning of restriction to
height(mg(3)) - 1) and 7P =x'  where " 1 > n.

The construction of Z in case IIb(ii) will yield

Z e kw such that (Z,Z2ln) = = (“Y,?]n) e <(Y,¥|n) and
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Z A' oA - . _ -
for any B,C € (A: A’)J nZ(B) = nZ(C) +m(B) = ().

Then for any B,C ¢ (i’ £;> such that B = € we have
]

n; (B) = n; () so @(B) = «(C) and 7 satisfies T .

-t e
Construction Ila A sequence of objects Y € &@ is

n
constructed for t e w - n  beginning with Y =Y and

satisfying

t
. Y, A

+
if nt(B) = nt(C) =Y t
Y Y

then ©(B) = ~<(C)

: t+1 t+1 t t
(ii) (Y, Yit) ee(¥Y, YD)

We claim that condition (i) is satisfied vacuously by

n
Y = Y. Since we are in case II where A - A” includes
a root of A, B - A" includes a root of B. Since

BnY(n-1) A Yn-1)#0 and B is closed under A,

n

this root of B ocurrs in some Y(P) for p 2 n. But then
T, (B) 0 Y(p) #0 so m,(B) ¢ Y|n.

t t+l
Given Y satisfying (i), Y is obtained by a modifica-

tion of the technique used in case I of this proof. By

t
following the canonical isomorphism Pyp: Yo <T;dw >
Y

t t
we treat Y as a canonical object Y e %w . In analogy

N . s . t1t+1 t1
to case I, we will restrict attention to Y {net Y

which would be the exact analogy to Case I -- a crucial
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difference). Define

_ t?t'*'l t

Y=Y uix e T|dy ¢ Y(t) (x <.y)} and for fixed
5 I t t

D e ( ? ,) which satisfies 7, (D)  Y(t+1 & w_(D) EaY?t
A, A t t

Y Y

t

(i.e. D -D SY(t))

define
—_ t
D=D uixe T|8y e Y(t) (x <y)}. Eﬁote for the first

few values of t = n, ntl, n+2, ..., there may not exist

t
any such D e (z’ ﬁ,), in which case the combinatorial
>
| ' t+1
arguments used to construct Y are vacuous and we can
t+1l t
simply put Y =Y. ]

When D ‘*and Y are structured by inheritance from

(T; U>, the following facts are easily checked: Y s%ﬁ,

()

t
Ded , Decy T(t+1) = Y(¢t),

)

-t .
Y(t) = Y(t-1) vy {the immediate = -predecessor in <T;G> of

t
(t))},

Id
root(Y and D = DHt+l = T+l =

t
{x e T|dy & ¥(t) (x < y)}, Note that the <-maximal node,

y, of Y]t+l is not a node of Y (nor of T,) and deggly) = 1

so (VzeDly<z +y=<, 2).

There is a natural 1-1 correspondence between

t = 7
{B e (Y’ Allm @) = m.(M} and (%22 ). @civen

Y Y ?

t , t]

Y, A — t+l
B e (A, A’) such that wt(B) = ﬂt(D), then BeY

Y Y
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¢

and B n YE

is the <-maximal node, b, of B. Letting

y ¢ Y be the <-maximal node of Y}t+l, we have vy <y b-

Put B = B v Y+l and now it is easily seen that

) —_ = - =

B e f*?ﬂ). Going the other way, given B e (E’ D

- \p, B 5, D
-t L4

put B = (B - ﬁj u A so B e (Y’ A ) and w_(B) = %_(D)
A, A t gD

Y Y

The induced partition T (

O

? B)~—* T is defined for
D
3

B-D)vu a). Now

~~

B ¢ E’ 5) by e(B)=
. \D, D

Y]t so Lemma 2.5 gives

|

Y+l =D =D n ¥1t+l # D n Y1t

X € X such that (X, X)t+l) e < (¥, TH+1) and < is
t

constant on s Q . In other words, for any B,C € X, AJ,
- b, D A, &
-]
if B,C €X and wt(B) = wt(C) = wt(D), then ,<(B) = ~4(C).
Y Y Y
By repeating the argument which produces X , for each of
the (at most finitely many) distinct projections, nt(D), where
t Y
Y, A . e t dt
D € Al A satisfies (r (D) = Y Jt+l & m (D) ¢ Yit), we
Y Y

construct a finite chain of sub-objects of Y. The last of

these sub-objects we again call X (in order to avoid extra

notation) and X & ¥  satisfies: £
- - - Y, A
(X, ¥]t+l) = <(Y, Y¥]t+l) and for any B,C € (A:- A') >

if . B, ¥ and



t t
((m.(B) = m (C) =Y]t+l) & (w (B) = m.(C) & Y|t)), Livem
Y Y Y Y
t
w(B) = «(C). Now the induetive assumption (i) on Y

t

Y, A’ t

says (VB,C ¢ (A Af) )(Wt(B) = m(C) ¥t —(B) = «(C)).

t
Y Y
Hence the property satisfied by Xece¥ can be strengthened

to read:
t

‘ t
(¥B,C ¢ (Y’ ﬁ}) (B,C = X g 'rrt(B) = ‘H‘_t(B) < Y)t+l —+2(B) = ~(C)).

A,
Y Y

The translation from X e ¥ back to an object
t+l
Y € kum is carried ocut by a method similar to case I. Let

t
L=1{%¢e¢w Y(I) n X #£ 0} so note

—_—

X)t+l = Y{t+l =2 Y{t - 0,1,2 ... t-1 ¢ L. The important

t+1
columns of Y which control the partition property (i)
t+1

for Y are defined for 0 £ p < t+l by
t+l ot t tl ot
Y n Y(P) = X N Y(P). For pelL-t, Y n Y(P+l) is

X . ) Tepy .
defined arbitrarily as any sub-object of Y (in the

sense of X) which uses levels L - (ptl). For 0 < p ¢ Ly

t+l t

.the intersection of Y with column Y(P+l)

is defined

' ' t+1l t(t) t
+to be empty. .. Note that rocot( ¥ N Y ) e YD) where

leL is minimal such that { > t. Typically + ¢ L,
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t
is not a root of Y. More generally

t+l

so root( Y N Y(t))

i TRl Tne1) \
for pe L, root( Y n Y'P ) e Y(Q) where ler is
minimal such that | 2 pt*l, and since this is minimal,.
t+1 t t+1

Y is closed under A in Y. Also {root( ¥ N Y(O))} = Y(O),

so for every e L, there exists exactly one root of

t+1 t t+1 —
Y in  Y(l), and it is apparent that Y € kw and
t+1l t+1 t t t+
(Y, Yt)ee(¥Y, YIt). Since 11t+l ylt+l we note
t+1
Y, A
that ¥V B,C e (A ’ A,)
t+l ' t
(m ,4{B) = 7 ,(C) = Yit+l) =~ (,.Tf't(B) = 7. (C) = Y{t+l).  So
Yy Y Y Y
t+l _
the construction of Y from - X gives
t+1
(Tr,t+l(B) = 1rt+£C) = Y]t+l) +<(B) = —(C)
Y Y
. t
Having defined the sub-object chain Y for +t e w-n,
_ t _ t+1 t
put Y = ‘tew-nY ) and since Y?t = vt , note
Y = - nY1t > ?( and (Y, Yin) = = (Y, Yin). Given
B,C € ?"K with  mu(B) = we(C) for some t € w-n
A, A 4 Y ? T ?
“ £41 _
t_l_l(B) T 41(C) = Y)t+l. Hence Y satisfies th.e conclusion
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of construction IIa,

(VY B,cC

€ (z ﬁ )) (w~(B) = w?(C) +

/’
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(B) = ~(C)

Construction IIb(i) A=A and A $ an. We have

(Y, ?]n)c e (Y, Yin) satisfying 11 ,

and @ is

A - A

ﬁy(B) =
For each

Lc = {p ¢

and . L0
must be 1
z n §(P
7 o ¥P?
which use

{{ew| ¢

WY(C) «— B - B and

. we will find Z ¢ %m such that (Z,

constant on Zy A: Since
A, A °

~ ’
= 1, for any B,C s(i’ A)
C

cenr let

(p)

w| B-Be¥ +<(B) = ¢}

v thJ . ULr-l = W, One of

nfinite. Define the columns of

be empty if p ¢ L, and for
as an arbitrary sub-object of
8 levels L - p (i.e.,

+(p)

Z NnY ) n ?(0) £ 0} =1 -p).

(Z, ZIn) e (¥, ¥In) « «(¥Y, Y]n) where

clearly (Z,Z]n) reduces .
Construction IIb(ii), A# K and A
Z € km such that (Z, ZIn)e = (¥, ¥
We,c e (% &)y (md) = m(E) > (B)
Let é = {D ¢ Ly, % + D - D is a root
N Y, A). g, .
= {D g (A: K) v D = ﬁ?(D)}

and now inside Y

Z1n) «e< (Y, YIn)

-~ rd
A= A means

are in the same column of Y.

S0 n e L (vacously)

these sets (call it L)

——

Z € kw by letting

pelL define
Y{p>(in the sense of XK )

Since n L,

Z e'kw and

= Y'\n,_ We want

n) and
=4(C)).
of ?}
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Note that any Xee¥, X e kw such that
(Vx € X)(x is a root of X + x is a root of ¥) will satisfy

(YD < X)(m (D) = 7m (D))} and
Y

(X = {D € Xs A. :D - D is root of X}. A sequence of

t
2

objects € ?(.w is constructed for t e w-n  beginning

n
with Z =Y and satisfying:
t
(i) For any B,C € (z)

t
Z

in

(r2(B) = % (C) 1t)  +e(B) = <(C)

t
7 7

t+l  t+l t ot
(i1) (2, zlt)e<(z, 2|t)

t+1 +
(iii) every root of VA is a root of 2.

.Recall for any (X, XIn)e= «(¥, ¥in) and any D ¢ (i, ﬁ)
2

the definition of 173'2(']3) requires X|n < 7m#(D) . Hence

n 7 R n
for Z =Y there is no D € (,é) such that wg(D) = Z]n
i/
n
and condition (i) is satisfied vacuously by Z.
t t+1

Given Z satisfying (i) the construction of Z which
satisfies (ii) and (iii) is essentially the construction of
case I, but this time it will not be necessary to translate

all the way back to the category C.
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P

7/
Given a fixed D e (3) such that (w *(D)) =

t
ki VA
Z

Tt

)

put b= m(D) ¢ gm (not F) and to simplify notation

(il

) Note that

Ju
@
+
>l

[}]
[ns]
m
&

E
P
=
0
—I.
=

DnXlt-1 where DececX (in the sense

of ), and D =Xt (since

m
t
(VYa e ﬂ%(ﬁ))(az e z(t - 1))(z < d) . For any finite partition
Z
— X, Xt . . = 7
< (D X%t)-—+ r, case I of this proof gives W ¢ kw

(W corresponds to the Z mentioned at the end of case I) such that
(W, Wit) reduces /<~  and
(Yw € W)(w is a root of # + w is a root of X =~ w is a
root of Y)

— which we have in mind

X, >—<1t)

The partition : (5’ X1t

is defined from . be following the natural 1-1 correspondence

)

—

between (%: g} ) and {B € (g)l n%(ﬁ) = D}.

ot ot

UI ><|
><] ><.‘]

Given E & ( ? ) let <(E) = ~(B) where B ¢ (

L= X|

is the unique element such that E = B u Xt (i.e.,
B=(E-X|t) v A v {the <-maximal element of X(A) where
E=En X18+1 # En X10 }). By following the correspondence

which defined & from «, the fact that (W, W}t) reduces <

implies
VB,C ¢ (i‘
f A % — —
if  we(B) = 17%(0) =D and B,C 2W then «(B) = (C).



115

t
Recall now that X was duplicate notation for Z and
— * o~ ‘ ) E . . LA ¢ t
D = wt('D) - where D e (}5) satisfying (T\'_‘E(D)) = Zﬁt
Z YA

t
was fixed. By repeating the argument which produces Wee?

for each of the (at most finitely many)-distinct 'cominimal

t
completions', D = ﬂ%"(,ﬁ), where D e (2) satisfies
Z
~ , -t + - - -
(Tr?'é(D)) = Z)t, we construct a finite chain of sub-objects
Z
t t+1
of Z. The last of these sub-objects, we call A and
t+1
Z € ?{w satisfies:
T+l t+1l t t
(i1 (2, z1t)ee<(z, 2)t)
t+l T+l t
(iii) (Vz & 2 )(z is a root of % + z is a root of Z)
t
Z
¥V B,Cc ¢ ,&)
. PR ot t t+l
if  (m(®)° = (@2} = 2]t and B,C = Z

A Z

then ~(B) = ~<(C).
t+1

. Z
Given B,C e (A) such that

t+l
A ol L - - &
Z Z
t+l

T
(iii) for Z , we have ﬂ;';(ﬁ) = n%(e) :—‘_-Z]t+l. Either
YA Z
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L ~ T
( wi(B)) = (ﬂ%(c))’ = Z1t » in which case % gives
Z Z t
A(B) = «~(C), or w%(ﬁ) = ﬂ%(ﬁ) < Z1t, in which case
Z Z
t T+l
property (i) for Z gives ~(B) = «(C). Hence Z

t
satisfies (i) and the inductive construction of the 7,

t e w ~-n, can continue.

t
Having defined the sub-object chain Z for all t e w~-n,
m‘t t —
put 2= () 7= téﬁinz]t and note that Z e X,  satisfies

(Z, ZIn) e <(¥, ¥in) and

Yz ¢ 2)(z is a root of Z = z is a root oflf),

7, A

A,.N) satisfy ﬂ%(ﬁ) = ﬂ%(ﬁ), We want

Let D.E ¢ (

to show (D) = «(E). Put B = FZ(D) and C = nZ(E),

Note that since roots of Z are roots of ¥ in fact B = 5_(D)
Y

and C = 1 _(E). We have B,C ¢ (Z) and

4

ﬂ%(ﬁ) = ﬂ%(C). Hence for some t g W -n

=

2
DN =
~
(ov)d
St
n
=)
BN
-~
=)
p -
1§

t
; ~~ ) t
B,C ¢ (i) and w¥(B) = 7%(C) € 2t so «(B) = «(C).

Since B,C,D,E ¢ (Y"%) satisfy w_(D) = w_(B) and
? : Y Y

m_(C) = v _(E), property tt gives fihally
Y Y

«<(D) = @©(B) = ~(C) = ~(E). T[]



Lemmas 6.12, 6.13, 6.1% are proved by exactly the same

arguments whiech prove their counterparts back in the category

Lemma 6.12 (= Lemma 2.7 for the category Cw)

Let 4 = ?m’ Y € ﬁé—w and n e w satisfy
(1) Vace (j) (A = AnYn# Ao Y{n-1)
(ii) V A,B ¢ (‘Z) (A" = B° — A is isomorphic to B)

For any finite partition /c:(é)——r r there exists

—

X e ?(m such that (X, X]n) weakly reduces ,t.

Lemma 6,13 (= Lemma 2.8 for the category Ew)
Let § <= '&"w, Y e kw and neuw satisfy
. Y ’
(1)VA:~:(£) (A gAnY]n-l)
(ii) VY A,B ¢ (AY) (A" = B’ -+ A is isomorphic to B)
For any finite partition A::G)-—)- r there exists

Xek such that (X, Xin) weakly reduces m.
w

Theorem 6.14% (= Theorem 2.9 for the category -C—w)

Let 4 <= §w’ Y e ?{Hw , N € W, Ce '_&-w satisfy:
(1) Cec¥in, C £Y¥n-1
(ii) VA e (E) (A nYln = 0
(iii) V A,B ¢ (z) (height(A) = height(B))
(iv) (fm e w)(/A,B & (E’))
(Alm = Bim - Ajm+l is isomorphic to B]m+l).

— there exists

For any finite. partition (t::(éY

X e km such that (X, X]n) reduces re.

Theorem 6.15 (= Theorem 2.10 for the category Ew)

—

For any Y ¢ ?(m and any A e.?w and any finite

partition /c(YA)-—-r r  there exists X e ?Cw such that

X 1reduces .

117
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proof: By using isomorphic copies of Y and A (if

necessary), we can assume A =<Y where Y is a substructure

of <Tw;°ﬁ)> and satisfies (e w: Yo de) £ 0} = w -~ 1.
Let ?(0) e K satisfy {e w: Y(0>(\ Tm(l)# 0} = w
and Y(O)cctrim). put T =7 vy, Let E=A4u T (0),

When structured by inheritance from <Tm;0w> clearly

A ¢ 3&, Y e kw and there is an obvious 1l-1 correspondence

(L T3] e (Y).

. - 7. 71 - - - -
Given Belx L1] 1et BB = (B - ¥]1). lLet C = 911,
A 71

=<

%%), The conditions of Theorem 6.14

<]

n=1, and 4 = (

>
H

—

are satisfied giving X ¢ kw such that (X, X]1) reduces ...

et X = ¥ - X902, Clearly X e'kw reduces (. []

Theorem 6.16 (= Theorem 2.1l for the category Cm).

Given Y e i@ and finite n>11, let

A_ = {X]n: (x;x11)<: <(Y,Y11) where X € Q@}

For any finite partition /C(AY) — v there exists X e ?(‘w
such that (X, X]1) reduces .
proof: This follows from Theorem 6.14 just as Theorem 2.11

follows from Theorem 2.9. D



CHAPTER 7

ULTRAFILTERS CONSTRUCTED ON TREES

Let Y e kw be a fixed object and let
U= {s =2Y:3IX € iw , XeaY and X =8}, Since any partition
’C:(§1l> —_r 2 can be reduced by some Z e Kw 3 & is
a co-ideal on Y. If every X ec¥ where X e 2@ has
nodes of arbitrarily large degree, then every S el
will clearly have infinitely many distinct types of pair,
triple, etc., so we ha?e the partition property J +— Eﬂ]g
for 2 < n < w. If, on the other hand; there exists
XeeY such that {degx(x)lx e X} is bounded, then by
partitioning the nodes according to degree and applying
Theorem 6.15, there exists Z<==Xe<cyY, yAN> ?-('w such
that for some fixed d e w (Vz e.Z)(degZ(z) = d). For
such a uniform Z put deg(Z) = d. Since any sub-object
Wee?Z where We Ew also satisfies deg(W) = d,
W is in fact isomorphic to Z. Hence the partition properties
of @ZZ = {8 € Z: JW e}!‘(w s WeeZ and W 2 8} can be
determined by analyzing the finite substructures of the

uniform object Z.

Example 7.1 If deg(Z) = 2, a pair . {x,y} ¢ [2]2,

is classified aécording to the isomorphism type (in the sense
of '?&) of the A-closure of {x,y}. Since each column,

Z(p), of Z is iéomorphic to AELHE as an object of ﬁl,
the type of any intra-column pair, {x,y} € Z(P) for some

P € w, is one of the 7 possibilities enumerated in

119



Example 2.2. The possibilities for the type of any inter-

column pair, {x,y} such that x ¢ Z(P) E vy € Z(q)

where p # q, are enumerated as follows:

{(0,0), (1,00}

’ » {(D?: <1:0>}

1

A -closure {40,0),{1,0,0)}
{€0,00, ,0,0, 1,0}

N

* R = A-closure{(0,0),(l,O,l)}
{40,0) , (1,0,1) , 1,0}

/ ° = A-closure {{0,0,0%, 1,0}
{40,0,00, 1,00, €,0}

n

. ° -closure {(0,0,1),{1,0)!}

{<U:0,l> :(1:0> :(0:0>}

1]

Hénee ifzt-—-r [b’z]is (where Z e’?ﬁw , deg(Z) = 2).
More generally the finite substructures of Z which are
closures of an n-tuple can be counted to give a finite
number, ¢(n), which satisfies .ﬁz I——*E,ZIZ]E(H). Assuming
CH there exists an ultrafilter W . on Z such that

u = .EIZ. and W satisfies these same partition properties

but we are not quite ready to apply Theorem 5.10.

lemma 7.2 Given Y ¢ ?-(hw such that My « Y)(dng(y) > 2)
let M= {S =7Y: (3Xefw) (Xe=Y and X =2)}. H is not

countably -complete.
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proof : Let- w = nLé:ijn be a partition of w into
infinitely many disjoint infinite sets. For each m e w
_ . (p)) _
let Rm = QLE:JLmY(“ satisfy Vp (IRm ny | = 1),
By an easy inductive construction (using (Vy € Y)dng(y) > 2)

we can also assume (Vr,r" € m%Jme) (r 427 & r’ % ).
(p) '

Given r e mléJme, suppose . r € Y n Rm and
let X, € X  satisfy X, < cY(p) and

(X, n Y(0) #0 « el & dye ¥ (rxy). Put
B, = U{Xr[ r e mL§Jan}' We claim B_ € [  for all n e w.

We know Rrl = xLé)L Y4 satisfies (Vp € w)(IRn n Y(p)l = 1),

n
so beginning with RN y(0) . {ro}, a sequence

(ri;'iem> = Rn can be chosen such that

(Vi ¢ w)(r'i KT, & PLAPy . T ri). Let
tn = {{¢ w: for some i, r. € Y)Y = L_, and for each
iew let Er e K satisfy

i

X, ez X, & (’ir_n YO # 0 (leT ¢tdye Y(f)(ri<y>>)

i i i
Put X = iLijxri » SO0 clearly X e ?{w and XecyY
(see lLemma 6.11). Since X e U x eB we conclude
raRn r n
B e .
Clearly BO 3 Bl? Bzg--'. Suppose B e ¥

satisfies V¥n (B - B) § J, and we may as well assume

B <B and B = X for some Xe?(m, Xeca ¥y,

0
Let x = root(XCO))

x(0)

and let L ={le w|.X n Y({) # 0}.

Now = BO’ so for some re UR X e Xr' Since

" mEw m’
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distinet ©r,r’ € U R are =<-incomparable,
mEw m
X € Xr & X(O)s B0 > X(O)c_z Xr" For some m e w,

reRm and {fsm:XPnY(X):fU}sLm Yo} LsLm.

But (V le Lm)(Bm n Y(4) = 0) and hence Xn Bm = 0.

+1 +1

contrary to X - B ., 7.11 [

This counterexample to countable completeness of
is based on the fact that there exist W,X ¢ 7(;) such
that WeceaY, Xec¥, and Vn (Wn ¥(n) 0 =X n ¥(n) = 0).
Given a fixed Ramsey ultrafilter ® , the smaller co-ideal
{s =Y: (IXx ¢ ?zw)(chY ¢ {few xnvdd) #0e®R ¢
X = 8)} avoids this counterexample, while Theorem 6.15
can be strengthened to prove partition properties for this
smaller co-ideal.
The method used to strengthen Theorem 6.15 is applicable

quite generally and is based on some descriptive set theory

and a theorem due to Mathias [6].

Definition 7.3 A class of infinite sets A. = [w]w. is

Ramsey iff 35 e [w]® such that
([s]¢ =4 or [s] = [wl® -A).

A topology is induced on [w]w by identifying each
s e [@]¥ with its characteristic function, A € Yo,
where the topology on Y2 is the Tychanoff product

topology and 7 is the two point discrete space. Silver
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proved [9] that every analytic set ;J, = [wa is Ramsey.

Mathias strengthened this result.

Theorem 7.4 (Mathias [6 ])

Let (R be a Ramsey ultrafilter on W, If
A = [w]¥ is analytic then
(Is e RI([S]%e d or [s]® = [w]® -4).

Corollary 7.5 If the analytic set A is_in addition dense

in the partial ordering <[m]w, c_‘-> ,
(i.e., (VT ¢ [w]®)(Is ¢ 4 )(S 2 T)), then in fact

(35 e R ) such that [s] e £ .

proof: Since Sef® is infinite and ;t{ is dense .in.

[w]®, [8]1%< [w]®” - 4 is impossible. []

Theorem 7.6 Let ® be a Ramsy ultrafilter on w. For any

Y e km , Ace ?w s, and any finite partition c:(g) — 7

——

there exists X € ?{w such that X reduces and

{Lewl X nYUh) £ 0} e®R .

proof: Let A = {Lewl (Oxe ?w )(X reduces ~ &
L={lew XnYU)#0}} Using Theorem 6.15, is o
easily seen to be dense in the partial ordering <[w]w, =.=_> .
The theorem will follow from Corollary 7.5, once 9& is shown

to be analytic. For this we use the basic fact from



descriptive set theory which identifies the analytic subsets
of [w]® with the £, definable subsets. There are
many ways to state this fact precisely, and here we will
give the minimum of detail for a formalization most suited

for use in this proof.

2
N

natural numbers. N (or w), which has first order variables

Let L be an applied second order language for the
n,s,t,u, etc. ranging over w and second order variables
S,T,U,ete. ranging over [m]w. A set S [m]w can
be regarded (by some fixed scheme) as the code for a countable
sequence, <(S)n: n e w> s oOf sets (S)n € [}Jw. The
language L§ includes a parameter for the decoding function
(which takes a set variable, S, and a number. variable, n,
as arguments to give the set (S)n ). A number s € & can
be regarded (by some fixed scheme) as the code for a finite
sequence of numbers <(s)n: n e fh(s)> where ﬂh(s) E W
is the length of the finite sequence. There are parameters
in Lﬁ for the length and thé decoding functiohs (which
take number variables as arguments).

The enlarged language Lﬁ has in addition, constant
parameters for all s e [w]”.

We need a formula of Lﬁ defining 4 <« I}ﬂuh which
begins with a second order existential quantifier and all
other quantifiers are first order. Here is our previous

definition of A. stretched out somewhat:

Le A iff 3s ¢ [mﬂm such that § is the code for some
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X which satisfies,
vé (i) X is a substructure of Y
(1)  (Vx & X)(degy,(x) = degy(x))
(iii) (VB,C ¢ ?w)(B,c € (i) +2(B) = c(C))
(iv) (Ve w(le L «Ixexaqrvd)

Let £t Ye» w Dbe a fixed bijection. Put ' Y = £(Y)

= We
t . - - . *
. e . Y Y Y Y Y , Y
and induce the structure <¥;-<,< ’<<’;<h"\’é )ﬁew SO
that f is an isomorphism. Although <? = WwXw,
¥

AT < wXwxw, etc., by coding finite sequences as singletons
we can regard these as subsets of w. In this sense, <Y;Uw>
has been coded as a countable sequence of subsets of m.- :
This sequence in turn is coded by a single set which we refer
to with the constant parameter I . As an example, we
illustrate a formalization of the assertion that as a
relational structure, X is a substructure of Y.

Vs,t (s € (8), = s e (D) ¢
(Ys)(Vt > 0) (s e (0, & Vi< {h(s)((s); & (S))) +s & (8),
With parameters A and , which refer respectively to |

—_—

codes for the structure A€ 3b and the partition
/c:(z)-—+ r, the clauses (i) through (iv) can be formalized
without the use of second order quantifiers. Hence s& is

definable by a £, formula in the language Lﬁ and A is

analytie. []

example 7,7 let ¥ € i; be the uniform objéét of deg(Y) = 2 and
= (s ey @XeKPX=esy & {hew| X nYU) £ 0} eR ¢

X =8)}, where R is a Ramsey ultrdfilter. Then by Theorem 7.6
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and Example 7.l we have Jft— [ﬁ]is

Lemma 7.8 Let ® be a Ramsey ultrafilter on w. Given

———

Yel let H=1(5cv: AxeR)X=cY &
(lew xnYd) #0} e®R & X e8)}. & is a countably

complete co-ideal on Y.

—

proof: Given any /t::(g]l) ~—r 2, Theorem 7.6 gives X € 7{(»

such that X reduces « and {lew: xnyld)#0} e ®
so ¥l is a co-ideal on Y. Let SU o Sl 2 82-:-3 be a
decreasing sequence where (Vn ¢ uu)(Sn el ), and let

X, =8, satisfy X e g, X e=Y, and

VoVl (X YA #0 »x nYd) #0). Wewill find X eff
such that X ecY and (¥n e w)(x - S, ¢4 ). Define

f:w — w Dby induction beginning with f(0) = m such

M and put Ly = %y a YW v # o),

Having f(n) and L, define f(n+l) = the least m such that

that xéO) e Y

(i) m > f(n)

.. (m)
(ii) Xn+l ny £ 0
fesis e (m) -
(iii) {{: Kogp 0 Y nydd) # 0} 5 L.

- . (m)
Put Loy, = U X .00 Y n vy # 0}, Note
Vn (L eR 81,,SL &n¢lL, &ngfn)<fnil),
Since anLn =0 :and L, - Ln+1 # 0 we can define

g: Ly —»w for t e I_.U by g(t) = n such that

tel =L Define the partition /c:[LO:[Z +~ 3 for

n+l"®
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s,t € L0 and s < t by
0 if g(s) < g(t) & s < f(g(t))
c({s,t}) = 1 if gls) < g(t) & s 2 f(g(t))

2 if g(s) » g(t)

Let Le ® Dbe homogeneous for ., and let s € L be
the least member of L. If /C”[L]2 ={2}, then
(Vt e L - {s})(g(s) > g(t)) so for some n £ g(s),
L - L€ i contrary to L ,L ., € ®R .

If  <“[L]? ={1}, then (Yt e L - {s})(s » £(gl£)))
and since  f(g(t)) > (g(t)) this means s 2> g(t), which
gives the same contradiction.  Hence ;c”[le ={0}.

For any s,t € L, we have s e L and t e L

g(s) g(t)
(by the definition of g) and if s < t then g(s) < g(t)

so Lg(s) 2 Lg(t) gives t € L That 1i1s L -s ng(S)

g(s)’
n Y(f(g(s)))

and for each s e L we can find x° c::Xg(S)
(a sub-object in the sense of?i) such that
(e w | X*n vc). #£0} =1L - s, Note that these X° ave
sub-objects of distinect columns, Y(f(g(S))) of Y, and the
root of X% is on level Y(s). Let X = ;Eixs be
structured by inheritance from Y. We claim
(i) (Jew xnavch £0}=1¢Q.
(ii) (Vx ¢ X) (degy(x) = deg,(x))
(iii) (¥ fe L)X n Y(!) contains exactly one root of X)

{iv) X is a sub-structure of Y

(v) Vnx-s)¢lt.



(i) is clear.
(ii) follows from the sub-object condition

N Y(f(g(S))) on the columns of X.

S

X e= Xg(s)
A root of X 1s a root of some column of X so (iii)

follows from {fe w| X5 n Y) #0} =L -s and (i).
Since X is the union of columns X° which use levels

L - s, to show closure of X under A it suffices to show

(Vx,y € X)D{(x <<y & yis arootof X +x Ay = x). But

X << y means for some s < t e L, x & Y(s) and y & Y(t).

N p(ECE())

Since y is a root of X, y € Xg(t) and hence

(f(g(t)))_ But s <t +sg < f(glt)) so

(£(g(t)))

y e¥X
x e Y(s) & yveY > x Ay = x, Since X 1is
closed under A, X is a substructure of Y.
By the construction of X .
X -8 e Uix®: s e L & g(s) < n} and since
(Vs,t e L)(s <t = g(s) < g(t))  this means X - s, is
contained in a finite union of columns X° so X - S, ¢ ¥ .
Condition (i) through (iv). show Xe (using

Lemma 6.9) and with condition (v) the countable completeness

of has been demonstrated. []

Theorem 7.9 (CH) There exists an ultrafilter W which

satisfies W = ﬂﬂié.

proof: Lemma 7.8 shows that the co-ideal, # , of Example 7.7
is countably complete and Theorem 5.10 gives UWesH sueh

that U — [u]:st' ]
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The basic technique which gave U = [ulié above
can be modified in many ways. Most trivially, the construction
can be carried out in the context of a uniform ohject Y e E@
of .deg(Y) = 3 (ete.) in which case an ultrafilter satisfying
U +—s [M]%Z (etc.) . is produced. Additional pfoperties of
these ultrafilters can be discovered by looking more closely
at the construction procedure.

We need some standard terminology for discussing ultra-

filters on countable sets.

Definition 7.10 @Given an ultrafilter Ul on the countable

set S and functions ¢ and g with domain S ,
f is one-one (Mod W) iff (X € U\)(f]x is one to one)

f is finite-one (Mod W) iff (3X e YW I(f{X is finite to one)

is infinite-one (Mod W) iff f is not finite-one (Médli)
T g (Mod W) iff (3x e U Y(Vx,y e (£ = fly) ++ g(x) = g(y))
<g (ModW) iff @Ox e U )IXNVx,y e X)(gx) = gly) = £(x) = £(y))

< g (ModW) iff f« g (ModW) and £ £ g (Mod W).
is principal (Mod W) iff Tx e U ) (Vx,y e X (£(x) = £(y))

Hh H +h th b Fh

is trivial (Mod W) iff £ is one-one (Mod W) or f is
principal (Mod W)
W is a p-point iff every non-trivial function f on S is
finite-one (Mod W) |
WU is a g-point iff every finite-one function is trivial (Mod W)
Given a map fi S— 87, the image of f,

/ ’

f(U)Y = {P & 8" f—l(P) e U 1}, is an ultrafilter on S .



Given an ultrafilter V¥ on &', theRudin-Kiesler relation
vV« U  holds just in case there exists f: S— §°
such that f(W) =V,

The ultrafilters U and V are isomorphic iff  there
exists a bijection f: Se» 8§’ such that FCUY =V.

The notation V < U indicates VY« W and VYV # WU.

The Rudin-Kiesler relation, « , on the class of ultra-
filters on w (or on countable sets) 1is reflexive and transitive.
The minimal (non-—principalj ultrafilters with respect to
K are the Ramsey ultrafilters.
£f¥ g (ModU) -+ £(U) = g(U) Dbut not conversely.
F<g (Mdl) + £CU) < gCUW)

Definition 7.11 The level projection map, mp: T, T,

is defined for t ¢ Tw by 'rrl(t) = n such that t € 'I'w(n)

(i.e., myp (t) = [t] - 1), The column projection map,

Ty Tw —% W, is defined for t € Tw by 'rrc(t) = m
such that t e T(im)e

Lemma 7.12 Let Y ¢ ?{w be a fixed canonical object and

let = (s s Y|(3X € ?Zw J(X=eY €& X =28)} Any ultrafilter
W on Y such that U s will be a non-p-point and

a non-qg-point.

roof: i i i onsi d
proo Since Y 1s canonical we can consider “l an 'nc

restricted to Y and its subsets. T is finite-1 (Mod W)
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but not (1-1 ModW ). T is infinite-1 (Mod W) but not

principal (Mod U).

Lemma 7.13 Let Y e km be a uniform object with deg(Y ) = 4
and let I = (s e Y| (IX e?zw)(.XCcY & X =8)}. Suppose
an ultrafilter Won Y satisfies U = 4 and
(Va € -\’-,Fw)(A =<Y €& A is the closure of a pair in Y ~ for any
finite partition /C:(X)'—* r)HX E:?Zw n U such that X is
homogeneous for .c.)

If f with domain S is non-trivial (Mod W) then either
£% m (ModU) or T,
are Ramsey ultrafilters.

< £ (ModWy, T (W) and r (U

If d=1 and f is non-trivial (Mod W) then either
f = o (ModW) or f = my (Mod W),
If d =2, f and g are non-trivial (modW) and

T « f (modU) and Ty < g (ModWU) then f T g (ModlW).

proof: Define zc::[Y:[2 — 2 for a pair {x,yl} by

0 if f(x) = £(y)
c({x,y}) =
1 otherwise

Since Y is uniform, there are only finitely distinct Ae ?w

such that A <Y and A 1is the closure of some pair

{x,v} ¢ [Y:[z, For each such A e 3‘” a partition (c: (X)-——* 2

is naturally induced.from .c: [Y]2 -—r 2, and finitely many

applications of our partition assumption gives X e 'k‘.u n U

such that for every such A

-, X
)/c is constant on (A) .



132

case 1

Suppose there exist x,y € X with x <<y and f(x) = f(y).
Put A = A-closure of {x,y}, so ,E'Tz)‘= {0}, Put

Z = {z ¢ X: y £z} and note Nz e 2)((A - {yh v {z! ¢ (i) )
But 7 is a sub-object (in the sense of’iﬁ of some column

of X, Since Y 1is uniform, so are X and Z with

deg(Y) = deg(X) = deg(Z) = d. Hence every pcssible type, B,

of intra-column pair which ocurrs in Y (= the isomorphism

type of the A-closure in the sense of jl orffd is represented

by the closure of some pair {z,2"} ¢ [212, Since f(z) = f(z2'),

B

AE‘(X)= {0} and we conclude (Vx,y ¢ X)(m (x) = 7 _(y) +£(x) = £(y)
80 f < To (Mod U).

If f<m (Mod W) then for some x,y € X we have
f(x) = £(y) and ﬂc(X) = Trc(y)° Using our case 1 assumption
we can also assume this =x,y satisfy x << y. But with

A = A-closure {x,y} we note that every pair of columns

X(R), X(m), l#m has x’ ¢ X(f) and y ¢ X(m)

X
A:

principal (Mod ). Since we assumed f was non-trivial,

such that

A-closure {x .,v'} ¢ ( ), so f(x") = f(y") and f is

To T Ff (ModWU).

case 2 (Vx,y e X)(x <<y ~» f(x) # £(y)), That is

(Vx,y £ X)(f(x5 = f(y) = ﬂﬂ(x) = ﬂﬂ(y)) or ﬁl < f Mod (U,
Suppose the f above is f = gem, where gl —r W,

Certainly for some %X,y e X (x <<y & 'gowc(x) = geﬂc(y))

so the case 1 shows that goT, is either trivial (ModU)

or gem, = T, (Modll), so g is trivial (Mod ﬂc(ll)) and

ﬂc(IL) is Ramsey.
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Suppose f above is f = gemy where g:w— w,
Then (assuming ge-w is non-trivial Mod U) either
Ty = g°ﬂ£ (ModU) or my X g4y (Mod ) But T, T gy (Mod W)
is impossible and T K gemy (ModW) = g is one-~one (Meod WI(L{))
SO wﬂ(bk) is Ramsey. _

Suppose d = 1 and ﬂ1 X f (Modzl) where f 1s non-

trivial (modl) and X is as above. Any pair X,y € X

such that nﬂ(x) = m(y). has the type o

B, = {<0,0>,<1,0>} £ ?& and since d = 1, and by our
— _
assumption on X, either (g) = {0} or =~ (g) = {1}
. 1 1
But /EJ(g ) = {1} =+ f is one-one on X and hence trivial (ModU).
1

Thus 25”(? ) = {0} and m = £ (Mod U).
1

Suppose d = 2 and 7w <f (ModW). Any x £y e X

such that my(x) = 7, (y) has possible type B or
4 2 1 -

T —'.X -
B, = {€0,09,40,1), <00} =AeF . If (Bl) = {0}
then /5’(? ) = 0 since the d = 2 assumption implies the
2

existence of distinet x,y,z € X such that {x,z},{y,z} ¢ (g )
- 1

and A-closure {x,y} e(g')o Since 1? < F (Mod W) entails
2
T # £ (Mod W) we conclude En(g )#{0} and any non-trivial f
1
such that ™ < £ (ModW) is characterized by

Vx,y € X) (£(x) = £(y) > {x,y} ¢ (;; ) Y. 17
2

Remark 7.14 Obviously tHg technique used to analyze the
cases above with d = 1 or d = 2 is applicable also to the

case d > 2 and similar results are obtainable.
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Theorem 7.15 (CH). Let R be a Ramsey ultrafilter on w, and

let Y e kw with ’
b= {s Y| (I, sﬁw)(Xm:Y g X=S & {le w XnYci)#O}é(R}.
There exists an ultrafilter W on Y such that U E‘Zf and‘

for any Ae ’-‘fm and finite partition -c: C_\'r) — 1

X € ?—{w such that X is homogenecus for .

Remark 7.16 Any such W is a non-p-point, non-g-point. If

Y is also uniform then for any non-principal Vv
(Vv <= UK+ V= 'nc(u) or m{WU) <V ) and there is a
function ¢p:w — w (depending on deg(Y)) such that

U WS- TFa=1, Um [W2. Tra=z, U— [,

proocf of 7.15: There are only countably many A€ ?w such

' Y .
that (A) # 0 , so using CH let <cY.Y E wl> be an
enumeration of all finite partitions (c: X

A g gwu Let AY denote the type of the object being

)-——3-' v for all such

partitioned by fcy., Let <Syzy € ml> be an enumeration of

the subsets of Y. Just as in the proof of Theorem 5.10, a
basis, <BY:Y £ wl> » 1s constructed for U by induction.

Let By ® Y and having BY we use Theorem 7.6 to

find B such that

v+l

(i) By+l e I

(ii) By-!-l = BY
(iii) /cY is constant on (X )
Y

(iv) BY+1 s SY or By’rl =Y - Sy,
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For a limit ordinal X e w having BY for y < A

l"
use Lemma 7.8 to find BA e &L such that (VY eA)(BA - B'Y ?# ).
<By:~( £ wl> is clearly the basis for an ultrafilter

on Y which satisfies the requirements of the theorem. []

The combinatorial theorem used to produce the ultrafilters
of Theorems 7.9 and 7.15 was essentially Theorem 6§.15 although
for countable completeness a strengthened version (Theorem 7.6)
was actually used.

Recall that the motivation for stating Theorem 6.15 stemmed
from consideration of a co-ideal Yo ‘210 where 4 = [w]¥
and ﬂo was a co-ideal on some X e X . L® &0 is
automaticahly countably complete, so our attempt at formalizing
the partition properties of H® &0 in terms of Cw and
Theorem 6.15 has not entirely succeeded. The category C’w must
be modified to deal with the combinatorial properties of Hip vﬁo.
In Chapter 3 the category C and Theorem 2.10 were modified
to produce categories Cl’ 62’ and CB with their associated
partition theorems. The situation now is analogous with C’w
and Theorem 6.15 playing the role of C and Theorem 2.10.

Actually we are not so interested in modifying the category
Cw as we are in the ultrafilters constructable from such
modifications. Hence, the formalization of new categories will
be omitted and we go directly to the construction of ultrafilters.
OQur constructions will give very specific examples from which

similar results can be inferred using the same techniques.



Lemma 7,17 Let 4 be the co-ideal [w]w and let Y e K be

the binary tree, deg(¥) = 2, Let
Y, =15 2Y: (I eK )Xe=Y & X =5} Then

J® -ZIU — [¥® ﬂo:lilz_O‘

proof: First we must show that for every Se H@ &0 and
every partition (t: [8]2 —+ 11  there exists Z.e 4 ® 'ﬂo
such that |ec ”[Z]zl £ 10.  But for any SECh S there is an
injection lP:‘.' w X Yo+ 8 such that for any P € & ﬂo,
PP e 4@ ‘Zﬁob Using ‘P—l, the partition & can be
.pulled back to a partition of [w X Y_]2 and by following

‘P—l
partition rt: [w X Y:|2 + 1l.

and ¥ it clearly suffices to consider the case of a

Let Y ¢ ?(w be the unique object such that deg(Y¥) = 2,
and let ¢: w X Y==>Y be the unique bijection such that
Vn e w) ((¢'!{n}xy=-:—->?(n)
Vy,z ¢ Yy <t

is a bijection) &
Z — ¢(n,y) <Y ¢§1},z)))¢ Following:

the correspondence - d::w x Y + Y the partition .c: [?]2‘"—* 11
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is induced from ¢, and the co-ideal bife) ,&0 = {¢"S: s e d @.ﬂof}

is induced on Y. For any A ¢ f% such that A 1is the
A-closure of some pair {x,y} € [Y]Z we regard £ as a
partitien of (X) in the usual way. Using Theorem 6.15

finitely many times we find X e kw such that X =Y

As in Example 7.3 there are 13 possible types, A e?m )

=

and for all A e ?m ~ as above,  1s constant on - (
of
pair {x,v} € [f]z, : consisting of the 7 intra-column types

and the 6 inter-column types. Note X € J® .ZIO.
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let L={few: XnT) £ 0} and let L = nLe)wLn
be a disjoint decomposition of L into infinite sets Ln'

n

For each n, choose some Z ==§(n) .La sub-object in the
fa— n —_

sense of ) such that (z n¥) #0 +feL) and

n n
Wz e 2)(VxeX~-2) (x<x2z +x =<Oz). Put Z = Uﬁ.

Clearly 7z e H® 'UO and inter-column pairs of the three types

{0,07,,00}

e
1]

A -closure {(O,D),(l,(),l?}

e

A -closure {{0,0,1),{1,0>}

do not occur in Z (see Example 7.1 for notation). In this
context, the type of a pair from Z is of course being computed
in X e ?Zw R as the isomorphism type of the A-closure in the
sense of ?w. Since « 1s constant on the remaining

13 - 3 = 10 types of pair which occur in Z, we have proved

ﬁ@ﬁo -——*[ﬂxﬂo.]il . Note that for any Z e MY ® 30,
clearly all 7 intra-column types of pair are necessarily
represented by a pair from Z and so is the inter-column type

, = {(0),(1,0)}. It is also easily seen that at least one

of the types from each of the sets

{7, "\ }
and
{7 ", N}

is represented in Z. This gives a classification of pairs [?]2
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into 7 intra-column and 3-intercolumn varieties which are

essential to any Z ¢ KM@ 210, and thus
2

Remark 7.18 The method used to verify the partition property

above is essentially the same as the method used to obtain the
results of Chapter 3 but without defining a category here, the
discussion is much less detailed and formal. It is clear how
to build a category formalism to handle fhe partition properties
of the above co-ideal. Such a formalism is perhaps neceséary
for an unambiguous statement of the partition properties of

H @ 210 with respect to n-tuples, n > 2. For the sake of
brevity we will confine our attention to partitions of pairs
where a detailed analysis is especially interesting because

of the implications concerning the Rudin-Kiesler relation.

Theorem 7.19 (CH) Let ¥ eX, be the uniform object

with deg(¥) = 2. There is an ultrafilter U on ¥ such that

U — EM]%O. WU is a non-p-point and a non-g-point. For

any f: ¥ — w, either f is trivial (Modal), Ty < T T £ (Modal)

or £ E-"c'<“i (Mod U ). wé(1l) is a Ramsey ultrafilter.

proof: The co-ideal d® 'HO or I ® ﬁo from the

previous example and Theorem 5.10 immediately give an ultra-
filter W on Y such that U +—— Bi]io. The maps
and Ty 'show that N e ¥k 0 is not p-point and not
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q-point respectively. Given f: Y— w, the partition
rc:[sz-—+ 2 defined for {x,y} e ]YI2 by
0 if £(x) = f(y)
c({x,y}) =
1 otherwise
can be analyzed just as in Lemma 7.13 to prove 1% < £ (Mod W)
or f= T, (Moa N). Qut in this case, clearly 7= T (mod W).
Since deg(Y) = 2, for some X & W every pair {x,y} € [X]z
such that HI(X) = nﬂ(y) must satisfy,
(A-closure {x,y} is isomorphic to {<0,0>,(U,I>,(0>} =N e Qrw.)
Hence for non-trivial £ (ModW), m X £ (ModaU) - ™ T £ (ModW)
so either T, < m T f (ModW)
or £¥a,<m (Mal).

wc(lk) is Ramsey be the same argument used in Lemma 7.13. I]

The .same techniques are now applied in the context of the

partition results for the categories Cl,A(iz, and (i3.

Lemma 7.20 Let Yl E %l

be the uniform object with deg(Yl) = 2. Let . Y2 E ﬂiz be

the unique object with binary skeleton, %2 S'RJ_ such that

deg(?z) = 2 (as in Example 3.17). Let Y3 € k.s be the
unique object with binary skeleton ?a > ?ﬁ_ such -that
deg(?s) = 2 (as in Example 3.26). Put

4, =15 ey: W eX)D)(Xee¥ & X =8))
B,=1{8eY,: QX eX,)(Xe=Y, & X =8)}

¥,=18=¥: X el eey, & X =5},

g = []®
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Then
Hol, — [404,)2

dod, — [hald,]}

proof-sketch: It suffices to only consider finite partitions

c: (o ox Yi]2‘_* r (as in Lemma 7.17). Let él e K be
the unique object such that deg(flJ = 2, so (as in the
proof of Theorem 3.6), a partition of [Yl]2 corresponds
(trivially) to a partition of [Yl]z , and by the same
identification a partition of E& b Yllz corresponds to

a partition of [w X il]zu Mecre to the point, partitions of
[w x Yi12 correspond to partitions of [w X ?i]z for
i=1,2,3 as in the proofs of Theorems 3.6, .3.16, 3.26.

With Y ¢ km such that deg(Y) = 2, the natural
éorrespondence between w x ?i and Y induces a partition
o [Y]2-+ r, which we regard as a partition of (KJ for
each A e ?; such that A is the A-closure of some pair

——

{x,v} € Ff]zn Let X e Xk satisfy X <e<Y (in the sense

W
of ﬂ%) and for all A € §; as above, . 1is constant on (X).

¥ has 6 inter-column types of pair which are reduced as in

Lemma 7.17 to three inter-column types occurring in some 7 =X

where (Vm & w)(Z n E(m) e & ). The intra-column types of
(m)

pair occurring in each Z N¥X .are now reduced by some

W e Zn ?(m) from 7 to 4, 3, or 2 types (respectively for
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i=1,2,3) by applying the techniques of Theorems 3.6, 3.16, 3.26.
By following the skeleton attachment maps and the correspondences
between w X Yi’ w X Qi’ and Y, the facts

I,E'{Wmlzl £5-1i and |AE*[m%ﬁwm]2| £8 -1 translate

back to Y@ di — [.ﬁ@ﬁi__[g_i and thus finally
»U® ﬂi — [59927 2 o D

id 8-1

Remark 7.21 There is an obvious alternate proof to the one

outlined above which appeals directly tc the combinatorial
results of Chapter 3 rather than to the proofs to handle intra-
column pairs, while inter-column pairs can be handled by a

new combinatorial argument. The advantage of translating

all combinatorial steps back to the single Theorem 6.15 only
becomes apparent when partitions of n-tuples, n > 2, are
considered. The proof ocutlined above will deal with such

partitions without further complication.

Theorem 7.22 (CH) Let Y e,&m. be the uniform object

with deg(¥) = 2, for i = 1,2,3 there exists an ultrafilter
— 2 . .

(ii on Y such that 'Ui — [l&]s_io TAi 15 a g-point

and a non-p-point. ™y is one-one (Mod ui) and ﬁc(lii) is

Ramsey. For any non-trivial f (Mod'ui), f= LS (Modlii)

proof-sketch: . Let Ye X be the uniform object with

2. Using the notation of Lehma 7.20, we have Y. =Y

deg(y) i

n

for 1 = 1,2,3. Let ¢:w x Y — Y Dbe the unique bijection



which satisfies ‘
Mn ¢ w)((d)'] {n}xY < Y‘(‘n‘) is a bijec’tion_ g
Vy,z ¢ Yy <% 2z « dln,y) <% ¢(n,2)).

For each i = 1,2,3 the restriction of ¢ to w X Y. induces

a co-ideal Ho B, = {p = ¥: (se H® 2. ¢” =P}
on Y which corresponds to the co-ideal b® lﬁi on

. Yo & 7 G 2 .
w X Yi“ Using ® ﬂiw-—-r [ﬂ@é‘l i-.l 8—i and Theorem 5.10:
we have ultrafilters ui = o ¥ i such that

ui — [Ul:'g_l o Clearly T is one-one (Modui). Given
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any f: Y -— 2 which is non-trivial (Mod Ui) let Jrc [Y]Z - 2

be defined for {x,y} e["f]z by
{U if fix) = f(y)
c({x,y}) =
1 otherwise

The usual analysis of «~ with respect‘to every possible type
of pair leads to the conclusion £ ¥ m_ (Mod U;) (the analysis
of an intra-column pair {x,y} in Jeo I 3 such that
e({x,y}) = 0 must be handled slightly differently than
‘in Lemma 7013).0

Since Tr;: is the only non-trivial map (Mod ui>', °~':‘?gnd

e

T is infinite-one (Mod b(i),'U.i {is a non-p-point and a

q-point. [:[

Theorem 7.23 (CH) There exists an ultrafilter W such that

U —r ['L{]E which is a g-point and non-p-point. There is a
map, m, such that (W) is Ramsey and every non~trivial: f

(Mod W) satisfies fT o0 (Modl).
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proof: Let Y € ?(l have deg(Y) = 1 and put
B, =18 =¥: caxE??l)(XCCKE X £8)}. Analyze Yo ¥,
and an ultrafilter U < d& & y ~ as in Lemma 7.20 and

Theorem 7.22. D

All of the ultrafilters construected thus far have been
non—p-points>(except fér the Ramsey ultrafilters) because our
co-ideals have forced T, to be infinite-one (Mod U).
Partition theorems for finite objects can be used to produce
p-point ultrafilters.

The proto-type for such constructicns is the well known

construction of a p-point ultrafilter which is not Ramsey.

Lemma 7.24 . Let S = an)m{n} x (n + 1) and let

H=1{Z<s:¥Ym3In >m l({n}x (n + 10n Zl > m}. ,Zfis

a co-ideal and satisfies [} +— [ﬂ]g .

proof: We will refer to {n} * (n + 1) as the n'th-column
of 8 and (w x {m}) n S8 as the m'fh level of S. Given

a partition @:[S]l — 2, each column of § can be reduced
to the nodes of the majority color in each column and then

an infinite set of reduced columns of the s_amé color can be

found thus showing that H — [ﬂ]lz' and [ is a co-ideal.

Given a partition s [8]2 — 2, S can be reduced

by a simple induction to a set 72 e H, 2 =8 such that



all intercolumn pairs from Z are the same color. The idea
1s simply to fix a point %, say in column n, and reduce
columns n”, n’ > n so that =x paired with any of these
subsequent points is the same color. By considering the
points in each column inductively beginning with {0} x 1,
aset Zeg Y and a partition /Ef[Z]l — 2 are produced
such that for any (n,m) and (n‘, m’) in distinct columns
of Z (i.e., n#n’, sayn < n’) we have

<c({(n,m), (n”,m")}) = <(n). Let Z e J reduce A& and
we have © 1is constant on [Z]l so ~« is constant on

all inter-column pairs from Z. We note that the finiteness
of the columns and the co-ideal property of zl were the only
facts used to prove that there is just one inter-column type
of pair.

The columns of Z are now reduced using the finite
Ramsey theorem for partitions of pairs to get We Z, W e [
such that @ 1is constant on the pairs from each column of W.
Thus a cclor is associated with each column of W, and by
taking an infinite set of columns of the same color finally
we have WeW, We I such that all inter-column pairs
are the same color and all intra-column pairs are the same

2
color. That is b — [ﬂ]a s and by an obvious counter-

example g [ﬂ:[g SO A — [g]g . 0

144
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Corollary 7.25 Assuming CH, there exists a p-point ultrafilter U

such that U — EU]% .

procf: Countable completeness of L (from above) is shown
by forming a set 7 e H by a simple diagonal selection
of columns from a descending countable sequence from g .

- Theorem 5.10 gives (V= such that U Bﬂg and

the fact that Z{ is p-point follows from this partition

property. []

To generalize this construction we can replace the use of
the finite Ramsey theorem by different partition results for

finite objects.

—

-

F

Theorem 7.26 Given A,B € and r e w there exists

C e §: such that for every partition rC:( )-—+ r there

C
A
exists B e ¥ which satisfies B e=C, B is isomorphic

to B and ,« is constant on (i) o

proof: Apply a compactness argument.fé Theorem 2.10. The

technique is illustrated by the proof of Theorem 1l.4. ‘D

Let Ye K be fixed and put R = AEL{n} X Y1n+l.
Note that S = n%b{n} x (n + 1) can be regarded as the
special case of R which results from a unary tree, Y. Put

B = (B =R: VYn(dn > m)(({n} x YIn+l) N B is isomorphic to Y']ny}



iue

The notion of isomorphism here results from viewing each
column {n} x Y{n+l as an object of F . Let
M- {2z cR:3IBe® (B =)}

Given any partition /c:Dﬂj'—ﬂ-Z, Theorem 7.26 can
be used on each column to find Z e @ such that ¢ is
constant on each column. As in the proof of Lemma 7.24% we
then find Z =2, Ze § such that 4 is constant on
[2]10 Thus # is a co-ideal.

Given any /c:[R]2 — 2 there exists Z e GS such
that ~ 1is constant on ail inter-column pairs (as in Lemma 7.24).
The number of intra-column pairs depends on the specific object
Ye X which gave rise to % . For the uniform object,
deg(Y) = 2, we have 7 intra-column types of pair (as in

example 2.2). Thus B @ﬂg

Theorem 7.27 (CH) There exists an ultrafilter U which

satisfies U [u]g .

‘proaf: The co-ideal éL above is countably complete and yields

our ultrafilter as usual. []

- Actually much more can be said about the ultrafilter U
of Theorem 7ﬁ27° In analogy to Theorem 7.19 the functions
f: R-—» w " can be analyzed mod U . Using our standard technique
we find that { has a Ramsey ultrafilter as an image, W is

a p-point ete.



This p-point ultrafilter W such that U +~— [U]g
is the counterpart (using a partition theorem for finite
objects) of the ultrafilter of Theorem 7.19. As a counterpart

to Theorem 7.22 we have:

Theorem 7.28 (CH) For i = 1,2,3 there exist p-point ultra-

filters I&i such that ?&i — [Uilg_i .

proof: The finite partition theorem (7.26)} for F is true

)
~

alse for '?1, &2, and ?3 (and ﬁin) by the same compactness
argument so the construction proceeds just like Theorem 7.27.

The number of intra-column types of pair is dependent on the

—_— —

context F 12 ?2 or ?; just as in Theorem 7.22, while
finiteness of the columns gives just one inter-column type.
‘The p-point property follows from the usual anélysis of

functions Mod 1&1, 0

Although we have been focusing attention on partitions of
pairs it is clear how to build p-point ultrafilters with
partition properties for n-tuples, n > 2. For example, if
Y e 3(33 with bihary skeleton and the.triples in
R = n%t{n} x YIn  are analyzed (by computing the type in
the sense of-'kg) we find»S inter-column types of triple
and 16 intra-column types. With a co-ideal ¥ on R defined

as usual we have N +—— E&]gl . and (with CH) a p-point

ultrafilter U such that A\ +—r [U]gl . In fact p-point

w7



ultrafilters with simultaneous partition properties for all
n-tuples, n € w, can be constructed as in Theorem 7.15.
Our examples of ultrafilter constructions using the
partition properties of various 'tree-like' objects has
demonstrated the existence of ultrafilters with a great
variety of properties. The techniques of construction have
not been presented in a completely uniform manner, however,

and many variations on the definitions of the categories
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C c @2 etc. easily come to mind. There are many l{questions.

. 1°

What is common to all of these categories and their partition

theorems? What are the 1limits to the basic technique being

illustrated by our examples? Can an ultrafilter U such that

U — [u]ﬁ be constructed by these methods for every

neEe w?
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