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Preface

Ramsey Theory is a branch of combinatorics that can (very roughly) be
characterized by the statement

no matter how you color some combinatorical object there will be a monochro-
matic part that is orderly

or, to quote Theordore S. Motzkin,
complete disorder is impossible.
There are already two elementary books on Ramsey Theory:

1. Ramsey Theory by Graham, Spencer, and Rothchild [14].

2. Ramsey Theory over the Integers, Landman and Robertson [20]

These books are elementary in that they mostly do not use advanced
techniques. Within Ramsey Theory, there are two theorems that stand out.

1. Ramsey’s theorem: For all c, m, there exists n, such that, for every
c-coloring of Kn there is a monochromatic Km.

2. van der Waerden’s theorem: For all c, k, there exists W such that, for
every c-coloring of {1, . . . ,W} there exists a monochromatic arithmetic
sequence of length k.

The books on Ramsey Theory mentioned above contain both of these
theorems. By contrast, this book is just about van der Waerden’s theorem
and its extensions. Given our focus, we can cover more ground.

Our goal is to cover virtually every extension or variant of van der Waer-
den’s theorem that can be proven using purely combinatorial methods. What
does it mean to say that a proof is purely combinatorial? We take this to
mean that no methods from Calculus or Topology are used. This does not
mean the proofs are easy; however, it does mean that no prior math is re-
quired aside from some simple combinatorics.
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In this preface and in the introduction we will state many theorems that
can be proven by purely combinatorial methods, and will later prove them.
By contrast, we now give two true statements for which currently no purely
combinatorial proof is known.

1. For all k there exists a, d such that

a, a + d, a + 2d, . . . , a + (k − 1)d

are all primes. This was proven by Green and Tau [15]. They used
Fourier Analysis and Topology.

2. Let W (k, c) be the least W such that van der Waerden’s theorem holds
with this value of W . Then

W (k, c) ≤ W (k, c) ≤ 22c22
k+9

This was proven by Gowers[13]. He used techniques from analysis,
notably Fourier Analysis. This theorem is important since the combi-
natorial proofs of van der Warden’s theorem yield much larger bounds.

Since we only use purely combinatorial techniques, in terms of background
knowledge, a high school student could read this monograph. Well— a high
school student who knew some (though not much) combinatorics and was
very interested in the topic. Several of the people in the acknowledgements
are high school students. Hence we have the following list of people who
could read this book:

1. An awesome High School Student.

2. An excellent College Junior math major.

3. A very good first year grad student in math or math-related field.

4. A pretty good third year grad student in math who is working in com-
binatorics.

5. A mediocre PhD in Combinatorics.
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There are a few chapters or sections that require knowledge that is not
purely combinatorial. These sections have stars next to them.

Throughout this monograph we use the following conventions.

1. VDW is van der Waerden’s Theorem.

2. POLYVDW is the polynomial van der Waerden’s Theorem.

3. HJ is the Hales-Jewitt Theorem.

4. POLYHJ is the Polynomial Hales-Jewitt Theorem.

5. Any of these can be used as a prefix. For example “VDW numbers”
will mean “van de Waerden numbers”

The motivation for this monograph is Walters’ paper [36]. He gave the
first purely combinatorial proofs of POLYVDW. and POLYHJ . However,
his techniques can be used to obtain cleaner proofs of the original VDW and
HJ . In addition, there are many corollaries of these theorems that, because
of his work, now have purely combinatorial proofs.

There is one theorem we will give several proofs of throughout this mono-
graph.

The Square Theorem: For all 2-colorings of Z×Z there exists a square
that has all four corners the same color. (We will state this in a different
form later.)

In Chapter 2 we prove VDW with the same proof that van der Waerden
gave, though expressed as a color-focusing argument. In Chapter 3 we give
some applications of VDW, including the square theorem. In Chapter 4 we
prove POLYVDW using Walters’ proof. In Chapter 3 we give some applica-
tions of the POLYVDW.

In Chapter 6 we prove HJ. We prove it two ways. The classical proof
yields insanely large upper bounds on the HJ numbers. The proof by Shelah
gives sanely large upper bounds. In Chapter 7 we give many applications of
HJ, including the square theorem and some lower bounds in communication
complexity. In Chapter 8 we prove POLYHJ. In Chapter 9 we give some
applications of the POLYHJ including the multidimenional POLYVDW and
the generalized POLYVDW theorem. In Chapter 10 we give the proof of
Rado’s theorem, which is a generalization of VDW. In Chapter 11 we give
some appliations of Rado’s theorem. In Chapter 12 we briefly look at some
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theorems that are proven using non-combinatorial methods, including Sze-
meredi’s density theorem for k = 3.
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Chapter 1

Introduction

1.1 What is Van Der Waerden’s Theorem?

Imagine that someone colors the the numbers {1, . . . 9} RED and BLUE.
Here is an example:

1 2 3 4 5 6 7 8 9
R R B B R R B B R

Note that there is a sequence of 3 numbers that are the same color and
are equally spaced, namely

1, 5, 9.

Try 2-coloring {1, . . . , 9} a different way. Say

1 2 3 4 5 6 7 8 9
R B R B B R B B R

Note that there is a sequence of 3 numbers that are the same color an
equally spaced, namely

2, 5, 8.

Is there a way to 2-color {1, . . . , 9} and not get such a sequence?

Exercise 1 Show that for all 2-colorings of {1, . . . , 9} there exists a set of
three numbers that are equally spaced and the same color.

11
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We want to generalize this.

Def 1.1.1 Let k ∈ N. An Arithmetic Sequence of Length k is a sequence of
natural numbers the form

a, a + d, a + 2d, . . . , a + (k − 1)d

where d 6= 0. In other words, it is a sequence of k numbers that are equally
spaced. We often refer to this as a k-AP. If there is a coloring of the natural
numbers (or a finite subset of them) then we will use the term monochromatic
k-AP to mean an arithmetic sequence or length k where all of the elements
of it are the same color.

In the above example we looked at 2-coloring {1, 2, . . . , 9} and seeing if
there was a monochromatic 3-AP. It turned out that there was always a
monochromatic 3-AP. What if you increased the number of colors? What if
you increased the length k ?

We now proceed more formally.

Notation 1.1.2 If m ∈ N then [m] is {1, . . . ,m}.

The following was first proven by Van Der Waerden [35].
Van Der Waerden’s Theorem: For every k ≥ 1 and c ≥ 1 there exists W
such that for every c-coloring COL : [W ] → [c] there exists a monochromatic
k-AP. In other words there exists a, d, d 6= 0, such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

Def 1.1.3 Let k, c ∈ N. W (k, c) is the least W that satisfies VDW. W (k, c)
is called a van der Waerden number.

We will prove van der Waerden’s theorem in Section 2.2.3.

1.2 The Polynomial Van Der Waerden The-

orem

In van der Waerden’s theorem we can think of
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a, a + d, . . . , a + (k − 1)d

as

a, a + p1(d), . . . , a + pk−1(d)

where pi(x) = ix. Why these functions?

Notation 1.2.1 Z is the set of integers. Z[x] is the set of polynomials with
integer coefficients.

The following remarkable theorem was first proved by Bergelson and Leib-
man [1].

Polynomial Van Der Waerden Theorem For any natural number c and
any polynomials p1(x), . . . , pk(x) ∈ Z[x] such that (∀i)[pi(0) = 0], there exists
W such that, for any c-coloring COL : [W ] → [c] there exists a, d, d 6= 0,
such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(a + pk(d)).

Def 1.2.2 Let p1, . . . , pk ∈ Z[x] and c ∈ N. W (p1, . . . , pk; c) is the least
W that satisfy POLYVDW . W (p1, . . . , pk; c) is called a polynomial van der
Waerden number.)

POLYVDW was proved for k = 1 by Furstenberg [9] and (independently)
Sarkozy [28]. The original proof of the full theorem by Bergelson and Leib-
man [1] used ergodic methods. A later proof by Walters [36] uses purely
combinatorial techniques. We will present an expanded version of Walters’
proof in Section 2.2.3.

Upon seeing the polynomial van der Waerden Theorem one may wonder,
is it true over the reals? Or some other ring? How do you even state this?
This requires some discussion. The following is true and is equivalent to
POLYVDW.

Polynomial Van Der Waerden Theorem over Z: For any natural num-
ber c and any polynomials p1(x), . . . , pk(x) ∈ Z[x] such that (∀i)[pi(0) = 0],
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there exists W such that for any c-coloring COL : [−W, W ] → [c] there exists
a a, d ∈ Z, d 6= 0, such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(a + pk(d)).

Note that the domain Z appears three times— the polynomials have
coefficients in Z, the c-coloring is of a subset of Z, and a, d ∈ Z. What if
we replaced Z by R or some other integral domain? We would obtain the
following:

Generalized Polynomial Van Der Waerden Theorem: Let S be any
infinite integral domain. For any natural number c and any polynomials
p1(x), . . . , pk(x) ∈ S[x] such that (∀i)[pi(0) = 0], there exists a finite set
S ′ ⊆ S such that for any c-coloring COL : S ′ → [c] there exists a, d ∈ S,
d 6= 0, such that

COL(a) = COL(a + p1(d)) = COL(a + p2(d)) = · · · = COL(a + pk(d)).

This was first proven by Bergelson and Leibman [2]. In that paper
they proved POLYHJ (which we will state later) using ergodic techniques,
and then derived the Generalized POLYVDW theorem as an easy corol-
lary. Later Walters [36] obtained a purely combinatorial proof of POLYHJ.
Putting all of this together one obtains a purely combinatiral proof of Gen-
eralized POLYVDW. One of the motivations for this monograph was to do
that putting together.

1.3 Hales-Jewitt Theorem and Polynomial Hales-

Jewitt Theorem

HJ [16] is a generalization of van der Waerden’s theorem which we will state
and prove in Chapter 6. There is also a POLYHJ [2], which we will state
and prove in Chapter 8.

The following is a corollary of HJ:

The Square Theorem: For any c there exists W such that for any c-
coloring of [W ] × [W ] there exists a square with all four corners the same
color. Formally: for any c-coloring COL : [W ] × [W ] → [c] there exists
a1, a2, d, d 6= 0, such that

COL(a1, a2) = COL(a1, a2 + d) = COL(a1 + d, a2) = COL(a1 + d, a2 + d).
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Def 1.3.1 Let c ∈ N. Wsq(c) is the least W satisfying the Square Theorem.

One can restate the Square Theorem as saying that you obtain a rectangle
similar to the to 1 × 1 rectangle with all corners the same color. More is
known:

The Rectangle Theorem: For any c, for any rectangle R with natural
number sides, there exists W such that for any c-coloring of [W ]× [W ] there
exists a rectangle similar to R with all four corners the same color.

Def 1.3.2 Let R be a rectangle with natural number sides. Let c ∈ N.
W (R, c) is the least W satisfying the Rectangle Theorem.

This can be generalized even further. The result is the Gallai-Witt the-
orem which we discuss in Section 7.5 The Gallai-Witt theorem is also called
(correctly) the multidimensional VDW theorem. There is no publication by
Gallai that contains it; however, Rado [23],[24]) credits him. Witt [37] proved
it independently.

The following is a corollary of POLYHJ:

The Squared Rectangle Theorem: For any c there exists W such that
for any c-coloring of [W ]× [W ] there exists d ∈ [W ], d 6= 0, such that there
is a d× d2 rectangle with all four corners the same color. Formally: for any
c-coloring COL : [W ]× [W ] → [c] there exists a1, a2, d, d 6= 0, such that

COL(a1, a2) = COL(a1, a2 + d2) = COL(a1 + d, a2) = COL(a1 + d, a2 + d2).

Def 1.3.3 Let c ∈ N. Wsq-rect(c) is the least W satisfying the Squared
Rectangle Theorem.

This also has a generalization which we discuss in Section 9.3.

1.4 Summary of Chapters

In Chapter 2 we prove van der Waerden’s theorem with the same proof
that van der Waerden gave, though expressed as a color-focusing argument.
We then give upper and lower bounds on some van der Waerden num-
bers. In Chapter 3 we give some applications of van der Waerden’s theo-
rem including several proofs of the Square Theorem. In Chapter 4 we prove
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POLYVDW. We give Walters’ proof and then give upper and lower bounds
on some POLYVDW numbers. In Chapter 5 we give some applications of
POLYVDW.

In Chapter 6 we prove HJ. We prove it two ways. The classical proof yields
insanely large upper bounds on the HJ numbers. The proof by Shelah gives
sanely large upper bounds. We discuss both upper and lower bounds for the
HJ numbers. In Chapter 7 we give many applications of the HJ, including the
square theorem, the Gallai-Witt theorem (also known a the multidimensional
VDW), and some lower bounds in communication complexity. In Chapter 8
we prove POLYHJ and then give upper and lower bounds on the POLYHJ
numbers. In Chapter 9 we give some applications of POLYHJ including the
multidimenional POLYVDW and the generalized POLYVDW.



Chapter 2

Van Der Waerden’s Theorem

2.1 Introduction

VDW states that given any number of colors, c, and any length, k, there
is a (large) number W so that any c-coloring of the numbers {1, 2, . . . ,W}
contains a monochromatic k-AP. In this chapter we will prove VDW the same
way van der Waerden did; however, we will express it in the color-focusing
language of Walters [36].

Van der Waerden’s theorem: For all k, c ∈ N there exists W such that,
for all c-colorings COL : [W ] → [c], there exists a, d ∈ N, d 6= 0, such that

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d).

Def 2.1.1 Let k, c ∈ N. W (k, c) is the least W that satisfies VDW. W (k, c)
is called a van der Waerden number.

Example 2.1.2 Consider the 2-coloring of {1, 2, . . . , 15} given below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R R B B R R B B R R R B B B R

1. There are three RED 3-AP: {1, 5, 9}, {1, 6, 11}, {2, 6, 10}, {5, 10, 15}.

2. There are three BLUE 3-AP: {3, 8, 13}, {4, 8, 12}.

17
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3. There are no monochromatic 4-APs.

Before attempting to prove the full theorem, let’s look at a few simple base
cases.

• c = 1 — W (k, 1) = k, because the sequence 1, 2, . . . , k forms a k-AP.

• k = 1 — W (1, c) = 1, because a 1-AP is any single term.

• k = 2 — W (2, c) = c + 1, because any 2 terms form a 2-AP.

Alright, not bad so far — we have proven the theorem for a countable
number of cases. How many more could there be?

2.2 Proof of Van Der Waerden’s Theorem

2.2.1 The First Interesting Case: W (3, 2)

We show that there exists a W such that any 2-coloring of [W ] has a
monochromatic 3-AP. There are easier proofs that give smaller values of
W (see Section 2.3.6); however, the technique we use generalizes to other c
and k.

For this section let W ∈ N and let COL : [W ] → {R,B}. such that there
are no monochromatic 3-APs. We will show a bound on W .

Picture breaking up the numbers {1, 2, 3, . . . ,W} into blocks of 5 (we can
assume 5 divides W ).

{1 < 2 < 3 < 4 < 5} < {6 < 7 < 8 < 9 < 10} < {11, 12, 13, 14, 15} < · · ·

For i ∈ N let Bi be the ith block of 5.
In the next lemma we look at what happens within a block.

Lemma 2.2.1 Let x ∈ [W−5]. Restrict W to {x+1, x+2, x+3, x+4, x+5}.
There exists a, d, d 6= 0, such that

a, a + d, a + 2d ∈ {x + 1, . . . , x + 5}

and
COL(a) = COL(a + d) 6= COL(a + 2d).
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Proof:
Look at COL(x + 1), COL(x + 2), COL(x + 3). Two of these have to be

the same. We can assume the color is R.
Case 1: COL(x+1) = COL(x+2) = R: Since there are no monochromatic
3-AP’s, COL(x + 3) = B.
Case 2: COL(x+1) = COL(x+3) = R: Since there are no monochromatic
3-AP’s, COL(x + 5) = B.
Case 3: COL(x+2) = COL(x+3) = R: Since there are no monochromatic
3-AP’s, COL(x + 4) = B.

The following figure shows what happens within a block of 5 consective
natural numbers.

We need to view COL : [W ] → {R,B} differently. Picture breaking up
the numbers {1, 2, 3, . . . ,W} into blocks of 5 (we can assume 5 divides W ).

{1 < 2 < 3 < 4 < 5} < {6 < 7 < 8 < 9 < 10} < {11, 12, 13, 14, 15} < · · ·

For i ∈ N let Bi be the ith block of 5.
COL can be viewed as assigning to each Bi one of the following: RRRRR,

RRRRB, . . ., BBBBB. That is,
We view COL as a 32-coloring of the blocks. We will use this

change of viewpoint over and over again in this monograph!

Lemma 2.2.2 Assume W ≥ 5 × 33 = 165. There exists two blocks Bi and
Bj with 1 ≤ i < j ≤ 33 that are colored the same.

Proof: There are only 32 different ways for a block to be colored and
there are 33 blocks, hence two of them must be colored the same.

(See Figure ??.)

Theorem 2.2.3 Let W ≥ 325. Let COL : [W ] → [2] be a 2-coloring of [W ].
Then there exists a, d ∈ [W ] such that

{a, a + d, a + 2d} ⊆ [W ],

COL(a) = COL(a + d) = COL(a + 2d).
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Proof: We take the colors to be RED and BLUE.
Assume, by way of contradiction, that there is no monochromatic 3-AP.
View [W ] as being 65 blocks of 5. We denote the blocks

B1, B2, · · ·B65.

By Lemma 2.2.2 there exists two blocks Bi, Bj with 1 ≤ i < j ≤ 33 that are
colored the same.

1. Block B2j−i exists since 2j − i ≤ 65. Let D = 2j − i. Note that
Bi, Bj, B2j−i is an arithmetic sequence of blocks.

2. Bi and Bj have a R-R-B pattern in them where the three colors are a
3-AP. Let d be the difference of the this arithmetic sequence.

The following figure shows what is going on.
Look at the space that has a question mark. If it is B then we have a

monochromatic 3-AP as shown below.
If it is R then we have a monochromatic 3-AP as shown below.

Note 2.2.4 The proof of Theorem 2.2.3 yields W (3, 2) ≤ 365. A more
careful proof using blocks of 3 can get W (3, 2) ≤ 42. A different technique
which we will show in Section 2.3.1 shows W (3, 2) ≤ 27. A proof by cases
shows that W (3, 2) = 9.

2.2.2 W (3, 512) =⇒ W (4, 2)

FILL IN- FILL IN

2.2.3 The Full Proof

We will prove a lemma from which van der Waerden’s theorem will follow
easily.

Lemma 2.2.5 Fix k, c ∈ N with k > 1. Assume (∀c′)[W (k − 1, c′) exists].
Then, for all r, there exists U = U(k, c, r) such that for all c-colorings COL :
[U ] → [c], one of the following statements holds.

Statement I: ∃a, d ∈ N, d 6= 0 such that
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{a, a + d, a + 2d, . . . , a + (k − 1)d)} ⊆ [U ]

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d).

Statement II: ∃a, d1, d2, . . . , dr ∈ N, di 6= 0 ∀i, such that

{a, a + d1, a + 2d1, . . . , a + (k − 1)d1} ⊆ [U ]

{a, a + d2, a + 2d2, . . . , a + (k − 1)d2} ⊆ [U ]

...

{a, a + dr, a + 2dr, . . . , a + (k − 1)dr} ⊆ [U ]

COL(a + d1) = COL(a + 2d1) = · · · = COL(a + (k − 1)d1)

COL(a + d2) = COL(a + 2d2) = · · · = COL(a + (k − 1)d2)

...

COL(a + dr) = COL(a + 2dr) = · · · = COL(a + (k − 1)dr)

With COL(a + di) 6= COL(a + dj) when i 6= j. We refer to a as the
anchor. (Informally we are saying that if you c-color [U ] either you will
have a monochromatic k-AP or you will have many monochromatic (k− 1)-
AP’s, all of different colors, and different from a. Once “many” is more than
c, then the latter cannot happen, so the former must, and we have van der
Waerden’s theorem.)

Proof:
We define U(k, c, r) to be the least number such that this Lemma holds.

We will prove U(k, c, r) exists by giving an upper bound on it.

Base Case: If r = 1 then U = U(k, c, 1) ≤ 2W (k − 1, c). Let COL :
[U ] → [c] be a c-coloring of U . Consider COL restricted to the last half of
U , which is of size W (k − 1, c). By the definition of W (k − 1, c) there exists
a′ ∈ {W (k − 1, c), . . . , 2W (k − 1, c)} and d ∈ [W (k − 1, c)] such that
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{a′, a′ + d′, a′ + 2d′, . . . , a′ + (k − 2)d′} ⊆ {W (k − 1, c), . . . , 2W (k − 1, c)},

COL(a′) = COL(a′ + d′) = COL(a′ + 2d′) = · · · = COL(a′ + (k − 2)d′).

Let a = a′ − d and d1 = d′. Clearly

COL(a + d1) = COL(a + 2d1) = COL(a + 3d1) = · · ·COL(a + (k − 1)d1)

Note that we have a better bound than d ∈ [W (k − 1, c]. We easily
have d ∈ [bW (k − 1, c)/(k − 1)c], though all we need is d ∈ [W − 1]. Since
a′ ≥ [W (k − 1, c)] and d1 ∈ [W − 1] we have a = a′ − d ≥ 1.

d < W (k − 1, c), so a′ − d ≥ 1. Clearly a′ ≤ a ≤ U , so a′ ∈ [U ].
The first half of [U ] will contain the the anchor, hence (2) holds.

Induction Step: By induction, assume U(k, c, r) exists. We will show that
U(k, c, r + 1) ≤ 2U(k, c, r)W (k − 1, cU(k,c,r)). Let

U = 2U(k, c, r)W (k − 1, cU(k,c,r)).

Let COL : [U ] → [c] be an arbitrary c-coloring of [U ].
We view [U ] as being U(k, c, r)W (k − 1, cU(k,c,r)) numbers followed by

W (k − 1, cU(k,c,r)) blocks of size U(k, c, r). We denote these blocks by

B1, B2, . . . , BW (k−1,cU(k,c,r)).

The key point here is that we view a c-coloring of the second half of
[U ] as a cU(k,c,r)-coloring of these blocks. Let COL∗ be this coloring. By
the definition of
W (k − 1, cU(k,c,r)), we get a monochromatic (k − 1)-AP of blocks. Hence we
have A, D′ such that (see Figure ??)

COL∗(BA) = COL∗(BA+D′) = · · · = COL∗(BA+(k−2)D′)

Now, consider block BA. It is colored by COL. It has length U(k, c, r),
which tells us that either (1) or (2) from the lemma holds. If (1) holds — we
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have a monochromatic k-AP — then we are done. If not, then we have the
following: a′, d1, d2, . . . , dr with a ∈ BA, and

{a′ + d1, a
′ + 2d1, . . . , a

′ + (k − 1)d1 ⊆ BA

{a′ + d2, a
′ + 2d2, . . . , a

′ + (k − 1)d2 ⊆ BA

...

{a′ + dr, a
′ + 2dr, . . . , a

′ + (k − 1)dr ⊆ BA

COL(a′ + d1) = COL(a′ + 2d1) = · · · = COL(a′ + (k − 1)d1)

COL(a′ + d2) = COL(a′ + 2d2) = · · · = COL(a′ + (k − 1)d2)

...
...

COL(a′ + dr) = COL(a′ + 2dr) = · · · = COL(a′ + (k − 1)dr)

where COL(a′+di) are all different colors, and different from a′ (or else there
would already be a monochromatic k-AP). How far apart are corresponding
elements in adjacent blocks? Since the blocks viewed as points are D′ apart,
and each block has U(k, c, r) elements in it, correspoinding elements in ad-
jacent blocks are D = D′ × U(k, c, r) numbers apart. Hence

COL(a′ + d1) = COL(a′ + D + d1) = · · · = COL(a′ + (k − 2)D + d1)

COL(a′ + d2) = COL(a′ + D + d2) = · · · = COL(a′ + (k − 2)D + d2)

...

COL(a′ + dr) = COL(a′ + D + dr) = · · · = COL(a′ + (k − 2)D + dr)

We now note that we have only worked with the second half of [U ]. Since
we know that

a >
1

2
U = U(k, c, r)W (k − 1, cU(k,c,r))

and

D ≤ 1

k − 1
U(k, c, r)W (k − 1, cU(k,c,r)) ≤ U(k, c, r)W (k − 1, cU(k,c,r))
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so we find that a = a′ −D > 0 and thus a ∈ [U ]. The number a is going to
be our new anchor.

So now we have

COL(a+(D+d1)) = COL(a+2(D+d1)) = · · · = COL(a+(k−1)(D+d1))
COL(a+(D+d2)) = COL(a+2(D+d2)) = · · · = COL(a+(k−1)(D+d2))

...
COL(a+(D+dr)) = COL(a+2(D+dr)) = · · · = COL(a+(k−1)(D+dr))

With each sequence a different color.
We need an (r + 1)st monochromatic set of points. Consider

{a + D, a + 2D, . . . , a + (k − 1)D}.

These are correspoinding points in blocks that are colored (by COL∗) the
same, hence

COL(a + D) = COL(a + 2D) = · · · = COL(a + (k − 1)D)).

In addition, since

(∀i)[COL(a′) 6= COL(a′ + di)]

the color of this new sequence is different from the r sequences above.
Hence we have r+1 monochromatic (k−1)-AP’s, all of different colors,and

all with projected first term a. Formally the new parameters are a, (D +
d1), . . . , (D + dr), and D.

Theorem 2.2.6 (Van der Waerden’s theorem) ∀k, c ∈ N,∃W = W (k, c)
such that, for all c-colorings COL : [W ] → [c], ∃a, d ∈ N, d 6= 0 such that

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d)

Proof:
We prove this by induction on k. That is, we show that

• (∀c)[W (1, c) exists]

• (∀c)[W (k, c) exists] =⇒ (∀c)[W (k + 1, c) exists ]
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Base Case: k = 1 As noted above W (1, c) = 1 suffices. In fact, we also
know that W (2, c) = c + 1 suffices.
Induction Step: Assume (∀c)[W (k − 1, c) exists ]. Fix c. Consider what
Lemma 2.2.5 says when r = c. In any c-coloring of U = U(k, c, c), either
there is a monochromatic k-AP or there are c monochromatic (k − 1)-AP’s
which are all colored differently, and a number a whose color differs from all
of them. Since there are only c colors, this cannot happen, so we must have
a monochromatic k-AP. Hence W (k, c) ≤ U(k, c, c).

Note that the proof of W (k, c) depends on W (k − 1, c′) where c′ is quite
large. Formally the proof is an ordering on the following order on (k, c)

(1, 1) ≺ (1, 2) ≺ · · · ≺ (2, 1) ≺ (2, 2) ≺ · · · ≺ (3, 1) ≺ (3, 2) · · ·

This is an ω2 ordering. It is well founded, so induction works.

2.3 The Van Der Waerden Numbers

2.3.1 Upper Bounds on W (k, c)

2.3.2 Lower Bounds on W (k, c)

Theorem 2.3.1 For all k, c, W (k, c) ≥ c(k−1)/2
√

k.

Proof:
We will prove this theorem as though we didn’t know the result.
Let W be a number to be picked later. We are going to try to c-color [W ]

such that there are no monochromatic k-AP’s. More precisely, we are going
to derive a value of W such that we can show that such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that a monochromatic k-AP was formed?

First pick the color of the sequence. There are c options. Then pick the
value of a. There are W options. Then pick the value of d. Once these are
determined, the color of the distinct k values in {a, a+d, a+2d, . . . , a+(k−
1)d} are determined. There are W −k values left. Hence the number of such
colorings is bounded above by (cW 2cW−k)/k.
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Hence the probability that the c-coloring has a monochromatic k-AP is
bounded above by

cW 2cW−k

kcW
=

W 2

kck−1
.

We need this to be < 1. Hence we need

W 2 < kck−1.

W < c(k−1)/2
√

k.

Therefore there is a c-coloring of [c(k−1)/2
√

k−1] without a monochromatic
k-AP. Hence W (k, c) ≥ c(k−1)/2

√
k.

FILL IN- PUT IN MORE THAT IS KNOWN.

2.3.3 Lower Bounds on W (3, c)

2.3.4 Three-Free Sets

2.3.5 Applications of Three-Free Sets

2.3.6 Some Exact values for W (k, c)

W (3, 2) is small enough to find it exactly by hand. Our interest is in getting
it with as little brute-force as possible.

Theorem 2.3.2

1. W (3, 2) ≥ 9

2. W (3, 2) ≤ 14

3. W (3, 2) = 9

Proof:
a) The 2-coloring of [8] defined by

1 2 3 4 5 6 7 8
R R B B R R B B



2.3. THE VAN DER WAERDEN NUMBERS 27

shows that W (3, 2) ≥ 9.

b) Let COL be 2-coloring of [13]. Two of the numbers in the set {5, 7, 9}
must have the same color. Let the numbers be x < y and the color be RED.
Note that x + y is even and

1 ≤ 2x− y < (x + y)/2 < 2y − x ≤ 13.

1. If 2x− y is RED then 2x− y, x, y is a monochromatic 3-AP, so we are
done.

2. If (x + y)/2 is RED then x, (x + y)/2, y is a monochromatic 3-AP, so
we are done.

3. If 2y − x is RED then x, y, 2y − x is a monochromatic 3-AP, so we are
done.

4. If 2x−y, (x+y)/2, and 2y−x are all BLUE then they form a monochro-
matic 3-AP so we are done.

c) Let COL be a 2-coloring of [9]. We can assume that COL(5) = RED. At
least one of {4, 6} is BLUE. By symmetry we can assume that COL(4) =
BLUE. Then we know the following:

• At least one of {3, 7} is BLUE.

• At least one of {2, 8} is BLUE.

• At least one of {1, 9} is BLUE.

• At least one of {2, 6} is RED.

• At least one of {1, 7} is RED.

This can be used to finish a brute force proof that the coloring must have
a monochromatic 3-AP.
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Very few of the VDW numbers are known. The following table summa-
rizes all that is known.

VDW number value reference
W (2, 3) 9 Folklore and above
W (3, 3) 27 Chvátal [5]
W (3, 4) 76 Brown [4]
W (4, 2) 35 Chvátal [5]
W (5, 2) 178 Stevens and Shantarum [30]
W (6, 2) 1132 Kouril [19]



Chapter 3

Applications of Van Der
Waerden’s Theorem

3.1 The Square Theorem: First Proof

Use VDW.

3.2 The Square Theorem: Second Proof

We will once again prove the square theorem. We will use the same technique
used to prove VDW , Color-Focusing.

Proposition 3.2.1 Fix c ∈ N. Then, for any c-coloring COL : [c + 1]2 →
[c],∃a, b, d ∈ N such that

COL(a + d, b) = COL(a, b + d)

Proof: Fix c, COL : [c + 1]2 → [c]. Consider the points on the diagonal:

(1, c + 1), (2, c), . . . , (i, c + 2− i), . . . , (c + 1, 1)

There are c + 1 such points, so by pigeonhole principle we have two of them
the same color. Let these be (x, c + 2 − x) and (y, c + 2 − y), with x < y.
Then define a = x, b = c + 2− y, and d = y − x. Now we have

(a, b + d) = (x, (c + 2− y) + (y − x)) = (x, c + 2− x)

29
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(a + d, b) = (x + (y − x), c + 2− y) = (y, c + 2− y)

and we have precisely what we wanted — COL(a + d, b) = COL(a, b + d).

Now this is hardly a square, but it’s a start. The points of our square
will be (a, b), (a + d, b), (a, b + d), and (a + d, b + d), so at this point we’re
half-way there! But as is typically the case, the second half of the journey is
harder than the first.

Our next lemma will eventually lead to a third point

Lemma 3.2.2 Fix c, r. ∃L = L′(c, r) such that, for all c-colorings COL :
[L]2 → [c], either
(1) ∃a, b, d ∈ N, such that COL(a, b) = COL(a + d, b) = COL(a, b + d)

OR

(2) ∃a, b, d1, d2, . . . , dr ∈ N, such that COL(a + di, b) = COL(a, b + di) for
each i, COL(a + di, b) 6= COL(a + dj, b) when i 6= j, and COL(a, b) 6=
COL(a + di, b) for every i.

Informally, this says that we either have three vertices of a square the
same color, or r pairs of diagonal points focusing on the same point (a, b).

Proof: Define L′(c, r) to be the smallest number such that the Lemma is
true. We will show L′(c, r) exists by giving an upper bound.

Base case: r = 1 — L′(c, 1) = c + 1 works. (2) is satisfied by proposi-
tion 3.2.1.

Inductive case: Assume we know L′(c, r) exists. We will show that L′(c, r+
1) ≤ L′(c, r)× (X + 1), where X = c[L′(c,r)]2 is the number of ways to c-color
[L′(c, r)]2. Let L = L′(c, r)× (X + 1). We will view the elements of [L]2 as a
(X + 1) × (X + 1) lattice of blocks, each of size L′(c, r). Denote the blocks
by

B1,1, B1,2, . . . , BX+1,X+1

Each block has [L′(c, r)]2 points, so we view COL as an X-coloring of
the blocks. Let COL∗ : [L′(c, r)]2 → [c] be this coloring. Then, by Proposi-
tion 3.2.1 we have A, B, D ∈ N such that COL∗(BA+D,B) = COL∗(BA,B+D).
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Now look at the block BA+D,B, which has size L′(c, r) × L′(c, r). The
Lemma applies, so we have two cases.
Case 1: ∃a, b, d ∈ N with COL(a, b) = COL(a+d, b) = COL(a, b+d). This
is just what we wanted, so we’re done!
Case 2: ∃a, b, d1, d2, . . . , dr ∈ N with COL(a + di, b) = COL(a, b + di), and
the colors different for each i, all different from COL(a, b).

Define D′ = D × L′(c, r), a′ = a−D′, b′ = b. Then we get

COL(a′ + D′, b′) = COL(a′, b′ + D′)

COL(a′ + D′ + d1, b
′) = COL(a′, b′ + D′ + d1)

COL(a′ + D′ + d2, b
′) = COL(a′, b′ + D′ + d2)

...

COL(a′ + D′ + dr, b
′) = COL(a′, b′ + D′ + dr)

If any of these pairs has the same color as (a′, b′), then we get our monochro-
matic L which satisfies (1). If not, define d′i = di + D′ for each i up to r, and
dr+1 = D′ and we have exactly the parameters needed to satisfy (2).

From here, we easily reach the real goal:

Theorem 3.2.3 Fix c. There exists L = L(c) such that, for any c-coloring
COL : [L]2 → [c],∃a, b, d ∈ N with

COL(a + d, b) = COL(a, b + d) = COL(a + d, b + d)

Note that our 3rd point is (a+d, b+d) instead of (a, b). This is essentially
the same, but will make picking up the 4th point slightly cleaner.
Proof: We will show that L = L′(c, c) works. Let COL : [L]2 → [c] be any
c-coloring of [L]2. To flip things around, we define COL′ to be a reversing of
COL — that is, we define COL′(x, y) = COL(L − x + 1, L − y + 1). Now
COL′ is a c-coloring of [L]2, so we may use Lemma 3.2.2. With r = c, (2)
requires c pairs of points with different colors, and a (c + 1)st point colored
different from them all. This means c+1 colors, which is more than we have.
Thus (1) holds, so we get a, b, d ∈ N with

COL′(a, b) = COL′(a + d, b) = COL′(a, b + d)
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Now let a′ = L− a + 1 and b′ = L− b + 1. Then our original coloring gives
us

COL(a′ + d, b′) = COL(a′, b′ + d) = COL(a′ + d, b′ + d)

Okay, just one more point and we have a square! The rest of the proof
will be use the exact same methods to pick up a fourth point.

Lemma 3.2.4 Fix c, r. ∃S = S ′(c, r) such that, for all c-colorings COL :
[S]2 → [c], either
(1) ∃a, b, d ∈ N, such that COL(a, b) = COL(a + d, b) = COL(a, b + d) =
COL(a + d, b + d)

OR

(2) ∃a, b, d1, d2, . . . , dr ∈ N, such that COL(a + di, b) = COL(a, b + di) =
COL(a + di, b + di) for each i, COL(a + di, b) 6= COL(a + dj, b) when i 6= j,
and COL(a, b) 6= COL(a + di, b) for every i.

Informally, this says that we either have all four vertices of a square the
same color, or r monochromatic L’s focusing on the same point (a, b).

Proof: Define S ′(c, r) to be the smallest number such that the Lemma is
true. We will show S ′(c, r) exists by giving an upper bound.

Base case: r = 1 — S ′(c, 1) = L(c) works. (2) is satisfied by Theorem 3.2.3

Inductive case: Assume we know S ′(c, r) exists. We will show that S ′(c, r+
1) ≤ S ′(c, r) × L(X), where X = c[S′(c,r)]2 is the number of ways to c-color
[S ′(c, r)]2. Let S = S ′(c, r) × L(X). We will view the elements of [S]2 as a
L(X)× L(X) lattice of blocks, each of size S ′(c, r). Denote the blocks by

B1,1, B1,2, . . . , BL(X),L(X)

Each block has [S ′(c, r)]2 points, so we view COL as an X-coloring of the
blocks. Let COL∗ : [S ′(c, r)]2 → [c] be this coloring. Then, by Theorem 3.2.3
we have A, B, D ∈ N such that

COL∗(BA+D,B) = COL∗(BA,B+D) = COL∗(BA+D,B+D)

Now look at the block BA+D,B, which has size S ′(c, r)×S ′(c, r). The Lemma
applies, so we have two cases.
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Case 1: ∃a, b, d ∈ N with

COL(a, b) = COL(a + d, b) = COL(a, b + d) = COL(a + d, b + d)

This is just what we wanted, so we’re done!
Case 2: ∃a, b, d1, d2, . . . , dr ∈ N with

COL(a + di, b) = COL(a, b + di) = COL(a + di, b + di)

and the colors different for each i, all different from COL(a, b).
Define D′ = D × L′(c, r), a′ = a−D′, b′ = b. Then we get

COL(a′ + D′, b′) = COL(a′, b′ + D′) = COL(a′ + D′, b′ + D′)

COL(a′+D′+d1, b
′) = COL(a′, b′+D′+d1) = COL(a′+D′+d1, b

′+D′+d1)

COL(a′+D′+d2, b
′) = COL(a′, b′+D′+d2) = COL(a′+D′+d2, b

′+D′+d2)

...

COL(a′+D′+dr, b
′) = COL(a′, b′+D′+dr) = COL(a′+D′+dr, b

′+D′+dr)

If any of these L’s has the same color as (a′, b′), then we get our monochro-
matic square which satisfies (1). If not, define d′i = di + D′ for each i up to
r, and dr+1 = D′ and we have exactly the parameters needed to satisfy (2).

Now, finally, we can state and prove our goal.

Theorem 3.2.5 Fix c. There exists S = S(c) such that, for any c-coloring
COL : [S]2 → [c],∃a, b, d ∈ N such that

COL(a, b) = COL(a + d, b) = COL(a, b + d) = COL(a + d, b + d)

Proof: We will show that S = S ′(c, c) works. Let COL : [S]2 → [c] be
any c-coloring of [S]2. We use Lemma 3.2.4. With r = c, (2) requires c
monochromatic L’s, each with a different color, and a (c + 1)st point colored
different from them all. This means c+1 colors, which is more than we have.
Thus (1) holds, so we get a, b, d ∈ N with

COL(a, b) = COL(a + d, b) = COL(a, b + d) = COL(a + d, b + d)

which is precisely what we wanted.
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3.3 The Square Theorem: Third Proof

Solynosi proof- better bounds.

3.4 Applications to Number Theory

3.5 Hilbert’s Cube Lemma

3.6 The Arithmetic Sequence Game



Chapter 4

The Polynomial Van Der
Waerden’s Theorem

4.1 Introduction

In this Chapter we state and proof a generalization of van der Waerden’s
theorem known as the Polynomial Van Der Waerden’s Theorem. We rewrite
van der Waerden’s theorem with an eye toward generalizing it.
Van Der Waerden’s Theorem: For all k, c ∈ N there exists W = W (k, c)
such that, for all c-colorings COL : [W ] → [c], there exists a, d ∈ [W ], such
that

• {a} ∪ {a + id | 1 ≤ i ≤ k − 1} ⊆ [W ],

• {a} ∪ {a + id | 1 ≤ i ≤ k − 1} is monochromatic.

In the proof of Lemma 2.2.5 we needed to take some care to make sure
that a ∈ [W ]. This needed the fact that d ≤ U(k, c, r), which was obvious
and needed no commentary. For the theorems in this Chapter we will not
have the relevant d bounded unless we assume it inductively. Hence we
will often have the condition d ∈ [W ] or d ∈ [U ] which will help us show
a ∈ [W ]. The membership of other elements in [W ] will be obvious and not
need commentary.

Note that van der Waerden Theorem was really about the set of functions
{id | 1 ≤ i ≤ k−1}. Why this set of functions? Would other sets of functions
work? What about sets of polynomials? The following statement is a natural
generalization of van der Waerden’s theorem; however, it is not true.

35
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False POLYVDW: Fix c ∈ N and P ⊆ Z[x] finite. Then there exists
W = W (P, c) such that, for all c-colorings COL : [W ] → [c], there are
a, d ∈ N, d 6= 0, such that

• {a} ∪ {a + p(d) | p ∈ P} ⊆ [W ],

• {a} ∪ {a + p(d) | p ∈ P} is monochromatic.

The above statement is false since the polynomial p(x) = 2 and the
coloring

1 2 3 4 5 6 7 8 9 10 · · ·
R R B B R R B B R R · · ·

provides a counterexample. Hence we need a condition to rule out constant
functions. The condition (∀p ∈ P )[p(0) = 0] suffices.
The Polynomial Van Der Waerden Theorem (POLYVDW) Fix c ∈ N
and P ⊆ Z[x] finite, with (∀p ∈ P )[p(0) = 0]. Then there exists W = W (P, c)
such that, for all c-colorings COL : [W ] → [c], there are a, d ∈ [W ], such
that

• {a} ∪ {a + p(d) | p ∈ P} ⊆ [W ],

• {a} ∪ {a + p(d) | p ∈ P} is monochromatic.

(When we apply this theorem to coloring {s + 1, . . . , s + W}, we will have
d ∈ [W ] and {a} ∪ {a + p(d) | p ∈ P} ⊆ {s + 1, . . . , s + W}.)

This was proved for k = 1 by Furstenberg [9] and (independently) Sarkozy [28].
The original proof of the full theorem by Bergelson and Leibman [1] used
ergodic methods. A later proof by Walters [36] uses purely combinatorial
techniques. We will present an expanded version of Walters’ proof.

Note 4.1.1 Do we need the condition d ∈ [W ]? For the classical van der
Waerden Theorem d ∈ [W ] was obvious since

{a} ∪ {a + d, . . . , a + (k − 1)d} ⊆ [W ] =⇒ d ∈ [W ].

For the polynomial van der Waerden’s theorem one could have a polynomial
with negative coefficients, hence it would be possible to have

{a} ∪ {a + p(d) | p ∈ P} ⊆ [W ] and d /∈ [W ].

For the final result we do not care where d is; however, in order to prove
POLYVDW inductively we will need the condition d ∈ [W ].
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Note 4.1.2 The condition (∀p ∈ P )[p(0) = 0] is strong enough to make
the theorem true. There are pairs (P, c) where P ⊆ Z[x] (that does not
satisfy the condition) and c ∈ N such that the theorem is true. Classifying
which pairs (P, c) satisfy the theorem is an interesting open problem. We
investigate this in Section 4.4.

Note 4.1.3 What happens if instead of polynomials we use some other types
of functions? See Section 4.5 for a commentary on that.

Recall that VDW was proven by induction on k and c. The main step
was showing that if (∀c)[W (k, c) exists ] then (∀c)[W (k + 1, c) exists ]. To
prove POLYVDW we will do something similar. We will assign to every set
of polynomials (that do not have a constant term) a type. The types will be
ordered. We will then do an induction on the types of polynomials.

Def 4.1.4 Let ne, . . . , n1 ∈ N. Let P ⊆ Z[x]. P is of type (ne, . . . , n1) if
the following hold:

1. P is finite.

2. (∀p ∈ P )[p(0) = 0]

3. The largest degree polynomial in P is of degree ≤ e.

4. For all i, 1 ≤ i ≤ e, There are ≤ ni different lead coefficients of the
polynomials of degree i. Note that there may be many more than ni

polynomials of degree i.

Note 4.1.5

1. Type (0, ne, . . . , n1) is the same as type (ne, . . . , n1).

2. We have no n0. This is intentional. All the polynomials p ∈ P have
p(0) = 0.

3. By convention P will never have 0 in it. For example, if

Q = {x2, 4x}

then
{q − 4x : q ∈ Q}

will be {x2 − 4x}. We will just omit the 0.
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Example 4.1.6

1. The set {x, 2x, 3x, 4x, . . . , 100x} is of type (100).

2. The set

{x4+17x3−65x, x4+x3+2x2−x, x4+14x3,−x4−3x2+12x,−x4+78x,

x3 − x2, x3 + x2, 3x, 5x, 6x, 7x}
is of type (2, 1, 0, 4)

3. The set

{x4 + b3x
3 + b2x

2 + b1x | −1010 ≤ b1, b2, b3 ≤ 1010 }

is of type (1, 0, 0, 0).

4. If P is of type (1, 0) then there exists b ∈ Z and k ∈ N such that

P ⊆ {bx2 − kx, bx2 − (k − 1)x, . . . , bx2 + kx} ∪ {0}.

5. If P is of type (1, 1) then there exists b2, b1 ∈ Z, and k ∈ N such that

P ⊆ {b2x
2 − kx, b2x

2 − (k − 1)x, . . . , b2x
2 + kx} ∪ {b1x} ∪ {0}.

6. If P is of type (f, g, h) then there exists b
(1)
3 , . . . , b

(f)
3 ∈ Z, b

(1)
2 , . . . , b

(g)
2 ∈

Z, b
(1)
1 , . . . , b

(h)
1 ∈ Z, k1, k2 ∈ N, T1 of type (k1), and T2 of type (k2, k1)

such that

P ⊆ {bi
3x

3 + p(x) | 1 ≤ i ≤ f, p ∈ T2}∪
{bi

2x
2 + p(x) | 1 ≤ i ≤ g, p ∈ T1}∪

{bi
1x | 1 ≤ i ≤ h} ∪ {0}

7. Let
P = {2x2 + 3x, x2 + 20x, 5x, 8x}.

Let
Q = {p(x)− 8x | p ∈ P}.

Then
Q = {2x2 − 5x, x2 + 12x,−3x, 0}.

P is of type (2, 2) and Q is of type (2, 1). Note that the type ‘decreases’.
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8. Let
P = {2x2 + 3x, x2 + 20x, 5x, 8x}.

Let
Q = {p(x)− 8x | p ∈ P}.

Then
Q = {2x2 − 5x, x2 + 12x,−3x, }.

P is of type (2, 2) and Q is of type (2, 1). If we did not have out
convention of omitting 0 then the type of Q would have been (2, 2).
The type would not have gone “down” (in an ordering to be defined
later). This is why we have the convention.

9. Let P be of type (ne, . . . , ni + 1, 0, . . . , 0). Let bxi be the leading term
of some polynomial of degree i in P (note that we are not saying that
bxi ∈ P ). Let

Q = {p(x)− bxi | p ∈ P}.
There are numbers ni−1, . . . , n1 such that Q is of type (ne, . . . , ni, ni−1, . . . , n1).
The type is decreasing in an ordering to be defined later.

Def 4.1.7

1. Let P ⊆ Z[x] such that (∀p ∈ P )[p(0) = 0]. POLYVDW(P ) means
that the following holds:

For all c ∈ N, there exists W = W (P, c) such that for all c-colorings
COL : [W ] → [c], there exists a, d ∈ [W ] such that

{a} ∪ {a + p(d) | p ∈ P} is monochromatic.

(If we use this definition on a coloring of {s + 1, . . . , s + W} then the
conclusion would have a ∈ {s + 1, . . . , s + W} and d ∈ [W ].)

2. Let ne, . . . , n1 ∈ N. POLYVDW(ne, . . . , n1) means that, for all P ⊆
Z[x] of type (ne, . . . , n1) POLYVDW(P ) holds.

3. Let (ne, . . . , ni, ω, . . . , ω) be the e-tuple that begins with (ne, . . . , ni)
and then has i− 1 ω’s.

POLYVDW(ne, . . . , ni, ω, . . . , ω)
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is the statement∧
ni−1,...,n1∈N

POLYVDW(ne, . . . , ni, ni−1, . . . , n1).

4. POLYVDW is the statement

∞∧
i=1

POLYVDW(ω, . . . , ω)( ω occurs i times).

Note that POLYVDW is the complete polynomial van der Waerden
theorem.

Example 4.1.8

1. The statement POLYVDW(ω) is equivalent to the ordinary van der
Waerden’s theorem.

2. To prove POLYVDW(1, 0) it will suffice to prove POLYVDW(P ) for
all P of the form

{bx2 − kx, bx2 − (k − 1)x, . . . , bx2 + kx}.

3. Assume that you know

POLYVDW(ne, . . . , ni, ω, . . . , ω)

and that you want to prove

POLYVDW(ne, . . . , ni + 1, 0, . . . , 0).

Let P be of type (ne, . . . , ni + 1, 0 . . . , 0). Let bxi be the first term of
some polynomial of degree i in P .

(a) Let
Q = {p(x)− bxi | p ∈ P}.

Then there exists ni−1, . . . , n1, such that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since
POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.
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(b) Let U ∈ N. Let

Q = {p(x + u)− p(u)− bxi | p ∈ P, 0 ≤ u ≤ U}.

Note q(0) = 0 for all q ∈ Q. Then there exists ni−1, . . . , n1, such
that Q is of type

(ne, . . . , ni, ni−1, . . . , n1).

Since
POLYVDW(ne, . . . , ni, ω, . . . , ω)

holds by assumption, we can assert that POLYVDW(Q) holds.

We will prove the Polynomial van der Waerden’s theorem by an induction
on a complicated structure. We state the implications we need to prove and
then the ordering.

1. POLYVDW(1) follows from the pigeon hole principle.

2. We will show that, for all ne, . . . , ni ∈ N,

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).

Note that this includes the case

POLYVDW(ne, . . . , n2, n1) =⇒ POLYVDW(ne, . . . , n2, n1 + 1).

The ordering we use is formally defined as follows:

Def 4.1.9 (ne, . . . , n1) � (me′ , . . . ,m1) if either

• e < e′, or

• e = e′ and, for some i, 1 ≤ i ≤ e, ne = me, ne−1 = me−1, . . .,
ni+1 = mi+1, but ni < mi.

This is an ωω ordering.
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Example 4.1.10 We will use the following ordering on types.

(1) ≺ (2) ≺ (3) ≺ · · ·

(1, 0) ≺ (1, 1) ≺ · · · ≺ (2, 0) ≺ (2, 1) ≺ · · · ≺ (3, 0) · · · ≺

(1, 0, 0) ≺ (1, 0, 1) ≺ · · · ≺ (1, 1, 0) ≺ (1, 1, 1) ≺ (1, 2, 0) ≺ (1, 2, 1) ≺

(2, 0, 0) ≺ · · · ≺ (3, 0, 0) ≺ · · · (4, 0, 0) · · · .

4.2 The Proof of the Polynomial Van Der

Waerden Theorem

4.2.1 POLYVDW({x2, x2 + x, . . . , x2 + kx})
Def 4.2.1 Let k ∈ N.

Pk = {x2, x2 + x, . . . , x2 + kx}.

We show POLYVDW(Pk). This proof contains many of the ideas used in
the proof of POLYVDW.

We prove a lemma from which POLYVDW(Pk) will be obvious.

Lemma 4.2.2 For all k, c, r ∈ N, there exists U = U(k, c, r) such that for
all c-colorings COL : [U ] → [c] one of the following Statements holds.
Statement I: There exists a, d ∈ [U ], such that

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} ⊆ [U ],

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} is monochromatic.

Statement II: There exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a + d2
1, a + d2

1 + d1, . . . , a + d2
1 + kd1} ⊆ [U ].

{a + d2
2, a + d2

2 + d2, . . . , a + d2
2 + kd2} ⊆ [U ].

...

{a + d2
r, a + d2

r + dr, . . . , a + d2
r + kdr} ⊆ [U ].

(The element a is called the anchor)
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• {a + d2
1, a + d2

1 + d1, . . . , a + d2
1 + kd1} is monochromatic.

{a + d2
2, a + d2

2 + d2, . . . , a + d2
2 + kd2} is monochromatic.

...

{a + d2
r, a + d2

r + dr, . . . , a + d2
r + kdr} is monochromatic.

With each monochromatic set being colored differently and differently
from a. We refer to a as the anchor.

Informal notes:

1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd}

or you will have many monochromatic sets of the form

{a + d2, a + d2 + d, . . . , a + d2 + kd},

all of different colors, and different from a. Once “many” is more
than c, then the latter cannot happen, so the former must, and we have
POLYVDW(P ).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a + d2 + d, . . . , a + d2 + kd} ⊆ {s + 1, . . . , s + U}.

or

d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r such that

{a} ∪ {a + d2
i + di, . . . , a + d2

i + kdi} ⊆ {s + 1, . . . , s + U}, and

{a+d2
i +di, . . . , a+d2

i +kdi} ⊆ {s+1, . . . , s+U} monochromatic for each i.

Proof:
We define U(k, c, r) to be the least number such that this Lemma holds.

We will prove U(k, c, r) exists by giving an upper bound on it.
Base Case: r = 1. U(k, c, 1) ≤ W (k1, c)

2 + W (k + 1, c).
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Let COL be any c-coloring of [W (k + 1, c) + W (k + 1, c)2]. Look at the
coloring restricted to the last W (k + 1, c) elements. By van der Waerden’s
theorem applied to the restricted coloring there exists

a′ ∈ [(W (k + 1, c))2 + 1, . . . , (W (k + 1, c))2 + W (k + 1, c)]

and
d′ ∈ [W (k + 1, c)]

such that

{a′, a′+d′, a′+2d′, . . . , a′+kd′} ⊆ {(W (k+1, c))2+1, . . . , (W (k+1, c))2+W (k+1, c)}.

{a′, a′ + d′, a′ + 2d′, . . . , a′ + kd′} is monochromatic .

Let the anchor be a = a′ − (d′)2 and let d1 = d′.

{a′, a′+d′, a′+2d′, . . . , a′+kd′} = {a+d2
1, a+d2

1+d1, . . . , a+d2
1+kd1} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have

a, d1 ∈ [(W (k + 1, c))2 + W (k + 1, c)]?

FILL IN- NEED FIGURE
Since

a′ ≥ (W (k + 1, c))2 + 1

and
d′ ≤ W (k + 1, c)

we have that

a ≥ (W (k + 1, c))2 + 1− (W (k + 1, c))2 = 1.

Clearly
a < a′ ≤ W (k + 1, c) + (W (k + 1, c))2.

Hence
a ∈ [W (k + 1, c) + (W (k + 1, c))2].
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Since d1 = d′ ∈ [W (k + 1, c)] we clearly have

d1 ∈ [W (k + 1, c) + (W (k + 1, c))2].

Induction Step: Assume U(k, c, r) exists, and let

X = W (k + 2U(k, c, r), cU(k,c,r)).

(X stands for eXtremely large.)
We show that

U(k, c, r + 1) ≤ (X × U(k, c, r))2 + X × U(k, c, r).

Let COL be a c-coloring of

[(X × U(k, c, r))2 + X × U(k, c, r)].

View this set as (X ×U(k, c, r))2 consecutive elements followed by X blocks
of length U(k, c, r). Let the blocks be

B1, B2, . . . , BX .

Restrict COL to the blocks. Let COL∗ : [X] → [cU(k,c,r)] be the coloring
viewed as a cU(k,c,r)-coloring of the blocks. By VDW applied to COL∗ and
the choice of X there exists A, D′ ∈ [X] such that

• {A, A + D′, . . . , A + (k + 2U(k, c, r))D′} ⊆ [X],

• {BA, BA+D′ , . . . , BA+(k+2U(k,c,r))D′} is monochromatic. How far apart
are corresponding elements in adjacent blocks? Since the blocks viewed
as points are D′ apart, and each block has U(k, c, r) elements in it,
correspoinding elements in adjacent blocks are D = D′ × U(k, c, r)
numbers apart.

Consider the coloring of BA. Since BA is of size U(k, c, r) either there
exists a, d ∈ U(k, c, r) such that

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} ⊆ BA,

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} is monochromatic
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in which case Statement I holds so we are done, or there exists
a′ ∈ BA, d′1, . . . , d

′
r ∈ [U(k, c, r)]

such that

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} ⊆ BA

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} ⊆ BA

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} ⊆ BA

• {a′ + d′1
2, a′ + d′1

2 + d′1, . . . , a
′ + d′1

2 + kd′1} is monochromatic.

{a′ + d′2
2, a′ + d′2

2 + d′2, . . . , a
′ + d′2

2 + kd′2} is monochromatic.

...

{a′ + d′r
2, a′ + d′r

2 + d′r, . . . , a
′ + d′r

2 + kd′r} is monochromatic.

with each monochromatic set colored differently from the others and
from a′.

Since {BA, BA+D, . . . , BA+(k+2U(k,c,r))D} is monochromatic we also have
that, for all j with 0 ≤ j ≤ k + 2U(k, c, r),

{a′+d′1
2
+jD, a′+d′1

2
+d′1+jD, . . . , a′+d′1

2
+kd′1+jD | 0 ≤ j ≤ k+2U(k, c, r)}

is monochromatic

{a′+d′2
2
+jD, a′+d′2

2
+d′2+jD, . . . , a′+d′2

2
+kd′2+jD} | 0 ≤ j ≤ k+2U(k, c, r)}

is monochromatic
...

{a′+d′r
2
+jD, a′+d′r

2
+d′r+jD, . . . , a′+d′2

2
+kd′r+jD} | 0 ≤ j ≤ k+2U(k, c, r)}

is monochromatic.

with each monochromatic set colored differently from the others and from a′,
but the same as their counterpart in BA.
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Let the new anchor be a = a′−D2. Let di = D +d′i for all 1 ≤ i ≤ r, and
dr+1 = D. We first show that these parameters work and then show that
a, d1, . . . , dr ∈ [U(k, c, r + 1)].

For 1 ≤ i ≤ r we need to show that

{a + (D + d′i)
2, a + (D + d′i)

2 + (D + d′i), . . . , a + (D + d′i)
2 + k(D + d′i)}

is monochromatic. Let 0 ≤ j ≤ k. Note that

a+(D+d′i)
2+j(D+d′i) = (a′−D2)+(D2+2Dd′i+d′i

2
)+(jD+jd′i) = a′+d′i

2
+jd′i+(j+2d′i)D.

Notice that 0 ≤ j+2d′i ≤ k+2U(k, c, r). Hence a+d2
i +jdi ∈ BA+(j+2d′i)D

′ ,
the (j + 2d′i)th block. Since BA is the same color as BA+(j+2d′i)D

′ ,

COL(a + d2
i ) = COL(a + d2

i + jdi).

So we have that, for all 0 ≤ i ≤ r, for all j, 0 ≤ j ≤ k, the set

{a + d2
i , a + d2

i + di, . . . , a + d2
i + kdi}

is monochromatic for each i. And, since the original sequences were
different colors, so are our new sequences. Finally, if COL(a) = COL(a+d2

i )
for some i, then we have {a, a+d2

i , a+d2
i +di, . . . , a+d2

i +kdi}monochromatic,
satisfying Statement I. Otherwise, we satisfy Statement II.

We still need to show that a, d1, . . . , dr ∈ [X×U(k, c, r))2+X×U(k, c, r)].
This is an easy exercise based on the lower bound on a′ (since it came from
the later X × U(k, c, r) coordinates) the inductive upper bound on the di’s,
and the upper bound D ≤ U(k, c, r).

Theorem 4.2.3 For all k, POLYVDW(Pk).

Proof: We show W (Pk, c) exists by bounding it. Let U(k, c, r) be the
function from Lemma 4.2.2. We show W (Pk, c) ≤ U(k, c, c). If COL is any
c-coloring of [U(k, c, c)] then second case of Lemma 4.2.2 cannot happen.
Hence the first case must happen, so there exists a, d ∈ [U(k, c, c)] such that

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} ⊆ [U(k, c, c)]

• {a} ∪ {a + d2, a + d2 + d, . . . , a + d2 + kd} is monochromatic.
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Therefore W (Pk, c) ≤ U(k, c, c).

Note 4.2.4 The proof of Theorem 4.2.3 used VDW. Hence it used POLYVDW(ω).
The proof can be modified to proof POLYVDW(1, 0). So the proof can be
viewed as showing that POLYVDW(ω) =⇒ POLYVDW(1, 0).

4.2.2 The Full Proof

We prove a lemma from which the implication

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni +1, 0, 0, . . . , 0)

will be obvious.

Lemma 4.2.5 Let ne, . . . , ni ∈ N. Assume that POLYVDW(ne, . . . , ni, ω, . . . , ω)
holds. For all P ⊆ Z[x] of type (ne, . . . , ni + 1, 0, . . . , 0), for all c ∈ N, for all
r, there exists U = U(P, c, r) such that for all c-colorings COL : [U ] → [c]
one of the following Statements holds.
Statement I: there exists a, d ∈ [U ], such that

• {a} ∪ {a + p(d) | p ∈ P} ⊆ [U ].

• {a} ∪ {a + p(d) | p ∈ P} is monochromatic.

Statement II: there exists a, d1, . . . , dr ∈ [U ] such that the following hold.

• {a + p(d1) | p ∈ P} ⊆ [U ]

{a + p(d2) | p ∈ P} ⊆ [U ]

...

{a + p(dr) | p ∈ P} ⊆ [U ]

(The number a is called the anchor)

• {a + p(d1) | p ∈ P} is monochromatic

{a + p(d2) | p ∈ P} is monochromatic

...

{a + p(dr) | p ∈ P} is monochromatic
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With each monochromatic set being colored differently and differently from
a.

Informal notes:

1. We are saying that if you c-color [U ] either you will have a monochro-
matic set of the form

{a} ∪ {a + p(d) | p ∈ P}

or you will have many monochromatic sets of the form

{a + p(d) | p ∈ P},

all of different colors, and different from a. Once “many” is more than
c, then the latter cannot happen, so the former must, and we have

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, . . . , 0).

2. If we apply this theorem to a coloring of {s + 1, . . . , s + U} then we
either have

d ∈ [U ] and {a} ∪ {a + p(d) | p ∈ P} ⊆ {s + 1, . . . , s + U}

or
d1, . . . , dr ∈ [U ] and, for all i with 1 ≤ i ≤ r

{a} ∪ {a + p(di) | p ∈ P} ⊆ {s + 1, . . . , s + U}.

Proof: We define U(P, c, r) to be the least number such that this Lemma
holds. We will prove U(P, c, r) exists by giving an upper bound on it. In
particular, for each r, we will bound U(P, c, r). We will prove this theorem
by induction on r.

One of the fine points of this proof will be that we are careful to make
sure that a ∈ [U ]. The fact that we have inductively bounded the di’s will
help that.

Fix P ⊆ Z[x] of type (ne, . . . , ni +1, 0, . . . , 0). Fix c ∈ N. We can assume
P actually has ni + 1 lead coefficents for degree i polynomials (else P is of
smaller type and hence POLYVDW(P, c) already holds and the lemma is
true). In particular there exists some polynomial of degree i in P . Let bxi
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be the first term of some polynomial of degree i in P . We will assume that
b > 0. The proof when b < 0 is very similar.
Base Case: r = 1. Let

Q = {p(x)− bxi | p ∈ P}.

It is easy to show that there exists ni−1, . . . , n1 such that Q is of type
(ne, . . . , ni, ni−1, . . . , n1), and that (∀q ∈ Q)[q(0) = 0]. By the assumption
that POLYVDW(ne, . . . , ni, ω, . . . , ω) is true, POLYVDW(Q) is true. Hence
W (Q, c) exists.

We show that

U(P, c, 1) ≤ bW (Q, c)i + W (Q, c).

Let COL be any c-coloring of [bW (Q, c)i +W (Q, c)]. Look at the coloring
restricted to the last W (Q, c) elements. By POLYVDW(Q) applied to the
restricted coloring there exists a′ ∈ {bW (Q, c)i +1, . . . , bW (Q, c)i +W (Q, c)}
and d′ ∈ [W (Q, c)] such that

{a′} ∪ {a′ + q(d′) | q ∈ Q} ⊆ {bW (Q, c)i + 1, . . . , bW (Q, c)i + W (Q, c)}

{a′} ∪ {a′ + q(d′) | q ∈ Q} is monochromatic .

(Note- we will only need that {a′ + q(d′) | q ∈ Q} is monochromatic.)
Let the new anchor be a = a′ − b(d′)i. Let d1 = d′. (We will use b > 0

later to show that a ∈ [U(P, c, 1) ≤ bW (Q, c)i + W (Q, c)].)
Then

{a′ + q(d′) | q ∈ Q} = {a′ + p(d′)− b(d′)i | p ∈ P}
= {(a′ − b(d1)

i) + p(d1) | p ∈ P}
= {a + p(d1) | p ∈ P} is monochromatic.

If a is the same color then Statement I holds. If a is a different color then
Statement II holds. There is one more issue– do we have a, d ∈ [U(P, c, 1)]?

Since
a′ ≥ bW (Q, c)i + 1

and

d′ ≤ W (Q, c) (Recall that POLYVDW has the restriction d ∈ [W ].)
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we have that

a = a′ − b(d′)i ≥ bW (Q, c)i + 1− bd(d′)i ≥ bW (Q, c)i + 1− bW (Q, c)i = 1

Clearly
a < a′ ≤ bW (Q, c)i + W (Q, c)

Hence
a ∈ [bW (Q, c)i + W (Q, c)].

Since d1 = d′ ∈ [W (Q, c)] we clearly have

d1 ∈ [bW (Q, c)i + W (Q, c)].

Induction Step: Assume U(P, c, r) exists. Let

Q = {p(x + u)− p(u)− bxi | p ∈ P, 0 ≤ u ≤ U(P, c, r)}.

Note that
{p(x)− bxi | p ∈ P} ⊆ Q.

Clearly (∀q ∈ Q)[q(0) = 0]. It is an easy exercise to show that, there
exists ni, . . . , n1 such that Q is of type (ne, . . . , ni+1, ni, . . . , n1).

Now, let

Q′ =

{
q(x× U(P, c, r))

U(P, c, r)
| q ∈ Q

}
Since every q ∈ Q is an integer polynomial with q(0) = 0, it follows that

U(P, c, p) divides q(xU(P, c, r)), so we have Q′ ⊆ Z[x]. Moreover, it’s clear
that Q′ has the same type as Q.

Since POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, we have POLYVDW(Q′).
Hence (∀c′)[W (Q′, c′) exists]. We show that

U(P, c, r + 1) ≤ b
(
U(P, c, r)W (Q′, cU(P,c,r))

)i
+ U(P, c, r)W (Q′, cU(P,c,r)).

(Note that we are using b > 0) here.)
Let COL be a c-coloring of[

b
(
U(P, c, r)W (Q′, cU(P,c,r))

)i
+ U(P, c, r)W (Q′, cU(P,c,r))

]
.
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View this set as b
(
U(P, c, r)W (Q′, cU(P,c,r))

)i
elements followed by W (Q′, cU(P,c,r))

blocks of size U(P, c, r) each. Restrict COL to the blocks. Now view the
restricted c-coloring of numbers as a cU(P,c,r)-coloring of blocks. Call
this coloring COL∗. Let the blocks be

B1, B2, . . . , BW (Q′,cU(P,c,r)).

By the definition of W (Q′, cU(P,c,r)) applied to COL∗, and the assumption
that POLYVDW(ne, . . . , ni, ω, . . . , ω) holds, there exists A, D′ ∈ [W (Q′, cU(P,c,r))]
such that

{BA+q′(D′) | q′ ∈ Q′} is monochromatic.

Note that we are saying that the blocks are the same color. Let D =
D′×U(P, c, r) be the distance between corresponding elements of the blocks.
Because each block is length U(P, c, r), if we have an element x ∈ BA, then
in block BA+q′(D′) we have a point x′, where

CHECK NORMAL VDW WITH THIS POINT ABOUT BLOCKS
FILL IN - NEED FIGURE

x′ = x + q′(D′)U(P, c, r)

= x + q′
(

D

U(P, c, r)

)
U(P, c, r)

= x + q(D) for some q ∈ Q, by definition of Q′

This will be very convenient.

Consider the coloring of BA. Since BA is of size U(P, c, r) one of the following
holds.

I) There exists a ∈ BA and d ∈ [U(P, c, r)] such that

• {a} ∪ {a + p(d) | p ∈ P} ⊆ BA

• {a} ∪ {a + p(d) | p ∈ P} is monochromatic (so we are done).

II) There exists a′ ∈ BA (so a′ ≥ bW (Q′, cU(P,c,r))i + 1) and d′1, . . . , d
′
r ∈

[U(P, c, r)] such that

• {a′ + p(d′1) | p ∈ P} ⊆ BA

{a′ + p(d′2) | p ∈ P} ⊆ BA
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...

{a′ + p(d′r) | p ∈ P} ⊆ BA

• {a′ + p(d′1) | p ∈ P} is monochromatic

{a′ + p(d′2) | p ∈ P} is monochromatic

...

{a′ + p(d′r) | p ∈ P} is monochromatic

with each monochromatic set being colored differently from each other
and from a′.

Since {BA+q′(D′) | q′ ∈ Q′} is monochromatic, and since we know that
x ∈ BA corresponds to x + q(D) ∈ BA+q′(D′), we discover that, for all q ∈ Q,

{a′ + p(d′1) + q(D) | p ∈ P} is monochromatic
{a′ + p(d′2) + q(D) | p ∈ P} is monochromatic

...
{a′ + p(d′r) + q(D) | p ∈ P} is monochromatic.

with each monochromatic set being colored differently from each other,
and from a′, but the same as their counterpart in BA.

Our new anchor is a = a′ − bDi. Note that since

a′ ≥ bW (Q′, cU(P,c,r))i + 1

and
D ≤ W (Q′, cU(P,c,r))

we have

a = a′ − bDi ≥ bW (Q′, cU(P,c,r))i + 1− bW (Q′, cU(P,c,r))i = 1

Clearly a ≤ a′ ≤ bW (Q′, cU(P,c,r) + U(P, c, r)W (Q′, cU(P,c,r)). Hence

a ∈ [bW (Q′, cU(P,c,r)i + U(P, c, r)W (Q′, cU(P,c,r))].

Since
{BA+q′(D′) | q′ ∈ Q′}
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is monochromatic (viewing the coloring on blocks) we know that

{a′ + q(D) | q ∈ Q}

is monochromatic (viewing the coloring on numbers). Remember that the
following is a subset of Q:

{p(x)− bxi | p ∈ P}.

Hence the following set is monochromatic:

{a′ + p(D)− bDi | p ∈ P} = {a + bDi + p(D)− bDi | p ∈ P}
= {a + p(D) | p ∈ P}.

If a is the same color then Statement I holds and we are done. If a is
a different color then we have one value of d, namely dr+1 = D. We seek r
additional ones to show that Statement II holds.

For each i we want to find a new di that works with the new anchor a.
Consider the monochromatic set {a′ + p(d′i) | p ∈ P}. We will take each
element of it and shift it q(D) elements for some q ∈ Q. The resulting set is
still monochromatic. We will pick q ∈ Q carefully so that the resulting set,
together with the new anchor a and the new values di = d′i + D work.

CHECK VDW AND QVDW FOR THIS POINT
For each p ∈ P we want to find a q ∈ Q such that a + p(d′i + D) is of the

form a′ + p(d′i) + q(D), and hence the color is the same as a′ + p(d′i).

a′ + p(d′i) + q(D) = a + p(d′i + D)
a′ + p(d′i) + q(D)− a = p(d′i + D)

bDi + p(d′i) + q(D) = p(d′i + D)
q(D) = p(d′i + D)− p(d′i)− bDi

Take q(x) = p(x + d′i) − p(d′i) − bDi. Note that d′i ≤ U(Q, c, r) so that
q ∈ Q.

— Put bounds on di in here.
FILL IN- CHECK THIS
Let di = d′i + D for 1 ≤ i ≤ r, and dr+1 = D.
We have seen that

{a + p(d1) | p ∈ P} is monochromatic

...
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{a + p(dr) | p ∈ P} is monochromatic

AND

{a + p(dr+1) | p ∈ P} is monochromatic

The first r are guaranteed to be different colors by the inductive assump-
tion. The (r + 1)st is yet another color, because it shares a color with the
anchor of our original sequences, which we assumed had its own color. So
here we see that the Lemma is satisfied with parameters a, d1, . . . , dr, dr+1.

Lemma 4.2.6 For all ne, . . . , ni

POLYVDW(ne, . . . , ni, ω, . . . , ω) =⇒ POLYVDW(ne, . . . , ni+1, 0, 0, . . . , 0).

Proof: Assume POLYVDW(ne, . . . , ni, ω, . . . , ω). Let P be of type
POLYVDW(ne, . . . , ni + 1, 0, 0, . . . , 0). Apply Lemma 4.2.5 to P with r = c.
Statement II cannot hold, so statement I must, and we are done.

We can now prove the Polynomial van der Waerden theorem.

Theorem 4.2.7 For all P ⊆ Z[x] finite, such that (∀p ∈ P )[p(0) = 0], for
all c ∈ N, there exists W = W (P, c) such that for all c-colorings COL :
[W ] → [c], there exists a, d ∈ [W ] such that

• {a} ∪ {a + p(d) | p ∈ P} ⊆ [W ],

• {a} ∪ {a + p(d) | p ∈ P} is monochromatic.

Proof:
We use the ordering from Definition 4.1.9. The least element of this set

is (0). POLYVDW(0) is the base case. The only sets of polynomials of
type (0) are ∅. For each of these sets, the Polynomial van der Waerden
theorem requires only one point to be monochromatic (the anchor), so of
course POLYVDW (0) holds.

Lemma 4.2.5 is the induction step.
This proves the theorem.

Note 4.2.8
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1. Our proof of POLYVDW did not use van der Waerden’s Theorem. The
base case for POLYVDW was POLYVDW(0) which is trivial.

2. Let p(x) = x2−x and P = {p(x)}. Note that p(1) = 0. The statement
POLYVDW(P, 1870) is true but stupid: if COL is an 1870-coloring of
[1] then let a = 0 and d = 1. Then a, a + p(d) are the same color
since they are the same point. Hence POLYVDW(P, 1870) holds but
is stupid. The proof of POLYVDW we gave can be modified to obtain
a d so that not only is d 6= 0 but

{a} ∪ {a + p(d) | p ∈ P}

has all distinct elements. Once this is done POLYVDW(P, 1870) is
true in a way that is not stupid.

4.3 Bounds on the Polynomial Van Der Waer-

den Numbers

4.3.1 Upper Bounds

4.3.2 Upper Bounds via Alternative Proofs

4.3.3 Lower Bounds

Theorem 4.3.1 Let P ⊆ Z[x] be a set of k− 1 polynomials with 0 constant
term. Assume that there is no positive integer for which any pair assumes
the same value. For all c, POLYVDW(P, c) ≥ c(k−1)/2.

Proof: We will prove this theorem as though we didn’t know the result.
Let W be a number to be picked later. We are going to try to c-color

[W ] such that there is no a, d with {a} ∪ {a + p(d) : p ∈ P} monochromatic.
More precisely, we are going to derive a value of W such that we can show
that such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that an a, d exist such that {a} ∪ {a + p(d) : p ∈ P} is monochromatic?

The number of colorings is cW . We now find the number of colorings that
have such an a, d.
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First pick the color of the sequence. There are c options. Then pick the
value of a. There are W options. Then pick the value of d. Note that we
are using the version of the POLYVDW where d ∈ [W ], so there are W
options. Once these are determined, the color of the distinct k values in
{a} ∪ {a + p(d) : p ∈ P} are determined (they are distinct because of the
assumption in the premise of this theorem.) There are W − k values left.
Hence the number of such colorings is bounded above by cW 2cW−k.

The probability that the c-coloring has a monochromatic k-AP is bounded
above by

cW 2cW−k

cW
=

W 2

ck−1
.

We need this to be < 1. Hence we need

W 2 < ck−1.

W < c(k−1)/2.

Therefore there is a c-coloring of [c(k−1)/2 − 1] without a monochromatic
k-AP. Hence POLYVDW(P, c) ≥ c(k−1)/2.

We actually obtained a better bound in Theorem 2.3.1 when dealing
with ths ordinary VDW. This is because we knew more about the actual
polynomials involved. Below we obtain better bounds for particular sets of
polynomials.

Theorem 4.3.2 Let c, k ∈ N. Let P = {x, x2, . . . , xk}. POLYVDW(P, c) ≥

Proof: We will prove this theorem as though we didn’t know the result.
Let W be a number to be picked later. We are going to try to c-color [W ]

such that there is no a, d with {a} ∪ {a + dj : 1 ≤ j ≤ k} monochromatic.
More precisely, we are going to derive a value of W such that we can show
that such a coloring exists.

Consider the following experiment: for each i ∈ [W ] randomly pick a
color from [c] for i. The distribution is uniform. What is the probability
that an a, d exist such that {a} ∪ {a + p(d) : p ∈ P} is monochromatic?

The number of colorings is cW . We now find the number of colorings that
have such an a, d.
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First pick the color of the sequence. There are c options. Then pick
the value of a. There are W options. Then pick the value of d. Note
that we need to have a + dk ∈ [W ]. Hence d ≤ W 1/k, so there are W 1/k

options. Once these are determined, the color of the distinct k values in
{a}∪{a+dj : 1 ≤ j ≤ k} are determined There are W −k values left. Hence
the number of such colorings is bounded above by cW 1+1/kcW−k.

The probability that the c-coloring has a monochromatic k-AP is bounded
above by

cW 1+1/kcW−k

cW
=

W 1+1/k

ck−1
.

We need this to be < 1. Hence we need

W 1+1/k < ck−1.

W < c(1−ε)k where ε = 2
k+1

.

Therefore there is a c-coloring of [c(1−ε)k − 1] without such an a, d. Hence
POLYVDW(P, c) ≥ c(1−ε)k − 1

Better bounds are known. See [31] and [22]
FILL IT IN- ADD MORE REFS AND POSSIBLY PROOFS

4.4 What if we use Polynomials with a Con-

stant term?

4.5 What if we do not use Polynomials?

The POLYVDW was motivated by replacing d, 2d, . . . , (k−1)d with polyno-
mials in d. Would other functions work? Would exponential functions work?
For which choice of b, c ∈ N is the following true:

for every c-coloring COL of N there exists a, d ∈ N such that with

COL(a) = COL(a + bd)

Alas, this is never true.
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Theorem 4.5.1 Fix b ∈ N. Let p be the smallest prime number which is
not a factor of b, Then there is a p-coloring COL : N → [p] such that,
∀a, d ∈ N, COL(a) 6= COL(a + bd).

Proof: Fix b, p ∈ N with p the smallest prime non-factor of b. Now
define the p-coloring COL : N → [p] such that COL(n) = n′, where n′ is the
reduction of n modulo p with n′ ∈ [p]. Most importantly, COL(n) ≡ n (mod
p). Thus, COL(a) = COL(b) if and only if p | (b− a).

Now let a, d ∈ N, and consider COL(a) and COL(a + bd). Well, since
p is prime and p - b, we know that p - bd. This guarantees that COL(a) 6=
COL(a + bd), which is what was to be shown.

It is an open question to determine if Theorem 4.5.1 is tight. Also, it is
open to investigate other functions.
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Chapter 5

Applications of the Polynomial
Van Der Waerden Theorem

FILL IN- VDW where the d has to be a square, or some other poly,

61
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Chapter 6

The Hales-Jewett Theorem

6.1 Introduction

HJ feels very much like VDW, despite living in a very different domain. In the
case of HJ, we replace [W ] with a hypercube, and the arithmetic sequences
with monochromatic lines, but it will feel very similar. Here’s the cast of
players in HJ:

• The hypercube — Given c, t, N ∈ N, we will color the elements of the
N -dimensional hypercube of length t — namely [t]N .

When t = 26, we can look at [t]N as strings of letters. For example,
PUPPY and TIGER are points in [26]5.

• The lines — In [t]N , a line is a collection of points P1, P2, . . . , Pt such
that ∃λ ⊆ [N ], λ 6= ∅ satisfying

(∀s ∈ λ)(∀i)[P s
i = s and ∀s /∈ λ,∀i, j, P s

i = P s
j ]( See Example below )

where P s
i denotes the sth component of the point Pi. We call λ the

“moving” coordinates, and the rest are static.

Example 6.1.1 The following form a line in [26]9, with λ = {2, 3, 5, 8}:

GAABARDAA

GBBBBRDBA
...

GZZBZRDZA

63
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• The line−. A line− is the first t− 1 points of a line in [t]N . The line−

corresponding to the previous example is

GAABARDAA

GBBBBRDBA
...

GYYBYRDYA

Given a line L, we will refer to L− as the line− corresponding to L.

• Completion — the would-be tth point of a line−. The completion of our
line− is the point GZZBZRDZ. If more than one point would complete
the line, we choose the least such point, according to a lexicographical
ordering of [t]N .

Note 6.1.2 When t ≤ 2, a line− may have more than one completion,
since in that case a line− is a single point. For example, {BAA} is a
line− in [2]3. Its completions are BAB, BBA, and BBB, depending on
our choice of moving coordinates. However, when t ≥ 3, a line− will
have at least 2 points, which establishes the set of moving coordinates,
and thus the completion of the line. This means, when t ≥ 3, every
line− has a unique, predetermined tth point. The definition’s use of the
“least” tth point only matters when t ≤ 2

We are now ready to present HJ .

Hales-Jewett theorem ∀t, c,∃N = HJ(t, c) such that, for all c-colorings
COL : [t]N → [c],∃L ⊆ [t]N , L a monochromatic line.

There are some easy base cases:

Fact 6.1.3

• c = 1 — HJ(t, 1) = 1; Any 1-coloring of [t]1 = [t] easily has a
monochramtic line. For example, if we 1-color [4] we have that (1),
(2), (3), (4) are all RED and they form a line.
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• t = 1 — HJ(1, c) = 1; when t = 1 there is only a single point.

There is also a slightly harder base case:

Proposition 6.1.4 HJ(2, c) = c + 1

Proof:
Let COL : [2]c+1 → [c] be a c-coloring of [2]c+1. Consider the following

elements of [2]c+1

1 1 1 · · · 1 1
1 1 1 · · · 1 2
1 1 1 · · · 2 2
...

...
...

...
...

...
1 2 2 · · · 2 2
2 2 2 · · · 2 2

Since there are c+1 elements and only c colors, two of these elements are
the same color. We can assume they are of the form

1i2j where i + j = c + 1
1i′2j′ where i′ + j′ = c + 1
These two elements form a monochromatic line. (For example

1 1 1 1 1 1 2 2 2
1 1 1 1 2 2 2 2 2

form a monochromatic line with λ = {5, 6}.)

We will give two proof of the HJ: (1) The original proof due to Hales
and Jewitt [16], presented as a color-focusing argument, and (2) a proof due
to Shelah [29] and yields much better upper bounds on the Hales-Jewitt
Numbers.

6.2 Proof of the Hales-Jewitt Theorem

We prove a lemma from which the theorem will easily follow.

Lemma 6.2.1 Fix t, c ∈ N. Assume (∀c′)[HJ(t−1, c′) exists]. Then, for all
r, there exists N = U(t, c, r) such that, for all c-colorings COL : [t]N → [c]
one of the following statements holds.
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Statement I: There exists a monochromatic line L ⊆ [t]N .

Statement II: There exist r monochromatic lines− L−
1 , L−

2 , . . . , L−
r ⊆ [t]N ,

and a point Q ∈ [t]N , such that each L−
i has a different color, Q is yet

another color, and Q is the completion of every L−
i . (Informally, we say that

if you c-color [t]N then you will either have a monochromatic line, or many
monochromatic line− structures, each of a different color. Once “many”
becomes more than c, we must have a monochromatic line.)

Proof:
We define U(t, c, r) to be the least number such that this Lemma holds.

We will prove U(t, c, r) exists by giving it an upper bound on it.

Base Case: If r = 1 then U(t, c, 1) ≤ HJ(t − 1, c) suffices (actually
U(t, c, 1) = HJ(t − 1, c)). We take any c-coloring of [t]HJ(t−1,c), and re-
strict the domain to a c-coloring of [t − 1]HJ(t−1,c) to find a monochromatic
line, which it has by definition of HJ. This becomes a monochromatic line−

in [t]HJ(t−1,c), so we are done.

Induction Step: By induction, assume U(t, c, r) exists. Let

X = ctU(t,c,r)

. This is the number of ways to c-color [t]U(t,c,r).

(X stands for eXtremely large.)
We will show that

U(t, c, r + 1) ≤ HJ(t− 1, X) + U(t, c, r).

Let N = HJ(t− 1, X) + U(t, c, r). Now we view [t]N as

[t]HJ(t−1,X) × [t]U(t,c,r).

Define S =
{
χ | χ : [t]U(t,c,r) → [c]

}
. Note that |S| = X. How convenient.

Let COL : [t]N → [c] be our c-coloring. We define, for each σ ∈ [t −
1]HJ(t−1,X),

COL′(σ) : [t− 1]HJ(t−1,X) → S.

Note 6.2.2 At this point, it is essential to realize that COL′ is an X-coloring
of [t − 1]HJ(t−1,X). With every vector in [t − 1]HJ(t−1,X), we associate some
χ ∈ S. Although χ is itself a coloring, here we treat it as a color.
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For example, COL(σ) might be the following 3-coloring of [2]3

COL′(σ)(0, 0, 0) = 1

COL′(σ)(0, 0, 1) = 1

COL′(σ)(0, 1, 0) = 3

COL′(σ)(0, 1, 1) = 2

COL′(σ)(1, 0, 0) = 1

COL′(σ)(1, 0, 1) = 3

COL′(σ)(1, 1, 0) = 2

COL′(σ)(1, 1, 1) = 2

Given σ ∈ [t − 1]HJ(t−1,X), COL′(σ) will be a c-coloring of [t]U(t,c,r). Ac-
cordingly, we define COL′ by telling the color of COL′(σ)(τ) for τ ∈ [t]U(t,c,r).
From here, our choice is clear — we associate to σ the c-coloring COL′(σ) :
[t]U(t,c,r) → [c] defined by

COL′(σ)(τ) = COL(στ).

Here στ is the vector in [t]N which is the concatenation of σ and τ .
We treat COL′ as an X-coloring of [t − 1]HJ(t−1,X). By definition of

HJ(t − 1, X), we are guaranteed a monochromatic line, L, where L ⊆ [t −
1]HJ(t−1,X) ⊂ [t]HJ(t−1,X). Let L = {P1, P2, . . . , Pt−1}. So we have

COL′(P1) = COL′(P2) = · · · = COL′(Pt−1) = χ

L is a line in [t− 1]U(t,c,r), but it is only a line− in [t]HJ(t−1,X). Let Pt be
its completion.

Of course, χ itself is a c-coloring of [t]U(t,c,r). By definition of U(t, c, r),
we get one of two things:

Case 1: If χ gives a monochromatic line L′ = {Q1, Q2, . . . , Qt}, then our
monochromatic line in [t]N is

{P1Q1, P1Q2, . . . , P1Qt}

and we are done. (Note that {P2Q1, P2Q2, . . . , P2Qt} also would have worked,
as would {P3Q1, P3Q2, . . . , P3Qt} etc.)
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Case 2: We have L−
1 , L−

2 , . . . , L−
r , each a monochromatic line− in [t]U(t,c,r),

and each with the same completion Q ∈ [t]U(t,c,r). Note that Q must have an
(r + 1)st color, or else we would be in case 1. Let Qj

i denote the jth point
on L−

i . We now have all the components needed to piece together r + 1
monochromatic line− structures:

{P1Q
1
1, P2Q

2
1, . . . , Pt−1Q

t−1
1 }

{P1Q
1
2, P2Q

2
2, . . . , Pt−1Q

t−1
2 }

...

{P1Q
1
r, P2Q

2
r, . . . , Pt−1Q

t−1
r }

AND

{P1Q,P2Q, . . . , Pt−1Q}

We already know the first r have different colors.
Case 2.1: The line− {P1Q, P2Q, . . . , Pt−1Q} is the same color as the

sequence {P1Q
1
i , P2Q

2
i , . . . , Pt−1Q

t−1
i } for some i. Then the line given by

{P1Q
1
i , P1Q

2
i , . . . , P1Q

t−1
i , P1Q}

is monochromatic, so we are done, satisfying Statement I.
Case 2.2: The line− structures listed are all monochromatic and different

colors. Note that PtQ is the completion for all of them, so Statement II is
satisfyied.

We now restate and prove the HJ:

Theorem 6.2.3 Hales-Jewett theorem ∀t, c,∃N = HJ(t, c) such that,
for all c-colorings COL : [t]N → [c],∃L ⊆ [t]N , L a monochromatic line.

Proof:
We prove this by induction on t. We show that

• (∀c)[HJ(1, c) exists]

• (∀c)[HJ(t− 1, c) exists] =⇒ (∀c)[HJ(t, c) exists]
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Base Case: t = 1 As noted in Fact 6.1.3 HJ(1, c) = 1 exists.
Induction Step: Assume (∀c)[HJ(t−1, c) exists ]. Fix c. Consider Lemma 6.2.1
when r = c. In any c-coloring of [t]U(t,c,c), either there is a monochromatic
line, or there are c monochromatic line− structures which are all colored dif-
ferently, and share a completion Q colored differently. Since there are only c
colors, this cannot happen, and we must have a monochromatic line. Hence
HJ(t, c) ≤ U(t, c, c).

6.3 Shelah’s Proof of the Hales-Jewitt Theo-

rem

6.4 Bounds on the Hales-Jewitt Numbers

6.4.1 Upper Bounds on the Hales-Jewitt Numbers

6.4.2 Lower Bounds on the Hales-Jewitt Numbers
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Chapter 7

Applications of the
Hales-Jewitt Theorem

7.1 Positional Games

7.2 VDW and Variants

7.3 Comm. Comp. of XXX

7.4 The Square Theorem: Fourth Proof

Use HJ directly.

7.5 The Gallai-Witt Theorem (Multidim VDW)

Theorem 7.5.1 Let c, M ∈ N. Let COL∗ : N×N → [c]. There exists a, d, D
such that all of the following are the same color.

{(a + iD, d + jD) | −M ≤ i, j ≤ M}.

7.6 The Canonical VDW

We first recall the following version of van der Waerden’s theorem.

71
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VDW For every k ≥ 1 and c ≥ 1 for every c-coloring COL : [N] → [c] there
exists a monochromatic k-AP. In other words there exists a, d such that

COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

What if we use an infinite number of colors instead of a finite number
of colors? Then the theorem is false as the coloring COL(x) = x shows.
However, in this case, we may get something else.

Def 7.6.1 Let k ∈ N. Let COL be a coloring of N (which may use a finite
or infinite number of colors). A rainbox k-AP is an arithmetic sequence
a, a + d, a + 2d, . . . , a + (k− 1)d such that all of these are colored differently.

The following is the Canonical van der Waerden’s theorem. Erdos and
Graham [7] claim that it follows from Szemerëdi’s theorem on density. Later
Prömel and Rödl [25] obtained a proof that used the Gallai-Witt theorem.

Theorem 7.6.2 Let k ∈ N. Let COL : N → N be a coloring of the naturals.
One of the following two must occur.

• There exists a monochromatic k-AP.

• There exists a rainbox k-AP.

Proof:
Let COL∗ be the following finite coloring of N× N. Given (a, d) look at

the following sequence

(COL(a), COL(a + d), COL(a + 2d), . . . , COL(a + (k − 1)d)).

This coloring partitions the numbers {0, . . . , k − 1} in terms of which
coordinates are colored the same. For example, if k = 4 and the coloring
was (R,B,R,G) then the partition is {{0, 2}, {1}, {3}}. We map (a, d) to
the partition induced on {0, . . . , k − 1} by the coloring. There are only a
finite number of such partitions. (The Stirling numbers of the second kind
are S(k, L) are the number of ways to partition k numbers into L nonempty
sets. The Bell numbers are Bk =

∑k
L=1 S(k, L). The actual number is colors

is Bk.)
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Example 7.6.3

1. Let k = 10 and assume

(COL(a), COL(a+d), . . . , COL(a+(9d)) = (R, Y,B, I, V, Y, R, B, B, R).

Then (a, d) maps to {{0, 6, 9}, {1, 5}, {2, 7, 8}, {3}, {4}, }.

2. Let k = 6 and assume

(COL(a), COL(a + d) . . . , COL(a + (5d)) = (R, Y,B, I, V, Y ).

Then (a, d) maps to {{0}, {1}, {2}, {3}, {4}, {5}}.

Let M be a constant to be picked later. By Theorem 7.5.1 There exists
a, d, D such that all of the following are the same COL∗

{(a + iD, d + jD) | −M ≤ i, j ≤ M}.

There are two cases.
Case 1: COL∗(a, d) is the partition of every element into its own class. This
means that there is a rainbow k-AP and we are done.
Case 2: There exists x, y such that COL∗(a, d) is the partition that puts
a+xd and a+yd in the same class. More simply, COL(a+xd) = COL(a+yd).
Since for all −M ≤ i, j ≤ M ,

COL∗(a, d) = COL∗(a + iD, d + jD).

we have that, for all −M ≤ i, j ≤ M ,

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).

Assume that COL(a + xd) = COL(a + yd) = RED. Note that we do not
know COL(a + iD + x(d + jD)) or COL(a + iD + y(d + jD)), but we do
know that they are the same.

We want to find the (i, j) with −M ≤ i, j ≤ M such that
COL∗(a + iD, d + jD) affects COL(a + xd).

Note that
if

a + xd = a + iD + x(d + jD)
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then

xd = iD + xd + xjD

0 = iD + xjD

0 = i + xj

i = −xj.

Hence we have that

a + xd = (a− xj)D + x(d + jD).

So what does this tell us? For all −M ≤ i, j ≤ M ,

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).

Let i = −xj and you get

COL(a− xjD + x(d + jD)) = COL(a− xjD + y(d + jD)).

RED = COL(a + xd) = COL(a + yd + j(yD − xD)).

This holds for −M ≤ j ≤ M . Looking at j = 0, 1, . . . , k − 1, and letting
A = a + yd and D′ = yD − xD, we get

COL(A) = COL(A+D′) = COL(A+2D′) = · · · = COL(A+(k−1)D′) = RED.

This yields an monochromatic k-AP.
What value do we need for M? We want j = 0, 1, . . . , k − 1. We want

i = −xj. We know that x ≤ k − 1. Hence it suffices to take M = (k − 1)2.

Note 7.6.4 We used the two-dimensional VDW to prove the one-dimensional
canonical VDW. For all d there is a d-dimensional canonical VDW, and it is
proven using the d+1-dimensional VDW. The actual statement is somewhat
complicated. The interested reader can see [25].
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7.7 Comm. Comp. of
∑k

i=1 xi ≡ 0 (mod 2n − 1)
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Chapter 8

The Polynomial Hales-Jewitt
Theorem

8.1 Introduction

Much as VDW has a generalization to POLYVDW, so does HJ. To get there,
we must first generalize a few definitions, and create some we had no need
for in the original version.

Recall that, in HJ, we colored elements of [t]N and looked for monochro-
matic lines. Of course, we used the ground set [t] only for convenience — we
used none of the numerical properties. In that spirit, we may replace [t] with
any alphabet Σ of t letters.

Let Σ = (Σd, . . . , Σ1) be a list of alphabets, and n a natural number. A
Hales-Jewett space has the form

SΣ(n) = Σnd

d × Σnd−1

d−1 × · · · × Σn
1

We view an element A ∈ SΣ(n) as a collection of structures: a vector with
coordinates from Σ1, a square with coordinates from Σ2, a cube with coor-
dinates from Σ3, and so on. In the ase of d = 1, and Σ = [t], this is precisely
the space colored in the ordinary HJ.

We define a set of formal polynomials over Σ by

Σ[γ] =
{
adγ

d + · · ·+ a1γ | ai ∈ Σi

}
Note that every polynomial has exactly d terms — omitting a term is not
permitted. This differs from POLYVDW where we allowed any polynomials.

77
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For example, x3 is a valid polynomial when dealing with POLYVDW. The
closest we can come to this in POLYHJ is 1x3 + 0x2 + 0x. Note that 1x3 +
0x2+0x is not equivalent to x3. In fact, the term x3 has no meaning since the
coefficients come out of a finite alphabet. Note that although the coefficients
may suggest meaning to the reader, they will have no numerical significance
in the context of HJ .

Let A ∈ SΣ(n), p ∈ Σ[γ] of the form p(γ) = adγ
d + · · ·+a1γ, and λ ⊆ [n].

Then we define A + p(λ) ∈ SΣ(n) as follows. Take the line from A, and
replace the coordinates in λ by a1. Similarly, replace the coordinates from
the square in λ2 = λ× λ with a2, and so on.

Example 8.1.1 Let Σ1 = {a, b, c, d}, Σ2 = [9], and Σ = (Σ2, Σ1). Let A ∈
SΣ(3) be

A =

 3 1 2
8 8 9
4 5 3

 (a d c)

Note that A consists of a 3× 3 block and a 1× 3 block together, but they
have no mathematical significance as a matrix or a vector.

Now, let p ∈ Σ[γ] be given by p(γ) = 1γ2 + bγ, and let λ = {1, 2}. Then

A + p(λ) =

 1 1 2
1 1 9
4 5 3

 (b b c)

Now, we can restate HJ in this language.

Theorem 8.1.2 Hales-Jewett theorem
For every c, every finite alphabet Σ, there is some N such that, for any c-
coloring COL : SΣ(N) → [c], there is a point A ∈ SΣ(N), λ ⊆ [N ], with
λ 6= ∅ such that the set {A + σλ | σ ∈ Σ} is monochromatic.

From this terminology, we see a very natural generalization to a polyno-
mial version of the theorem.

Theorem 8.1.3 Polynomial Hales-Jewett theorem
For every c, every list of finite alphabets Σ = (Σd, . . . , Σ1), and every col-
lection P ⊆ Σ[γ], there is a number N = HJ(Σ, P, c) with the follow-
ing property. For any c-coloring COL : SΣ(N) → [c], there is a point
A ∈ SΣ(N), λ ⊆ [N ] with λ 6= ∅, such that the set {A + p(λ) | p ∈ P}
is monochromatic.
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Example 8.1.4 Let d = 2, Σ2 = {0, . . . , 9}, Σ1 = {a, . . . , z}. Let

P = {1γ2 + aγ, 1γ2 + bγ, 2γ2 + cγ}.

If N = 3 and λ = {2, 3}, then the following would be an appropriate
monochromatic set:  5 2 4

7 1 1
1 1 1

 (f a a)

 5 2 4
7 1 1
1 1 1

 (f b b)

 5 2 4
7 2 2
1 2 2

 (f c c)

POLYHJ was first proven by Bergelson and Leibman [2] using Ergodic
methods. We present the proof by Walters [36] that uses purely combinatorial
techniques.

8.2 Defining Types of Sets of Polynomials

Note that, in POLYVDW, we needed to assume that p(0) = 0 for every
p ∈ P . We have no such statement here, because we have no notion of a
constant term for a polynomial in Σ[γ].

To prove this theorem, we will do induction on the “type” of the set of
polynomials P , as in the POLYVDW. However, each polynomial necessarily
has degree d, which makes the notion of type used previously rather unhelp-
ful. In order to get the induction to work, we need to introduce a relative
notion of degree, and tweak the definition of type.

Def 8.2.1 Let Σ be a list of finite languages, and p, q ∈ Σ[γ]. Then we say
the degree of p relative to q is the degree of the highest term on which they
differ. Formally, let p(γ) = adγ

d + · · · + a1γ
1, and q(γ) = bdγ

d + · · · + b1γ
1.

Let k be the largest index such that ak 6= bk (or 0 if p = q). Then p has
degree k with respect to q. We also say that p has leading coefficient ak with
respect to q
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Note that the definition is symmetric: the degree of p relative to q is the
same as the degree of q relative to p.

Example 8.2.2 Define

f(γ) = aγ3 + 3γ2 +♥γ

g(γ) = aγ3 + 3γ2 +♦γ

h(γ) = bγ3 + 3γ2 +♥γ

The we see the following:

• f has degree 1 relative to g.

• f has leading coefficient ♥ relative to g, and g has leading coefficient
♦ relative to f .

• h has degree 3 relative to both f and g.

• h has leading coefficient b relative to f and g, which each have leading
coefficient a relative to h.

With this definition, we can now define the type of a set of polynomials
relative to q virtually the same as we did for POLYVDW.

Def 8.2.3 Let Σ be a list of d finite alphabets, and P ⊆ Σ[γ], q ∈ Σ[γ]. For
each index k, let Pk ⊆ P be the subset of polynomials with degree k relative
to q. Let nk be the number of leading coefficients relative to q of polynomials
in Pk. Then the type of P relative to q is vector (nd, . . . , n1). We give these
type vectors the same ordering as before, as seen in Definition 4.1.9.

For each pi ∈ P , let ti be the type of P relative to pi. Then we say P has
[absolute] type t = min ti.

Example 8.2.4 Let P = {p1, p2, p3, p4, p5}, where

p1 = aγ3 + 6γ2 +♦γ

p2 = aγ3 + 6γ2 +♥γ

p3 = aγ3 + 7γ2 +♥γ

p4 = bγ3 + 6γ2 +♦γ

p5 = bγ3 + 6γ2 +♥γ

Let Q = Q− {p5}. We see that:
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• The type of P relative to p1 and p2 is (1, 1, 1).

• The type of P relative to p3 is (1, 1, 0).

• The type of P relative to p4 and p5 is (1, 0, 1).

• The [absolute] type of P is (1, 0, 1), minimized by p4 and p5.

• P and P − {p5} have the same type relative to p1, p2, and p3, the type
remains unchanged.

• The type of P − {p5} relative to p4 is (1, 0, 0) — lower than the type
of P .

The next proposition states that this last point always happens — the type
of a set always decreases when you remove the polynomial which minimizes
it.

Proposition 8.2.5 Let P be a set of polynomials, such that p ∈ P minimizes
its type. Then P − {p} has lower type.

Proof: Let P have type (nd, . . . , n1), and let p minimize the type of P .
Choose q ∈ P to have minimal degree with respect to p, and call that degree
k. Define Q = P−{p}. For polynomials in Q of degree greater than k relative
to p, the degree is unchanged relative to q. Since the leading coefficients are
also unchanged, the first d−k coefficients of the type vector are identical for
P and Q.

Now, let Qk ⊆ Q be the set of polynomials with degree ≤ k relative to
p. By definition of the type vector, there are [exactly] nk different leading
coefficients of degree k polynomials in this set. Moreover, there are no poly-
nomials of lower degree relative to p, since q was chosen to minimize k. Now,
q has one of the nk leading coefficients relative to p. Thus, relative to q, Qk

has nk − 1 leading coefficients of degree k, with the remaining polynomials
reducing in degree, because they agree with q on that coefficient. Thus, the
type of Q relative to q is (nd, . . . , nk+1, nk − 1, n′k−1, . . . , n

′
1), for some values

of n′k−1, . . . , n
′
1. This type is lower than that of P , so the minimum type of

Q is lower as well.

Remark: We picked k to be the minimal degree of a polynomial relative to
p. This means that the type of P is (nd, . . . , nk, 0, . . . , 0). If there were any
polynomials of degree < k, we would have picked one of those rather than q.
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8.3 How to View and Alphabet

Now, in proving the HJ, it was important to view Σn+m as Σn×Σm. We will
need something similar for the polynomial version.

Proposition 8.3.1 Let n, m ∈ N, and Σ be a list of finite alphabets. Then
there is a finite list of alphabets Σ′ so that SΣ(n + m) ∼= SΣ(n) × SΣ′(m),
where Σ′ is independent of m.

The proof of this is rather messy, but is done by manipulating the defi-
nition of SΣ(n + m). Rather than prove it in general here, we show the case
when Σ = (Σ2, Σ1).

SΣ(n + m) = Σ
(n+m)2

2 × Σn+m
1

∼= Σn2

2 × Σ2nm
2 × Σm2

2 × Σn
1 × Σm

1

∼=
(
Σn2

2 × Σn
1

)
×
(
Σm2

2 × [Σ2n
2 × Σ1]

m
)

By setting Σ′ = (Σ2, Σ
2n
2 × Σ1), this comes out to be SΣ(n) × SΣ′(m), as

desired. We view the transformation from SΣ(n + m) to SΣ(n)× SΣ′(m) as
follows:

• Cut the line of length n + m into two lines — one of length n, and one
of length m. The former belongs to SΣ(n), and the latter to SΣ′(m).

• Cut the (n + m) × (n + m) block into four blocks. One is an n × n
square, which belongs to SΣ(n). Another is an m × m square, which
lives in the 2-dimensional portion of SΣ′(m). Leftover are blocks of size
n × m and m × n. We view these as “thick” lines of length m, with
each entry representing n entries of the original space. In this way, we
attach these pieces of the square to the line in SΣ′(m).

• Similarly, the k-dimensional block of SΣ(n + m) will be cut into 2k

pieces. One goes to the k-dimensional portion of SΣ(n) and another to
the k-dimensional portion of SΣ′(m). The rest go to lower-dimensional
portions of SΣ′(m).

Looking the other direction, let A′ be a point in SΣ′(m).

• The d-dimensional part of A′ comes from the d-dimensional portion of
the point in the original space (SΣ(n + m)).
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• The (d − 1)-dimensional part has one piece which is “truly” (d − 1)-
dimensional, and the rest of the pieces originally lived in d dimensions.

• The k-dimensional part of A′ has one piece which is “truly” k-dimensional,
and the other pieces are from higher dimensions.

How does viewing SΣ(n+m) like this affect polynomials? Let λ ⊆ {1, . . . , n},
and κ ⊆ {n + 1, . . . , n + m}. Consider a polynomial p(γ) = 1γ2 + 2γ. Then,
given a point A ∈ SΣ(n + m), A + p(λ ∪ κ) involves putting a 1 at every
point in (λ ∪ κ)2, and a 2 in λ ∪ κ. That is, we must put a 1 everywhere in
λ×λ, λ×κ, κ×λ, and κ×κ, and a 2 in λ and κ. We may now [nearly] view
p as two polynomials: one in Σ[γ], and the other in Σ′[γ]. The first is just p,
since the alphabet has not changed. For the other, we need to know ahead
of time what λ will be, to correctly place the 1’s in λ×κ and κ×λ, since we
have control over all entries in [n] × κ and κ × [n]. For this, we define p|λ,
the restriction of p to the entries of λ, by

p|λ(γ) = 1γ2 + (2, a1, . . . , a2n)γ

Here ai = 1 if i ∈ λ or i + n ∈ λ. For all other ai, we have the freedom
to prescribe any entries from Σ2. For now we will use x as an unspecified
symbol from Σ2 to highlight where the choice lies.

So how do these polynomials work together? Let A ∈ SΣ(2 + 3) be all
0’s:

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (0 0 | 0 0 0)

Now, let λ = {1}, and κ = {3, 4}, and let (B, C) be the decomposition of A
as an element of SΣ(2)× SΣ′(3). Then we get
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A + p(λ ∪ κ) =


1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
1 0 1 1 0
0 0 0 0 0

 (2 0 | 2 2 0)

A′ = (B + p(λ), C + p|λ(κ)) =


1 0 1 1 0
0 0 x x 0
1 x 1 1 0
1 x 1 1 0
0 0 0 0 0

 (2 0 | 2 2 0)

Note 8.3.2 A′ is a close approximation of A+p(λ∪κ) — it agrees on (λ∪κ)2

and on λ ∪ κ as required by p. It only differs where x appears, because we
could not predict what entries A would have there. Fortunately, in proving
the theorem, we will only be interested in controlling the entries of (λ ∪ κ)2

and (λ∪κ) and ensuring the rest does not change. Therefore, if we are given
a set of polynomials P ⊆ Σ[γ], we may decompose each p ∈ P as (p, p|λ) as
above, and prescribe constant values for the x’s. In proving POLYHJ , if we
have a sequence

{(B + p(λ), C + p|λ(κ)) | p ∈ P}

we will fix the x’s so that it is equal to

{(B, C) + p(λ ∪ κ) | p ∈ P}

To do this, we will have a fixed polynomial p0 over Σ which will dictate
all these choices. Formally, let p, p0 ∈ Σ[γ] be polynomials, with p(γ) =
adγ

d + · · ·+a1γ, and p0(γ) = bdγ
d + · · ·+ b1γ. Then p|λ(γ) = cdγ

d + · · ·+ c1γ
has the following structure:

• cd = ad

• cd−1 is a list of symbols. One of these is ad−1. The rest come from
ad and bd, but which goes where depends on λ. These coefficients are
for the d-dimensional piece of the polynomial. We can therefore define
cd−1 as (ad−1, f(ad, bd, λ)).
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• ck is a list of symbols. One of these is ak. The rest are divided up
based on which dimension they represent. The coefficients representing
dimension j come from aj or bj, depending on λ. Thus, we can write

ck = (ak, f(ad, . . . , ak+1, bd, . . . , bk+1, λ))

• If ad = bd, . . . , ak+1 = bk+1, then λ has no on the kth coefficient, so we
can write it as

ck = (ak, g(ad, . . . , ak+1))

Def 8.3.3 Just as in the proof of the POLYVDW, we define POLY HJ(nd, . . . , n1)
to be the statement that the POLYHJ holds for all sets of polynomials of type
(nd, . . . , n1). As in Definition 4.1.7, we also define POLY HJ(nd, . . . , nk, ω, . . . , ω)
to be the analogous statement.

8.4 The Proof

We are now ready to prove a lemma from which the theorem will become
trivial.

Lemma 8.4.1 Assume POLY HJ(nd, . . . , nk, ω, . . . , ω) holds. Fix a finite
list of alphabets Σ and let P ⊆ Σ[γ] have type (nd, . . . , nk + 1, 0, . . . , 0),
minimized by p0 ∈ P . Then, for all numbers c, r > 0, there is a number
U = U(Σ, P, c, r) with the following property. For all c-colorings COL :
SΣ(U) → [c], one of the following Statements holds:

Statement I: There is a point A ∈ SΣ(U), λ ⊆ [U ], λ 6= ∅, where {A+p(λ) |
p ∈ P} is monochromatic, or

Statement II: There are points A1, . . . , Ar, A
′ ∈ SΣ(U), and λ1, . . . , λr ⊆

[U ] with each λi 6= ∅ so that each set {Ai+p(λi) | p ∈ P, p 6= p0} is monochro-
matic, each with its own color, and each different from A′. Additionally,
A′ = Ai + p0(λi) as points for each i ≤ r. We call A′ the completion point of
the sequences.

Proof: By induction on r:

Base case (r = 1) — Recall that P − {p0} has lower type than P . Thus,
Poly HJ holds for P−{p0}. Let U = HJ(Σ, P−{p0}, c). Take any c-coloring
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of SΣ(U). By the definition of this number, there is some A1 = A ∈ SΣ(U),
and λ1 = λ ⊆ [U ] with λ 6= ∅ so that {A1 + p(λ1) | p ∈ P − {p0}} is
monochromatic. If the completion point is the same color, then Statement I
holds. If not, Statement II holds.

Inductive case — Assume the lemma holds for r. We show that U(Σ, P, c, r+
1) exists by giving an upper bound. In particular,

U(Σ, P, c, r + 1) ≤ U + HJ = U(Σ, P, c, r) + HJ(Σ′, Q, X)

where Q will be given shortly, and X = c|SΣ(U)| is the number of c-colorings
of SΣ(U). How convenient. By Proposition 8.3.1, SΣ(U + HJ) ∼= SΣ(U) ×
SΣ′(HJ), for some list of finite alphabets Σ′ independent of the value of HJ .
Then let

Q = {p|λ ∈ Σ′[γ] : p ∈ P − {p0}, λ ⊆ [U ]}

where the free choice of entries is prescribed by p0. This will ensure that

(A + p(λ), B + p|λ(κ)) = (A, B) + p(λ ∪ κ)

for any choice of p, λ, κ.

Claim: Q has type (nd, . . . , nk, n
′
k−1, . . . , n

′
1) for some choice of n′k−1, . . . , n

′
1.

Proof: By Proposition 8.2.5, P −{p0} has lower type than P , attained by
some p1 of degree k relative to p0. Thus P−{p0} has type (nd, . . . , nk, m

′
k−1, . . . ,m

′
1)

for some choice of m′
k−1, . . . ,m

′
1. We will use this to show that the type of

Q relative to p1|∅ is low enough. In particular, we will show two things:

1. If p has degree ` ≥ k relative to p1, then p|λ has degree ` relative to
p1|∅ for every λ.

2. If p and q both have degree ` ≥ k relative to p1, and they have the same
leading coefficient, then p|λ and q|κ have the same leading coefficient,
for all λ and κ.

The two things together will guarantee that the number of distinct leading
coefficients in Q will agree with the number in P −{p0}, for all degrees ≥ k,
which is exactly what we want.

To see (1), write p(γ) = adγ
d + · · · + a1γ, p1(γ) = bdγ

d + · · · + b1γ,
and p0(γ) = cdγ

d + · · · + c1γ. Since p1 has degree k relative to p0, the two
polynomials agree on bd, . . . , bk+1. Similarly, since p has degree ` ≥ k relative
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to p1, we get that ad = bd = cd, . . . , a`+1 = b`+1 = c`+1. By Note 8.3.2, we

see that the jth coefficient of p|λ and p1|∅ are given by (aj, f(ad, . . . , aj+1))
and (bj, f(bd, . . . , bj+1)) when j ≥ `. Since these are identical when j > `,
and different when j = `, we see that p|λ has degree ` relative to p1|∅.

To see (2), let p and q have the same degree ` ≥ k relative to p1 (and
thus relative to p0), and also the same leading coefficient. Let p(γ) = adγ

d +
· · · + a1γ, q(γ) = bdγ

d + · · · + b1γ, and p0(γ) = cdγ
d + · · · + c1γ. As before,

we see that ad = bd = cd, . . . , a`+1 = b`+1 = c`+1. Fixing λ, κ ⊆ [U ], consider

p|λ and q|κ. By Note 8.3.2, for j ≥ `, the jth coefficient of these are given
by (a`, f(ad, . . . , a`+1)) and (b`, f(bd, . . . , b`+1)) respectively. Since aj = bj

for j ≥ `, these coefficents are identical. Thus, the two polynomials share a
common leading coefficient relative to p1|∅.

This gives Q a lower type than P , which will allow us to use POLY HJ as
assumed.

Now, Let COL : SΣ(U + HJ) → [c] be a c-coloring. Then we view COL as
a c-coloring of SΣ(U) × SΣ′(HJ). As such, for each σ ∈ SΣ′(HJ), define
COL∗(σ) : SΣ′ → [c] as the coloring of SΣ(U) induced by COL — for
τ ∈ SΣ(U), the map is defined so that COL∗(σ)(τ) = COL(τ, σ). This
makes COL∗ a map from SΣ′ to the c-colorings of SΣ(U).

The crucial observation here is there are X possible c-colorings of SΣ(U),
so COL∗ serves as an X-coloring of SΣ′(HJ). Thus, by choice of HJ , there
is some point B ∈ SΣ′(HJ), and Λ ⊆ [HJ ] with Λ 6= ∅ so that

{B + q(Λ) | q ∈ Q} = {B + p|λ(Λ) | p ∈ P − {p0}, λ ⊆ [U ]}

is monochromatic. This means that each point induces the same coloring χ
on SΣ(U).

Now χ is a c-coloring of SΣ(U), so the choice of U allows us to use the
inductive hypothesis on χ. Thus, either Statement I or II hold.

Case 1: There is a point A ∈ SΣ(U), λ ⊆ [U ], λ 6= ∅, so that {A + p(λ) | p ∈
P} is monochromatic under χ. Then fix any q ∈ Q. Define C = B + q(Λ).
Since C induces the coloring χ on SΣ(U), we see that {(A+p(λ), C) | p ∈ P}
is monochromatix under COL. Moreover, viewing λ as a subset of [U +HJ ],
these points are actually (A + C) + p(λ), so we satisfy Statement I.
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Case 2: There is are points A1, . . . , Ar, A
′ ∈ SΣ(U), λ1, . . . , λr ⊆ [U ] with

each λi 6= ∅ with the following properties:

{A1 + p(λ1) | p ∈ P − {p0}} is monochromatic under χ

...

{Ar + p(λr) | p ∈ P − {p0}} is monochromatic under χ

and each of these sets has a different color, all different from χ(A′). We also
have A′ = Ai + p(λi) for all i ≤ r

Since each B+q(Λ) induces χ on SΣ(U), this gives us very many monochro-
matic points. For each i, this set is monochromatic under COL:

{(Ai + p(λi), B + q) | p ∈ P − {p0}, q ∈ Q}

In particular, the following r sets of points are monochromatic, so that each
set has its own color:

{(A1+p(λ1), B+p|λ1(Λ)) | p ∈ P−{p0}} = {(A1, B)+p(λ1∪Λ) | p ∈ P−{p0}}

...

{(Ar+p(λr), B+p|λr(Λ)) | p ∈ P−{p0}} = {(Ar, B)+p(λr∪Λ) | p ∈ P−{p0}}

Let B′ = B+p0|∅. Then we see that the final point of each of these sequences
is given by

(Ai + p0(λi), B + p0|λi
(Λ)) = (A′, B′) + p0(Λ)

This realization gives us the following choice for the (r + 1)st sequence:

{(A′, B′ + p|∅(Λ)) | p ∈ P − {p0}} = {(A′, B′) + p(Λ) | p ∈ P − {p0}}

Since each B′+p|∅(Λ) induces χ on SΣ(U), each of these has the color χ(A′),
so this set is monochromatic. It is also immediate that its completion point
is the same as the other r: (A′, B′) + p0(Λ).

If the completion point has the same color as the ith sequence, then that
sequence with its completion satisfies Statement I. If not, then Statement II
holds. Either way, we have the goal.
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Theorem 8.4.2 Polynomial Hales-Jewett theorem
For every c, every lits of finite alphabets Σ = (Σd, . . . , Σ1), and every col-
lection P ⊆ Σ[γ], there is a number N = HJ(Σ, P, c) with the follow-
ing property. For any c-coloring COL : SΣ(N) → [c], there is a point
A ∈ SΣ(N), λ ⊆ [N ] with λ 6= ∅, such that the set {A + p(λ) | p ∈ P}
is monochromatic.

Proof: By induction on the type of P . Note that, as in the proof of the
POLYVDW, types are well-ordered, so induction is a correct approach.

Base case: Let P have type (0, . . . , 0), so that P = {p} is a single polynomial
(p has degree 0 relative to itself). Set N = 1, and let COL : SΣ(1) →
[c] be any c-coloring. Then, for any A ∈ SΣ(1), we have {A + p({1})}
monochromatic, since it is just one point.

Inductive case: Suppose we know POLY HJ(nd, . . . , nk, ω, . . . , ω). Let
P have type (nd, . . . , nk + 1, 0, . . . , 0). Let N = U(Σ, P, c, c) as guaranteed
by the lemma above. Let COL : SΣ(U) → [c] be a c-coloring. Statement II
cannot hold, since it requires c + 1 different colors. Thus, Statement I holds,
which was the goal.

8.5 Bounds on the Polynomial Hales-Jewitt

Numbers

8.5.1 Upper Bounds

8.5.2 Lower Bounds
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Chapter 9

Applications of Polynomial
Hales-Jewitt Theorem

9.1 The Polynomial Van Der Waerden The-

orem

9.2 The Poly Van Der Waerden Theorem Over

a Communative Ring

9.3 The Multidim Poly Van Der Waerden The-

orem
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Chapter 10

Coloring and Equations:
Rado’s Theorem

10.1 Introduction

VDW theorem with k = 4 is can be rewritten as follows:

For all c, for all c-colorings χ : N → [c], there exists a, d such that

χ(a) = χ(a + d) = χ(a + 2d) = χ(a + 3d),

We rewrite this in terms of equations.

For all c, for all c-colorings χ : N → [c], there exists e1, e2, e3, e4 such
that

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and

e2 − e1 = e3 − e2

e2 − e1 = e4 − e3

We rewrite these equations:

0e4 − e3 + 2e2 − e1 = 0
−e4 + e3 + e2 − e1 = 0

Let A be the matrix:

93
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(
0 −1 2 −1
−1 1 1 −1

)
VDW for k = 4 can be rewritten as
For all c, for all c-colorings χ : N → [c] there exists ~e = e1, . . . , en such

that

χ(e1) = · · · = χ(en),

A~e = ~0.

What other matrices have this property?

Def 10.1.1

1. (b1, . . . , bn) ∈ Zn is regular if the following holds: For all c, there exists
R = R(b1, . . . , bn; c) such that for all c-colorings χ : [R] → [c] there
exists e1, . . . , en ∈ [R] such that

χ(e1) = · · · = χ(en),

n∑
i=1

biei = 0.

2. A matrix A of integers is regular if if the following holds: For all c, for
all c-colorings χ : N → [c] there exists ~e = e1, . . . , en such that

χ(e1) = · · · = χ(en),

A~e = ~0.

(Note that the definition of a regular matrix subsumes that of a regular
vector.)

We will prove the Abridged Rado Theorem which gives an exact condition
for single equations to be regular, and then the Full Rado Theorem which
gives an exact condition for matrices to be regular.
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10.2 The Abridged Rado’s Theorem

We will prove two theorems, Theorems 10.2.5 and Theorem 10.2.6 that when
combined yield The Abridged Rado’s Theorem.

Theorem 10.2.1 (b1, . . . , bn) is regular iff there exists some nonempty sub-
set of {b1, . . . , bn} that sums to 0.

In the proof of Theorem 10.2.8 we will be given (b1, . . . , bn) such that
some subset sums to 0, a c-coloring of N, and we will find (e1, . . . , en) such
that they are all colored the same and

∑n
i=1 biei = 0. However, many of the

ei’s are the same. What if we want all of the ei’s to be different?

Def 10.2.2 A vector (b1, . . . , bn) ∈ Zn is distinct-regular if the following
holds: For all c, for all c-colorings χ : N → [c] there exists e1, . . . , en, all
distinct, such that

χ(e1) = · · · = χ(en),

n∑
i=1

biei = 0.

Is it possible that all regular (b1, . . . , bn) are also distinct regular? NO,
consider (1,−1) or any (b,−b). These are clearly regular but not distinct-
regular. We will see that these are the only exceptions.

We will prove the following

Theorem 10.2.3 If (b1, b2, . . . , bn) is regular and there exists (λ1, . . . , λn) 6=
~0 such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

10.2.1 If . . . then (b1, . . . , bn) is not Regular

We show that (2, 5,−1) is not regular. We find a 17-coloring (actually 16-
coloring) that demonstrates this. Our first attempt at finding a 17-coloring
will not quite work, but our second one will.
First Attempt

χ(n) is the number between 0 and 16 that is ≡ n (mod 17).
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Assume χ(e1) = χ(e2) = χ(e3). We will try to show that

2e1 + 5e2 − e3 6= 0.

Assume, by way of contradiction, that

2e1 + 5e2 − e3 = 0.

Let e be such that e1 ≡ e2 ≡ e3 ≡ e (mod 17) and 0 ≤ e ≤ 16. Then

0 = 2e1 + 5e2 − e3 ≡ 2e + 5e− e ≡ 6e (mod 17).

Hence 6e ≡ 0 (mod 17). Since 6 has an inverse mod 17, we obtain e ≡ 0
(mod 17).

We have not arrived at a contradiction. We have just established that if

χ(e1) = χ(e2) = χ(e3)

and

2e1 + 5e2 − e3 = 0.

Then χ(e1) = χ(e2) = χ(e3) = 0.
Hence we will do a similar coloring but do something else when n ≡ 0

(mod 17).
Second Attempt

Given n let i, n′ be such that 17i divides n, 17i+1 does not divide n, and
n = 17in′.

We define the coloring as follows:

χ(n) is the number between 1 and 16 that is ≡ n′ (mod 17).

NOTE- χ(n) will never be 0. Hence this is really a 16-coloring.
Assume

χ(e1) = χ(e2) = χ(e3).

We show that

2e1 + 5e2 − e3 6= 0.

Let i, j, k, e′1, e
′
2, e

′
3, e be such that
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1. 17i divides e1, 17i+1 does not divide e1, e1 = 17ie′1.

2. 17j divides e2, 17j+1 does not divide e2, e2 = 17je′2.

3. 17k divides e3, 17k+1 does not divide e3, e3 = 17je′3.

4. e′1 ≡ e′2 ≡ e′3 ≡ e (mod 17)

If
2e1 + 5e2 − e3 = 0

then

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

Every mathematical bone in my body wants to cancel some of the 17’s.
There are cases. All ≡ are mod 17.

1. i < j ≤ k or i < k ≤ j.

2× 17ie′1 + 5× 17je′2 − 17ke′3 = 0.

Divide by 17i.

2× e′1 + 5× 17j−ie′2 − 17k−ie′3 = 0.

We take this equation mod 17.

2e′1 ≡ 2e ≡ 0.

Since 2 has an inverse mod 17 we have e = 0. This contradicts that
e 6= 0.

2. i = j < k.

2× 17ie′1 + 5× 17ie′2 − 17ke′3 = 0.

Divide by 17i.

2× e′1 + 5× 17j−ie′2 − 17k−ie′3 = 0.
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We take this equation mod 17.

2e′1 + 5e′2 ≡ 7e ≡ 0.

Since 7 has an inverse mod 17 we have e = 0. This contradicts that
e 6= 0.

3. Rather than go through all of the cases in detail, we say what results
in all caes, including those above.

(a) i < j ≤ k or i < k ≤ j: 2e ≡ 0.

(b) i = j < k: 2e + 5e ≡ 0.

(c) i = k < j: 2e− e ≡ 0.

(d) i = j = k: 2e + 5e− 3e ≡ 0.

(e) j < i ≤ k or j < k ≤ i: 5e ≡ 0.

(f) j = k < i: 2e− e ≡ 0.

(g) k < i = j: −e ≡ 0.

There were 7 cases. Each corresponded to a combination of the coeffi-
cients. The key is that every combination was relatively prime to 17. The
reader should be able to prove the following two theorems.

Theorem 10.2.4 Let (b1, . . . , bn) ∈ Zn. If there exists c that is relatively
prime to every nonempty subsum of {b1, . . . , bn} then there is a c−1-coloring
of N that shows (b1, . . . , bn) is not regular.

Theorem 10.2.5 Let (b1, . . . , bn) ∈ Zn. If all subsets of {b1, . . . , bn} (except
the empty set) have a non-zero sum then (b1, . . . , bn) is not regular.

10.2.2 If . . . then (b1, . . . , bn) is Regular

Motivation

So when is b1, . . . , bn regular? If (b1, . . . , bn) does not satisfy the premise of
Theorem 10.2.5 then some nontempty subset of {b1, . . . , bn} sums to 0.
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Theorem 10.2.6 Let (b1, . . . , bn) ∈ Zn. Assume there exists a nonempty
subset of {b1, . . . , bn} that sums to 0. Then (b1, . . . , bn) is regular.

Before proving this theorem we talk about how to go about it. Lets use

5e1 + 6e2 − 11e3 + 7e4 − 2e5 = 0

as an example. Note that the first three coefficients add to 0: 5+6− 11 = 0.
We are thinking about colorings. OH, we can use the following version of
van der Waerden’s theorem!

Van der Waerden’s Theorem: For all x1, . . . , xk ∈ Z, for all c, for all
c-colorings χ : N → [c] there exists a, d such that

χ(a) = χ(a + x1d) = χ(a + x2d) = · · · = χ(a + xkd).

We use the k = 5 case. Is there a choice of x1, x2, x3, x4, x5 that will give
us our theorem?

Say that ei = a + xid. Then

5e1 + 6e2 − 11e3 + 7e4 − 2e5 = 5(a + x1d) + 6(a + x2d)− 11(a + x3d) + 7(a + x4d)− 2(a + x5d)
= (5 + 6− 11)a + d(5x1 + 6x2 − 11x3) + (7− 2)a + d(7x4 − 2x5).
= (5 + 6− 11)a + d(5x1 + 6x2 − 11x3 + 7x4 − 2x5) + 5a.

GOOD NEWS: The first a has coefficient (5 + 6− 11) = 0.
GOOD NEWS: We can pick x1, x2, x3, x4, x5 to make the 5x1 + 6x2 −

11x3 + 7x4 − 2x5 = 0.
BAD NEWS: The 5a looks hard to get rid of.
It would be really great if we did not have that ‘5a’ term.
Hence we need a variant of van der Waerden’s theorem.

Variant of VDW

Lemma 10.2.7 For all k, s, c, there exists U = U(k, s, c) such that for
every c-coloring χ : [U ] → [c] there exists a, d such that

χ(a) = χ(a + d) = · · · = χ(a + (k − 1)d) = χ(sd)
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Proof: We prove this by induction on c. Clearly, for all k, s,

U(k, s, 1) = max{k, s}.

We assume U(k, s, c − 1) exists and show that U(k, s, c) exists. We will
show that

U(k, s, c) ≤ W ((k − 1)sU(k, s, c− 1) + 1, c).

Let χ be a coloring of [W ((k− 1)sU(k, s, c− 1) + 1, c)]. By the definition
of W there exists a, d such that

χ(a) = χ(a + d) = · · · = χ(a + (k − 1)sU(k, s, c− 1)d).

Assume the color is RED. There are several cases.
Case 1: If sd is RED then since a, a + d, . . . , a + (k − 1)d are all RED, we
are done.

Case 2: If 2sd is REDthen since. a, a + 2d, a + 4d, . . . , a + 2(k − 1)d are all
RED, we are done.
...

Case U(k,s,c-1): If U(k, s, c− 1)sd is REDthen since
a,a + U(k, s, c− 1)d,a + 2U(k, s, c− 1)d,. . ., a + (k − 1)U(k, s, c− 1)d
are all RED, we are done.

Case U(k,s,c-1)sd+1: None of the above cases happen. Hence
sd, 2sd, 3sd, . . . , U(k, s, c− 1)sd
are all NOT RED.
Consider the coloring χ′ : [U(k, s, c− 1)] → [c− 1] defined by

χ′(x) = χ(xsd).

The KEY is that NONE of these will be colored REDso there are only
c− 1 colors. By the inductive hypothesis there exists a′, d′ such that

χ′(a′) = χ′(a′ + d′) = · · · = χ′(a′ + (k − 1)d′) = χ′(sd′)

so

χ(a′sd) = χ(a′sd + d′sd) = · · · = χ(a′sd + (k − 1)d′sd) = χ(sd′sd)
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Let A = a′sd and D = d′sd. Then

χ(A) = χ(A + D) = · · · = χ(A + (k − 1)D = χ(sD).

FILL IN - NEED FIGURE
Back to the Proof

We now restate and prove the main theorem of this section.

Theorem 10.2.8 Let (b1, . . . , bn) ∈ Zn. If there exists a nonempty subset of
{b1, . . . , bn} that sums to 0 then (b1, . . . , bn) is regular.

Proof: The cases of n = 1 and n = 2 are easy and left to the reader.
Hence we assume n ≥ 3. If any of the bi’s are 0 then we can omit the term
with that bi. So we can assume that (∀i)[bi 6= 0].

By renumbering we can assume that there is an m ≤ n such that

m∑
i=1

bi = 0.

We need to find a number R such that if χ is a c-coloring of R then
blah-de-blah. Instead we will let χ be a c-coloring of N. We leave it to the
reader to extract out a finite R from our proof.

Let χ be a c-coloring of N. We will determine x1, . . . , xm ∈ Z− {0} and
s ∈ N later. By Lemma 10.2.7 there exists a, d such that

χ(a) = χ(a + x1d) = χ(a + x2d) = · · · = χ(x + xmd) = χ(sd).

We will let

e1 = a + x1d,

e2 = a + x2d,

...

em = a + xmd,

and
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em+1 = · · · = en = sd

Then

n∑
i=1

biei =
m∑

i=1

biei +
n∑

i=m+1

biei =
m∑

i=1

bi(a + xid) +
n∑

i=m+1

bisd.

This is equal to

a
m∑

i=1

bi + d

m∑
i=1

bixi + sd

n∑
i=m+1

bi

KEY:
∑m

i=1 bi = 0 so the first term drops out.
KEY: All of the remaining terms have a factor of d. If we want to set this

to 0 we can cancel the d’s. Hence we need x1, . . . , xn ∈ Z − {0} and s ∈ N
such that the following happens.

m∑
i=1

bixi + s
n∑

i=m+1

bi = 0.

Let
∑n

i=m+1 bi = B. Then we rewrite this as

m∑
i=1

bixi + sB = 0.

We can take

s = |mb1 · · · bm|

x1 = − sB

mb1

x2 = − sB

mb2

...

xm = − sB

mbm

.
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10.2.3 If . . . then (b1, . . . , bn) is Distinct-Regular

We will prove the following

Theorem 10.2.9 If (b1, b2, . . . , bn) is regular and there exists (λ1, . . . , λn)
such that

∑n
i=1 λibi = 0 then (b1, . . . , bn) is distinct-regular.

To prove this we need a Key Lemma:

Key Lemma

The lemma is in three parts. The first one we use to characterize which
vectors are distinct-regular. The second and third are used in a later section
when we prove the matrix Rado Theorem.

The following definitions are used in the third part of the lemma.

Def 10.2.10 Let n ∈ N.

1. A set G ⊆ Nn is homogenous if, for all α ∈ N,

(e1, . . . , en) ∈ G =⇒ (αe1, . . . , αen) ∈ G.

2. A set G ⊆ Nn is regular if, for all c, there exists R = R(G; c) such
that the following holds: For all c-colorings χ : [R] → [c] there exists
~e = (e1, . . . , en) ∈ G such that all of the ei’s are colored the same.

Example 10.2.11

1. Let b1, . . . , bn ∈ Z. Let G = {(e1, . . . , en) |
∑n

i=1 biei = 0}. G is
homogenous. (b1, . . . , bn) is regular iff G is regular.

2. Let M be an n×m matrix. Let G = {~e | M~e = ~0}. G is homogenous.

Lemma 10.2.12

1. For all (b1, . . . , bn) ∈ Zn regular, c, M ∈ N there exists L = L(b1, . . . , bn; c, M)
such that the following holds. For any c-coloring χ : [L] → [c]. Then
there exists e1, . . . , en, d ∈ [L] such that the following occurs.

(a) b1e1 + · · ·+ bnen = 0
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(b) The following are the same color:

e1 −Md, e1 −M(d− 1) , . . . , e1 − d, e1, e1 + d , . . . , e1 + Md
e2 −Md, e2 −M(d− 1) , . . . , e2 − d, e2, e2 + d , . . . , e2 + Md

...
...

...
...

...
...

...
en −Md, en −M(d− 1) , . . . , en − d, en, en + d , . . . , en + Md

2. For all (b1, . . . , bn) ∈ Zn regular, c, M, s ∈ N there exists L2 = L2(b1, . . . , bn; c, M, s)
such that the following holds. For any c-coloring χ : [L2] → [c]. Then
there exists e1, . . . , en, d ∈ [L] such that the following occurs.

(a) b1e1 + · · ·+ bnen = 0

(b) The following are the same color:

e1 −Md, e1 −M(d− 1) , . . . , e1 − d, e1, e1 + d , . . . , e1 + Md
e2 −Md, e2 −M(d− 1) , . . . , e2 − d, e2, e2 + d , . . . , e2 + Md

...
...

...
...

...
...

...
...

en −Md, en −M(d− 1) , . . . , en − d, en, en + d , . . . , en + Md

(c) sd ∈ [L2] is the same color as the numbers in the last item.

3. For all n ∈ N, for all G ⊆ Nn, G regular and homogenous, for all
c, M, s ∈ N there exists L3 = L3(G; c, M, s) such that the following
holds. For any c-coloring χ : [L3] → [c]. Then there exists e1, . . . , en, d ∈
[L3] such that the following occurs.

(a) (e1, . . . , en) ∈ G.

(b) The following are the same color:

e1 −Md, e1 −M(d− 1) , . . . , e1 − d, e1, e1 + d , . . . , e1 + Md
e2 −Md, e2 −M(d− 1) , . . . , e2 − d, e2, e2 + d , . . . , e2 + Md

...
...

...
...

...
...

...
...

en −Md, en −M(d− 1) , . . . , en − d, en, en + d , . . . ,

(c) sd ∈ [L3] is the same color as the numbers in the last item.
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Proof:
1) Since b1, . . . , bn is regular, by Theorem 10.2.8 (or Definition 10.1.1) there
exists R = R(b1, . . . , bn, c) such that for any c-coloring of [R] there exists
e1, . . . , en such that (1) all of the ei’s are the same color, and (2)

∑n
i=1 biei = 0.

We determine L later; however, we note conditions on L when they arise.
Let χ : [L] → [c].

Condition 1 on L: R divides L.
We define χ∗ : [L/R] → [c]R as follows.

χ∗(n) = χ(n)χ(2n)χ(3n) · · ·χ(Rn).

(This is concatenation, not multiplication.)
Condition 2 on L: L/R ≥ W (X, cR) where we will determine X later.

We rewrite this L ≥ RW (X, cR).
Apply (a slight variant of) VDW to χ with length-of-sequence set to X (to

be determined later) and number-of-colors set to cR to obtain the following:
There exists a, D (we use D instead of d since this value will not be the final
d we need for our conclusion) such that

χ∗(a−XD) = χ∗(a−(X−1)D) = · · · = χ∗(a) = · · · = χ∗(a+(X−1)D) = χ∗(a+XD).

Note that

χ∗(a−XD) = χ(a−XD)χ(2(a−XD)) · · ·χ(R(a−XD))
χ∗(a− (X − 1)D) = χ(a− (X − 1)D)χ(2(a− (X − 1)D)) · · ·χ(R(a− (X − 1)D))

... =
...

χ∗(a−D) = χ(a−D)χ(2(a−D)) · · ·χ(R(a−D))
χ∗(a) = χ(a)χ(2a) · · ·χ(Ra)

χ∗(a + D) = χ(a + D)χ(2(a + D)) · · ·χ(R(a + D))
... =

...
χ∗(a + (X − 1)D) = χ(a + (X − 1)D)χ(2(a + (X − 1)D)) · · ·χ(R(a + (X − 1)D))

χ∗(a + XD) = χ(a + XD)χ(2(a + XD)) · · ·χ(R(a + XD))

Since

χ∗(a−XD) = χ∗(a−(X−1)D) = · · · = χ∗(a) = · · · = χ∗(a+(X−1)D) = χ∗(a+XD)

we have
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χ(a−XD) = χ(a− (X − 1)D) = · · · = χ(a) = · · · = χ(a + XD)
χ(2(a−XD)) = χ(2(a− (X − 1)D)) = · · · = χ(2a) = · · · = χ(2(a + XD))
χ(3(a−XD)) = χ(3(a− (X − 1)D)) = · · · = χ(3a) = · · · = χ(3(a + XD))

... =
... = · · · = ... = · · · = ...

χ(R(a−XD)) = χ(R(a− (X − 1)D)) = · · · = χ(Ra) = · · · = χ(R(a + XD))

Condition 3 on L: L ≥ R(a+XD). Since a, D ≤ W (X, cR) this means
L ≥ R(W (X, cR)+XW (X, cR). We simplify this by using the slightly worse
bound L ≥ 2RXW (X, cR). This bound implies Condition 2,hence we only
need Condition’s 1 and 3.

We need a subset of these that are all the same color. Consider the
coloring χ∗∗ : [R] → [c] defined by

χ∗∗(n) = χ(na).

By the definition of R there exists f1, . . . , fn such that

1.
∑n

i=1 bifi = 0. Hence
∑n

i=1 bi(afi) = a
∑n

i=1 bifi = 0

2.

χ∗∗(f1) = χ∗∗(f2) = · · · = χ∗∗(fn).

By the definition of χ∗∗ we have

χ(af1) = χ(af2) = · · · = χ(afn).

Note that we have that the following are all the same color.

f1(a−XD), f1(a− (X − 1)D) , · · · , f1a , · · · , f1(a + XD)
f2(a−XD), f2(a− (X − 1)D) , · · · , f2a , · · · , f2(a + XD)
f3(a−XD), f3(a− (X − 1)D) , · · · , f3a , · · · , f3(a + XD)

...
... , · · · ,

... , · · · ,
...

fn(a−XD), fn(a− (X − 1)D) , · · · , fna , · · · , fn(a + XD)

For all i, 1 ≤ i ≤ n let ei = afi. We rewrite the above.
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e1 − f1XD, e1 − f1(X − 1)D) , · · · , e1 , · · · , e1 + f1XD)
e2 − f2XD, e2 − f2(X − 1)D) , · · · , e2 , · · · , e2 + f2XD)
e3 − f3XD, e3 − f3(X − 1)D) , · · · , e3 , · · · , e3 + f3XD)

...
... , · · · ,

... , · · · ,
...

en − fnXD, en − fn(X − 1)D) , · · · , en , · · · , en + fnXD)

We are almost there- we have our e1, . . . , en that are the same color, and
lots of additive terms from them are also that color. We need a value of d
such that

{d, 2d, 3d, . . . , Md} ⊆ {f1D, 2f1D, 3f1D, . . . , Xf1D}

{d, 2d, 3d, . . . , Md} ⊆ {f2D, 2f2D, 3f2D, . . . , Xf2D}
...

{d, 2d, 3d, . . . , Md} ⊆ {fnD, 2fnD, 3fnD, . . . , XfnD}

We have no control over D. We have complete control over X. We know
that, for all i, fi ≤ R. Let X = 3RnM (X = 2RnM + 1 would suffice but
we take the worse bound for easy manipulation.) Let d = f1f2 · · · fnD. For
1 ≤ i ≤ M we have

id = if1f2 · · · fnD

We need

{f1f2 · · · fn, 2f1f2 · · · fn, 3f1f2 · · · fn, . . . ,Mf1f2 · · · fn} ⊆ {f1, 2f1, 3f1, . . . , R
n−1Mf1}

{f1f2 · · · fn, 2f1f2 · · · fn, 3f1f2 · · · fn, . . . ,Mf1f2 · · · fn} ⊆ {f2, 2f2, 3f2, . . . , R
n−1Mf2}

...
{f1f2 · · · fn, 2f1f2 · · · fn, 3f1f2 · · · fn, . . . ,Mf1f2 · · · fn} ⊆ {fn, 2fn, 3fn, . . . , R

n−1Mfn}

Since i ≤ M and f1 · · · fn ≤ Rn, we have

if1f2 · · · fn ≤ MRn

Hence we have what we need.
Since X = 3RnM we can now determine L. By condition 1 and 3 on L

we can take L = 2RXW (3RnM, cR) where R = R(b1, . . . , bn; c).
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2) We prove this by induction on c.
Base Case: For c = 1 this is easy; however, we find the actual bound
anyway. The only issue here is to make sure that the objects we want to
color are actually in L(b1, . . . , bn; 1, M, s). Let (e1, . . . , en) ∈ Nn be a so-
lution to

∑n
i=1 biei = 0 such that e = min{e1, . . . , en} > M . Let L2 =

L2(b1, . . . , bn; 1, M, s) = max{e + M, s}. Let χ : [L2] → [1]. We claim that
e1, . . . , en, 1 work. Note that, for all i, 1 ≤ i ≤ n, for all j −M ≤ j ≤ M ,
ei + j × 1 ∈ [L2]. Also note that s× 1 ∈ [L2].

Induction Hypothesis: We assume the theorem is true for c− 1 colors. In
particular, for any M ′, L2(b1, . . . , bn; c − 1, M ′, s) exists. This proof will be
similar to the proof of Lemma 10.2.7.

Induction Step: We want to show that L2(b1, . . . , bn; c, M, s) exists. We
show that there exists M ′ such that if you color L = L(b1, . . . , bn; c, M ′)
(note that this is L not L2) there exists the required e1, . . . , en, d. The M ′

will depend on L2. Let χ be a c-coloring of [L]. By part 1 there exists
E1, . . . , En, D such that

∑n
i=1 biEi = 0 and the following are all the same

color, which we will call RED.

E1 −M ′D, E1 −M ′(D − 1) , . . . , E1 −D, E1, E1 + D , . . . , E1 + M ′D
E2 −M ′D, E2 −M ′(D − 1) , . . . , E2 −D, E2, E2 + D , . . . , E2 + M ′D

...
...

...
...

...
...

...
En −M ′D, En −M ′(D − 1) , . . . , En −D, En, En + D , . . . , En + M ′D

For 1 ≤ i ≤ M ′ consiDer

E1 − iD, E1 − i(D − 1) , . . . , E1 −D, E1, E1 + D , . . . , E1 + iD
E2 − iD, E2 − i(D − 1) , . . . , E2 −D, E2, E2 + D , . . . , E2 + iD

...
...

...
...

...
...

...
En − iD, En − i(D − 1) , . . . , En −D, En, En + D , . . . , En + iD

There are now several cases.

Case 1: If sD is REDthen we are done so long as M ′ ≥ M . Use d = D.

Case 2: If 2sD is REDthen we are done so long as M ′ ≥ 2M . Use d = 2D.
...

Case M’sD: If M ′sD is RED then so long as M ′ ≥ M2 we are done. Use
d = M ′D.



10.2. THE ABRIDGED RADO’S THEOREM 109

FILL IN - CHECK THIS CAREFULLY

Case M’sD+1: None of the above cases hold. Hence
sD, 2sD, . . . , M ′sD
are all NOT RED. Hence the coloring restricted to this set is a c − 1

coloring. Let M ′ = L2(b1, . . . , bn; c−1, M, s). Consider the coloring χ∗[M ′] →
[c− 1] defined by

χ∗(x) = χ(xsD).

By the induction hypothesis and the definition of M ′ there exists e1, . . . , en, d
such that

∑n
i=1 biei = 0 and all of the following are the same color via χ∗:

1.

e1 −Md, e1 −M(d− 1) , . . . , e1 − d, e1, e1 + d , . . . , e1 + Md
e2 −Md, e2 −M(d− 1) , . . . , e2 − d, e2, e2 + d , . . . , e2 + Md

...
...

...
...

...
...

...
...

en −Md, en −M(d− 1) , . . . , en − d, en, en + d , . . . , en + Md

2. sd

By the definition of χ∗ the following have the same color via χ:

1.

e1s−Mds, e1s−M(d− 1)s , . . . , e1s− ds, e1s, e1s + ds, . . . , e1s + Mds
e2s−Mds, e2s−M(d− 1)s , . . . , e2s− ds, e2s, e2s + ds, . . . , e2s + Mds

...
...

...
...

...
...

...
...

ens−Mds, ens−M(d− 1)s , . . . , ens− ds, ens, ens + ds, . . . , ens + Mds

2. s2d

By setting ei to eis and d to ds we obtain the result.
3) In both of the above parts the only property of the set

{(x1, . . . , xn) |
n∑

i=1

bixi = 0}

that we used is that it was homogenous and regular. Hence all of the proofs
go through without any change and we obtain this part of the lemma.
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Back to our Story

Theorem 10.2.13 If (b1, b2, . . . , bn) is regular and there exists (λ1, . . . , λn)
such that

∑n
i=1 λibi = 0 and all of the λi are distinct then (b1, . . . , bn) is

distinct-regular.

Proof: Let M be a parameter to be picked later. Let L = L(b1, . . . , bn; c, M)
from Lemma 10.2.12.1. Let COL be a c-coloring of ]L]. We show that there
exists e1, . . . , en, d ∈ [L] such that the following occurs.

1. b1e1 + · · ·+ bnen = 0

2. The following are the same color:

e1 −Md, e1 −M(d− 1) , . . . , e1 − d, e1, e1 + d , . . . , e1 + Md
e2 −Md, e2 −M(d− 1) , . . . , e2 − d, e2, e2 + d , . . . , e2 + Md

...
...

...
...

...
...

...
...

en −Md, en −M(d− 1) , . . . , en − d, en, en + d , . . . , en + Md

Let A ∈ Z be a constant to be picked later. Note that

n∑
i=1

bi(ei + Adλi) = (
n∑

i=1

biei) + (Ad
n∑

i=1

biλi) = 0.

So we need M to be such that there exists an A with

1. e1 + Adλ1, . . ., en + Adλn are all distinct, and

2. For all i, |Aλi| ≤ M

There are at most
(

n
2

)
values of A that make item 1 false. In order to

satisfy item 2 we need, for all i, |A| ≤ M/λi. Let λ = max{|λ1|, . . . , |λn|}.
We let M = 2

(
n
2

)
λ. In order to satisfy item 2 we need, for all i,

|A| ≤ 2

(
n

2

)
λ/|λi|.

It will suffice to take |A| ≤ 2
(

n
2

)
. There are clearly more than

(
n
2

)
values

of A that satisfy this, hence we can find one that satisfies item 1.
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10.3 The Full Rado’s Theorem

Recall when a matrix is regular:

Def 10.3.1 A matrix A of integers is regular if if the following holds: For
all c, for all c-colorings χ : N → [c] there exists ~e = e1, . . . , en such that

χ(e1) = · · · = χ(en),

A~e = ~0.

Def 10.3.2 A matrix A satisfies the columns condition if the columns can
be ordered ~c1, . . . ,~cn and the set {1, . . . , n} can be partitioned into nonempty
contigous sets I1, . . . , Ik such that∑

i∈I1

~ci = ~0,

For all j, 2 ≤ j ≤ k,
∑

i∈Ij
~ci can be written as a linear combination of

the vectors {ci}i∈I1∪···∪Ij−1
.

We will prove the following:
The Full Rado’s Theorem:

Theorem 10.3.3 A is regular iff A satisfies the columns condition.

FILL IN THE PROOF

10.4 Coloring R*

(This section was co-written with Steven Fenner.)
Do you think the following is TRUE or FALSE?
For any ℵ0-coloring of the reals, χ : R → N there exist distinct e1, e2, e3, e4

such that
χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

It turns out that this question is equivalent to the negation of CH.
Komjáth [18] claims that Erdős proved this result. The prove we give is
due to Davies [6].
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Def 10.4.1 The Continuum Hypothesis (CH) is the statement that there is
no order of infinity between that of N and R. It is known to be independent
of Zermelo-Frankel Set Theory with Choice (ZFC).

Def 10.4.2 ω1 is the first uncountable ordinal. ω2 is the second uncountable
ordinal.

Fact 10.4.3

1. If CH is true, then there is a bijection between R and ω1. This has the
followng counter-intuitive consequence: there is a way to list the reals:

x0, x1, x2, . . . , xα, . . .

as α ∈ ω1 such that, for all α ∈ ω1, the set {xβ | β < α} is countable.

2. If CH is false, then there is an injection from ω2 to R. This has the
consequence that there is a list of distinct reals:

x0, x1, x2, . . . , xα, . . . , xω1 , xω1+1, . . . , xβ, . . .

where α ∈ ω1 and β ∈ [ω1, ω2).

10.4.1 CH =⇒ FALSE

Def 10.4.4 Let X ⊆ R. Then CL(X) is the smallest set Y ⊇ X of reals
such that

a, b, c ∈ Y =⇒ a + b− c ∈ Y.

Note 10.4.5 X ⊆ CL(X) since we can take b = c.

Lemma 10.4.6

1. If X is countable then CL(X) is countable.

2. If X1 ⊆ X2 then CL(X1) ⊆ CL(X2).
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Proof:
1) Assume X is countable. CL(X) can be defined with an ω-induction (that
is, an induction just through ω).

C0 = X

Cn+1 = Cn ∪ {a + b− c | a, b, c ∈ Cn}

One can easily show that CL(X) = ∪∞i=0Ci and that this set is countable.
2) This is an easy exercise.

Theorem 10.4.7 Assume CH is true. There exists an ℵ0-coloring of R such
that there are no distinct e1, e2, e3, e4 such that

χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

Proof: Since we are assuming CH is true, we have, by Fact 10.4.3.1, there
is a bijection between R and ω1. If α ∈ ω1 then xα is the real associated to
it. We can picture the reals as being listed out via

x0, x1, x2, x3, . . . , xα, . . .

where α < ω1.
Note that every number has only countably many numbers less than it

in this ordering.
For α < ω1 let

Xα = {xβ | β < α}.
Note the following:

1. For all α, Xα is countable.

2. X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xα ⊂ · · ·

3.
⋃

α<ω1
Xα = R.

We define another increasing sequence of sets Yα by letting

Yα = CL(Xα).

Note the following:
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1. For all α, Yα is countable. This is from Lemma 10.4.6.1.

2. Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · ⊂ Yα ⊂ · · · . This is from Lemma 10.4.6.2.

3.
⋃

α<ω1
Yα = R.

We now define our last sequence of sets:
For all α < ω1,

Zα = Yα −

(⋃
β<α

Yβ

)
.

Note the following:

1. Each Zα is finite or countable.

2. The Zα form a partition of R.

We will now define an ℵ0-coloring of R. For each Zα, which is countable,
assign colors from ω to Zα’s elements in some way so that no two elements
of Zα have the same color.

Assume, by way of contradiction, that there are distinct e1, e2, e3, e4 such
that

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and
e1 + e2 = e3 + e4.

Let α1, α2, α3, α4 be such that ei ∈ Zαi
. Since all of the elements in

any Zα are colored differently, all of the αi’s are different. We will assume
α1 < α2 < α3 < α4. The other cases are similar. Note that

e4 = e1 + e2 − e3.

and
e1, e2, e3 ∈ Zα1 ∪ Zα2 ∪ Zα3 ⊆ Yα1 ∪ Yα2 ∪ Yα3 = Yα3 .

Since Yα3 = CL(Xα3) and e1, e2, e3 ∈ Yα3 , we have e4 ∈ Yα3 . Hence
e4 /∈ Zα4 . This is a contradiction.

What was it about the equation

e1 + e2 = e3 + e4

that made the proof of Theorem 10.4.7 work? Absolutely nothing:
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Theorem 10.4.8 Let n ≥ 2. Let a1, . . . , an ∈ R be nonzero. Assume CH
is true. There exists an ℵ0-coloring of R such that there are no distinct
e1, . . . , en such that

χ(e1) = · · · = χ(en),
n∑

i=1

aiei = 0.

Proof sketch: Since this prove is similar to the last one we just sketch
it.

Def 10.4.9 Let X ⊆ R. CL(X) is the smallest superset of X such that the
following holds:

For all m ∈ {1, . . . , n} and for all e1, . . . , em−1, em+1, . . . , en,

e1, . . . , em−1, em+1, . . . , en ∈ CL(X) =⇒ −(1/am)
∑

i∈{1,...,n}−{m}

aiei ∈ CL(X).

Let Xα, Yα, Zα be defined as in Theorem 10.4.7 using this new defintion
of CL. Let χ be defined as in Theorem 10.4.7.

Assume, by way of contradiction, that there are distinct e1, . . . , en such
that

χ(e1) = · · · = χ(en)

and
n∑

i=1

aiei = 0.

Let α1, . . . , αn be such that ei ∈ Zαi
. Since all of the elements in any Zα

are colored differently, all of the αi’s are different. We will assume α1 < α2 <
· · · < αn. The other cases are similar. Note that

en = −(1/an)
n−1∑
i=1

aiei ∈ CL(X)

and
e1, . . . , en−1 ∈ Zα1 ∪ · · · ∪ Zαn−1 ⊆ Yαn−1 .

Since Yαn−1 = CL(Xαn−1) and e1, . . . , en−1 ∈ Yαn−1 , we have en ∈ Yαn−1 .
Hence en /∈ Zαn . This is a contradiction.

FILL IN -LOOK UP PAPER THIS CAME FROM TO GET MORE
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10.4.2 ¬ CH =⇒ TRUE

Theorem 10.4.10 Assume CH is false. Let χ be an ℵ0-coloring of R. There
exist distinct e1, e2, e3, e4 such that

χ(e1) = χ(e2) = χ(e3) = χ(e4),

e1 + e2 = e3 + e4.

Proof: By Fact 10.4.3 there is an injection of ω2 into R. If α ∈ ω2, then
xα is the real associated to it.

Let χ be an ℵ0-coloring of R. We show that there exist distinct e1, e2, e3, e4

of the same color such that e1 + e2 = e3 + e4.
We define a map F from ω2 to ω1 × ω1 × ω1 × ω.

1. Let β ∈ ω2.

2. Define a map from ω1 to ω by

α 7→ χ(xα + xβ).

3. Let α1, α2, α3 ∈ ω1 be distinct elements of ω1, and i ∈ ω, such that
α1, α2, α3 all map to i. Such α1, α2, α3, i clearly exist since ℵ0 + ℵ0 =
ℵ0 < ℵ1. (There are ℵ1 many elements that map to the same element
of ω, but we do not need that.)

4. Map β to (α1, α2, α3, i).

Since F maps a set of cardinality ℵ2 to a set of cardinality ℵ1, there exists
some element that is mapped to twice by F (actually there is an element that
is mapped to ℵ2 times, but we do not need this). Let α1, α2, α3, β, β′, i be
such that β 6= β′ and

F (β) = F (β′) = (α1, α2, α3, i).

Choose distinct
α, α′ ∈ {α1, α2, α3}

such that
xα − xα′ /∈ {xβ − xβ′ , xβ′ − xβ}.

We can do this because there are at least two positive values for xα − xα′ .
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Since F (β) = (α1, α2, α3, i), we have

χ(xα + xβ) = χ(xα′ + xβ) = i.

Since F (β′) = (α1, α2, α3, i), we have

χ(xα + xβ′) = χ(xα′ + xβ′) = i.

Let

e1 = xα + xβ

e2 = xα′ + xβ′

e3 = xα′ + xβ

e4 = xα + xβ′ .

Then

χ(e1) = χ(e2) = χ(e3) = χ(e4)

and

e1 + e2 = e3 + e4.

Since xα 6= xα′ and xβ 6= xβ′ , we have {e1, e2} ∩ {e3, e4} = ∅.
Moreover, the equation e1 = e2 is equivalent to

xα − xα′ = xβ′ − xβ,

which is ruled out by our choice of α, α′, and so e1 6= e2.

Similarly, e3 6= e4.

Thus e1, e2, e3, e4 are all distinct.

Remark. All the results above hold practically verbatim with R replaced
by Rk, for any fixed integer k ≥ 1. In this more geometrical context,
e1, e2, e3, e4 are vectors in k-dimensional Euclidean space, and the equation
e1 + e2 = e3 + e4 says that e1, e2, e3, e4 are the vertices of a parallelogram
(whose area may be zero).
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10.4.3 More is Known!

To state the generalization of this theorem we need a definition.

Def 10.4.11 An equation E(e1, . . . , en) (e.g., e1 + e2 = e3 + e4) is regular if
the following holds: for all colorings χ : R → N there exists ~e = (e1, . . . , en)
such that

χ(e1) = · · · = χ(en),

E(e1, . . . , en),

and e1, . . . , en are all distinct.

If we combine Theorems 10.4.7 and 10.4.10 we obtain the following.

Theorem 10.4.12 e1 + e2 = e3 + e4 is regular iff 2ℵ0 > ℵ1.

Jacob Fox [8] has generalized this to prove the following.

Theorem 10.4.13 Let s ∈ N. The equation

e1 + se2 = e3 + · · ·+ es+3 (10.1)

is regular iff 2ℵ0 > ℵs.

Fox’s result also holds in higher dimensional Euclidean space, where it
relates to the vertices of (s + 1)-dimensional parallelepipeds. Subtracting
(s + 1)e2 from both sides of (10.1) and rearranging, we get

e1 − e2 = (e3 − e2) + · · ·+ (es+3 − e2),

which says that e1 and e2 are opposite corners of some (s + 1)-dimensional
parallelepiped P where e3, . . . , es+3 are the corners of P adjacent to e2. Of
course, there are other vertices of P besides these, and Fox’s proof actually
shows that if 2ℵ0 > ℵs then all the 2s+1 vertices of some such P must have
the same color.



Chapter 11

Applications of Rado’s
Theorem

The title of this chapter is a cheat. We will not be applying Rado’s Theorem.
We give one application of Schur’s theorem (Theorem ??) and an application
of the Lemma used to prove Rado’s Theorem- Lemma 10.2.7

BILL- the theorem used to prove RADO- the thing with a,a+d,.., a+(k-
1)d AND d itself bing the same color, we apply to Number Theory- QR
tuff.
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Chapter 12

Advanced Topics*

12.1 Every Set of Positive Upper Density has

a 3-AP

12.1.1 Combinatorial Proof

Notation 12.1.1 Let [n] = {1, . . . , n}. If k ∈ N then k-AP means an
arithmetic sequence of size k.

Consider the following statement:
If A ⊆ [n] and |A| is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and |A| ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [14, 26, 27] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[|A| ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [14, 32]
by a combinatorial proof. Szemeredi [33] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi.
Our proof is essentially the same as in the book Ramsey Theory by Graham,
Rothchild, and Spencer [14].

121
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More is known. A summary of what else is known will be presented in
the next section.

Def 12.1.2 Let sz(n) be the least number such that, for all A ⊆ [n], if
|A| ≥ sz(n) then A has a 3-AP. Note that if A ⊆ [a, a+n−1] and |A| ≥ sz(n)
then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na} and |A| ≥ sz(n)
then A has a 3-AP. More generally, if A is a subset of any equally spaced set
of size n, and |A| ≥ sz(n), then A has a 3-AP.

We will need the following Definition and Lemma.

Def 12.1.3 Let k, e, d1, . . . , dk ∈ N. The cube on (e, d1, . . . , dk), denoted
C(e, d1, . . . , dk), is the set {e + b1d1 + · · · + bkdk | b1, . . . , bk ∈ {0, 1}}. A
k-cube is a cube with k d’s.

Lemma 12.1.4 Let I be an interval of [1, n] of length L. If |B| ⊆ I then
there is a cube (e, d1, . . . , dk) contained in B with k = Ω(log log |B|) and
(∀i)[di ≤ L].

Proof:

The following procedure produces the desired cube.

1. Let B1 = B and β1 = |B1|.

2. Let D1 be all
(

β1

2

)
positive differences of elements of B1. Since B1 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1

2

)
/n ∼ β2

1/2n times. Let that difference be d1. Note that d1 ≤ L.

3. Let B2 = {x ∈ B1 : x + d1 ∈ B1}. Note that |B2| ≥ β2
1/2n. Let

|B2| = β2. Note the trivial fact that

x ∈ B1 =⇒ x + d1 ∈ B.

4. Let D2 be all
(

β2

2

)
positive differences of elements of B2. Since B2 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1

2

)
/n ∼ β2

2/2n times. Let that difference be d2. Note that d2 ≤ L.
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5. Let B3 = {x ∈ B2 : x + d2 ∈ B2}. Note that |B3| ≥ β2
2/2n. Let

|B3| = β3. Note that

x ∈ B3 =⇒ x + d2 ∈ B

x ∈ B3 =⇒ x ∈ B2 =⇒ x + d1 ∈ B

x ∈ B3 =⇒ x + d2 ∈ B2 =⇒ x + d1 + d2 ∈ B

6. Keep repeating this procedure until Bk+2 = ∅. (We leave the deatils of
the definition to the reader.) Note that if i ≤ k + 1 then

x ∈ Bi =⇒ x + b1d1 + · · ·+ bi−1di−1 ∈ B for any b1, . . . , bi−1 ∈ {0, 1}.

7. Let e be any element of Bk+1. Note that we have e+b1d1+· · ·+bkdk ∈ B
for any b1, . . . , bk ∈ {0, 1}.

We leave it as an exercise to formally show that C(e, d1, . . . , dk) is con-
tained in B and that k = Ω(log log |B|).

The next lemma states that if A is ‘big’ and 3-free then it is somewhat
uniform. There cannot be sparse intervals of A. The intuition is that if A
has a sparse interval then the rest of A has to be dense to make up for it,
and it might have to be so dense that it has a 3-AP.

Lemma 12.1.5 Let n, n0 ∈ N; λ, λ0 ∈ (0, 1). Assume λ < λ0 and (∀m ≥
n0)[sz(m) ≤ λ0m]. Let A ⊆ [n] be a 3-free set such that |A| ≥ λn.

1. Let a, b be such that a < b, a > n0, and n− b > n0. Then λ0(b− a)−
n(λ0 − λ) ≤ |A ∩ [a, b]|.

2. Let a be such that n− a > n0. Then λ0a− n(λ0 − λ) ≤ |A ∩ [1, a]|.

Proof:

1) Since A is 3-free and a ≥ n0 and n − b ≥ n0 we have |A ∩ [1, a − 1]| <
λ0(a− 1) < λ0a and |A ∩ [b + 1, n]| < λ0(n− b). Hence

λn ≤ |A| = |A ∩ [1, a− 1]|+ |A ∩ [a, b]|+ |A ∩ [b + 1, n]|
λn ≤ λ0a + |A ∩ [a, b]|+ λ0(n− b)

λn− λ0n + λ0b− λ0a ≤ |A ∩ [a, b]|
λ0(b− a)− n(λ0 − λ) ≤ |A ∩ [a, b]|.
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2) Since A is 3-free and n−a > n0 we have |A∩ [a+1, n]| ≤ λ0(n−a). Hence

λn ≤ |A| = |A ∩ [1, a]|+ |A ∩ [a + 1, n]|
λn ≤ |A ∩ [1, a]|+ λ0(n− a)

λn− λ0n + λ0a ≤ |A ∩ [1, a]|
λ0a− (λ0 − λ)n ≤ |A ∩ [1, a]|.

Lemma 12.1.6 Let n, n0 ∈ N and λ, λ0 ∈ (0, 1). Assume that λ < λ0 and
that (∀m ≥ n0)[sz(m) ≤ λ0m]. Assume that n

2
≥ n0. Let a, L ∈ N such

that a ≤ n
2
, L < n

2
− a, and a ≥ n0. Let A ⊆ [n] be a 3-free set such that

|A| ≥ λn.

1. There is an interval I ⊆ [a, n
2
] of length ≤ L such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

2. Let α be such that 0 < α < 1
2
. If a = αn and

√
n << n

2
−αn then there

is an interval I ⊆ [a, n
2
] of length ≤ O(

√
n) such that

|A ∩ I| ≥
⌊

2
√

n

(1− 2α)
(λ0(

1

2
− (λ0 − λ)− α))

⌋
= Ω(

√
n).

Proof: By Lemma 12.1.5 with b = n
2
, |A∩ [a, n

2
]| ≥ λ0(

n
2
− a− n(λ0 − λ).

Divide [a, n
2
] into

⌈
n−2a
2L

⌉
intervals of size ≤ L. There must exist an interval

I such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

If L = d
√

ne and a = αn then

|A ∩ I| ≥
⌊

2L
n−2a

(λ0(
n
2
− a)− n(λ0 − λ))

⌋
≥
⌊

2
√

n
n(1−2α)

(λ0(
n
2
− αn)− n(λ0 − λ)))

⌋
≥
⌊

2
√

n
(1−2α)

(λ0(
1
2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).
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Theorem 12.1.7 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all
n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ | S(λ)}.
C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of

contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that |A| ≥ λn but
A is 3-free. At the end we will fix values for the parameters that (a) allow
the proof to go through, and (b) imply |A| < λn, a contradiction.

PLAN : We will obtain a T ⊆ A that will help us. We will soon see
what properties T needs to help us. Consider the bit string in {0, 1}n that
represents T ⊆ [n]. Say its first 30 bits looks like this:

T (0)T (1)T (2)T (3) · · ·T (29) = 000111111100001110010111100000

The set A lives in the blocks of 0’s of T (henceforth 0-blocks). We will
bound |A| by looking at A on the ‘small’ and on the ‘large’ 0-blocks of T .
Assume there are t 1-blocks. Then there are t + 1 0-blocks. We call a 0-
block small if it has < n0 elements, and big otherwise. Assume there are
tsmall small 0-blocks and tbig big 0-blocks. Note that tsmall + tbig = t + 1 so
tsmall, tbig ≤ t+1. Let the small 0-blocks be Bsmall

1 , . . . , Bsmall
tsmall , let their union

be Bsmall, let the big 0-blocks be Bbig
1 , . . . , Bbig

tbig , and let their union be Bbig.
It is easy to see that

|A ∩Bsmall| ≤ tsmalln0 ≤ (t + 1)n0.

Since each Bbig
i is bigger than n0 we must have, for all i, |A ∩ Bbig

i | <
λ0|Bbig

i | (else A ∩Bbig
i has a 3-AP and hence A does). It is easy to see that

|A ∩Bbig| =
tbig∑
i=1

|A ∩Bbig
i | ≤

tbig∑
i=1

λ0|Bbig
i | ≤ λ0

tbig∑
i=1

|Bbig
i | ≤ λ0(n− |T |).
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Since A can only live in the (big and small) 0-blocks of T we have

|A| = |A ∩Bsmall|+ |A ∩Bbig| ≤ (t + 1)n0 + λ0(n− |T |).
In order to use this inequality to bound |A| we will need T to be big and

t to be small, so we want T to be a big set that has few blocks.
If only it was that simple. Actually we can now reveal the

REAL PLAN: The real plan is similar to the easy version given above.
We obtain a set T ⊆ A and a parameter d. A 1-block is a maximal AP with
difference d that is contained in T (that is, if FIRST and LAST are the first
and last elements of the 1-block then FIRST − d /∈ T and LAST + d /∈ T ).
A 0-block is a maximal AP with difference d that is contained in T . Partition
T into 1-blocks. Assume there are t of them.

Let [n] be partitioned into N0∪· · ·∪Nd−1 where Nj = {x | x ≤ n∧x ≡ j
(mod d)}.

Fix j, 0 ≤ j ≤ d−1. Consider the bit string in {0, 1}bn/dc that represents
T ∩Nj Say the first 30 bits of T ∩Nj look like

T (j)T (d+j)T (2d+j)T (3d+j) · · ·T (29d+j) = 00011111110000111001011111100

During PLAN we had an intuitive notion of what a 0-block or 1-block
was. Note that if we restrict to Nj then that intuitive notion is still valid.
For example the first block of 1’s in the above example represents T (3d + j),
T (4d + j), T (5d + j), . . ., T (9d + j) which is a 1-block as defined formally.

Each 1-block is contained in a particular Nj. Let tj be the number of

1-blocks that are contained in Nj. Note that
∑d−1

j=0 tj = t. The number of
0-blocks that are in Nj is at most tj + 1.

Let j be such that 0 ≤ j ≤ d − 1. By reasoning similar to that in the
above PLAN we obtain

|A ∩Nj| ≤ (tj + 1)n0 + λ0(Nj − |T |).
We sum both sides over all j = 0 to d− 1 to obtain

|A| ≤ (t + d)n0 + λ0(n− |T |)
In order to use this inequality to bound |A| we need T to be big and t, d

to be small. Hence we want a big set T which when looked at mod d, for
some small d, decomposes into a small number of blocks.

What is a 1-block within Nj? For example, lets look at d = 3 and the
bits sequence for T is
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17;
0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0.

Note that T looked at on N2 ∪ T has bit sequence

2 5 8 11 14 17;
0 1 1 1 1 0.

The numbers 5, 8, 11, 14 are all in T and form a 1-block in the N2 part.
Note that they also from an arithmetic progession with spacing d = 3. Also
note that this is a maximal arithmetic sequence with spacing d = 3 since
0 /∈ T and 17 /∈ T . More generally 1-blocks of T within Nj are maximal
arithmetic progessions with spacing d. With that in mind we can restate the
kind of set T that we want.

We want a set T ⊆ A and a parameter d such that

1. T is big (so that λ0(n− |T |) is small),

2. d is small (see next item), and

3. the number of maximal arithmetic sequences of length d within T ,
which is the parameter t above, is small (so that (t + d)n0 is small).

How do we obtain a big subset of A? We will obtain many pairs x, y ∈ A
such that 2y− x ≤ n. Note that since x, y, 2y− x is a 3-AP and x, y ∈ A we
must have 2y − x ∈ A.

Let α, 0 < α < 1
2
, be a parmater to be determined later. (For those

keeping track, the parameters to be determined later are now λ0, λ, n, and
α. The parameter n0 depends on λ0 so is not included in this list.)

We want to apply Lemma 12.1.6.2.b to n, n0, a = αn. Hence we need the
following conditions.

αn ≥ n0
n
2

≥ n0
n
2
− αn ≥

√
n

Assuming these conditions hold, we proceed. By Lemma 12.1.6.b there
is an interval I ⊆ [αn, n

2
] of length O(

√
n) such that

|A ∩ I| ≥
⌊

2
√

n

(1− 2α)
(λ0(

1

2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).
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By Lemma 12.1.4 there is a cube C(e, d1, . . . , dk) contained in |A∩I| with
k = Ω(log log |A ∩ I|) = Ω(log log

√
n) = Ω(log log n) and d ≥

√
n.

For i such that 1 ≤ i ≤ k we define the following.

1. Define C0 = {e} and, for 1 ≤ i ≤ k, define Ci = C(e, d1, . . . , di).

2. Ti is the third terms of AP’s with the first term in A∩ [1, e−1] and the
second term in Ci. Formally Ti = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ Ci}.

Note that, for all i, Ti ∩A = ∅. Hence we look for a large Ti that can be
decomposed into a small number of blocks. We will end up using d = 2di+1.

Note that T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tk. Hence to obtain a large Ti it suffices
to show that T0 is large and then any of the Ti will be large (though not
neccesarily consist of a small number of blocks).

Since C0 = {e} we have
T0 = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ C0} = {2e−x | x ∈ A∩ [1, e−1]}.
Clearly there is a bijection from A ∩ [1, e − 1] to T0, hence |T0| = |A ∩

[1, e− 1]|. Since e ∈ [αn, n
2
] we have |A ∩ [1, e]| ≥ |A ∩ [1, αn]|.

We want to use Lemma 12.1.5.2 on A ∩ [1, αn]. Hence we need the con-
dition

n− αn ≥ n0.

By Lemma 12.1.5

|T0| ≥ |A ∩ [1, αn]| ≥ λ0αn− n(λ0 − λ) = n(λ0α− (λ0 − λ)).

In order for this to be useful we need the following condition

λ− λ0 + λ0α > 0
λ0α > λ0 − λ

We now show that some Ti has a small number of blocks. Since |Tk| ≤ n
(a rather generous estimate) there must exist an i such that |Ti+1 − Ti| ≤ n

k
.

Let t = n
k

(t will end up bounding the number of 1-blocks).
Partition Ti into maximal AP’s with difference 2di+1. We call these max-

imal AP’s 1-blocks. We will show that there are ≤ t 1-blocks by showing a
bijection between the blocks and Ti+1 − Ti.

If z ∈ Ti then z = 2m− x where x ∈ A ∩ [1, αn− 1] and m ∈ Ci. By the
definitions of Ci and Ci+1 we know m+di+1 ∈ Ci+1. Hence 2(m+di+1)−x ∈
Ti+1. Note that 2(m + di+1)− x = z + 2di+1. In short we have
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z ∈ Ti =⇒ z + 2di+1 ∈ Ti+1.

NEED PICTURE
We can now state the bijection. Let z1, . . . , zm be a block in Ti. We know

that zm + 2di+1 /∈ Ti since if it was the block would have been extended
to include it. However, since zm ∈ Ti we know zm + 2di+1 ∈ Ti+1. Hence
zm + 2di+1 ∈ Ti+1 − Ti. This is the bijection: map a block to what would be
the next element if it was extended. This is clearly a bijection. Hence the
number of 1-blocks is at most t = |Ti+1 − Ti| ≤ n/k.

To recap, we have

|A| ≤ (t + d)n0 + λ0(n− |T |)

with t ≤ n
k

= O( n
log log n

), d = O(
√

n), and |T | ≥ n(λ0α− (λ0−λ)). Hence
we have

|A| ≤ O((
n

log log n
+
√

n)n0) + nλ0(1− λ + λ0 − λ0α).

We want this to be < λn. The term O(( n
log log n

+
√

n)n0) can be ignored
since for n large enough this is less than any fraction of n. For the second
term we need

λ0(1− λ + λ0 − λ0α) < λ

We now gather together all of the conditions and see how to satisfy them
all at the same time.

αn ≥ n0
n
2

≥ n0
n
2
− αn ≥

√
n

n− αn ≥ n0

λ0α > λ0 − λ
λ0(1− λ + λ0 − λ0α) < λ

We first choose λ and λ0 such that λ0 − λ < 10−1λ2
0. This is possible

by first picking an initial (λ′, λ′0) pair and then picking (λ, λ0) such that
λ′ < λ < λ0 < λ′0 and λ0 − λ < 10−1(λ′)2 < 10−1λ2

0. The choice of λ0

determines n0. We then chose α = 10−1. The last two conditions are satisfied:
λ0α > λ0 − λ becomes
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10−1λ0 > 10−1λ2
0

1 > λ0

which is clearly true.
λ0(1− λ + λ0 − λ0α) < λ becomes

λ0(1− 10−1λ2
0 − 10−1λ0) < λ

λ0 − 10−1λ3
0 − 10−1λ2

0 < λ
λ0 − λ− 10−1λ3

0 − 10−1λ2
0 < 0

10−1λ2
0 − 10−1λ3

0 − 10−1λ2
0 < 0

−10−1λ3
0 < 0

which is clearly true.
Once λ, λ0, n0 are picked, you can easily pick n large enough to make the

other inqualities hold.

12.1.2 Analytic Proof

Notation 12.1.8 Let [n] = {1, . . . , n}. If k ∈ N then k-AP means an
arithmetic sequence of size k.

Consider the following statement:
If A ⊆ [n] and #(A) is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and #(A) ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [14, 26, 27] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[#(A) ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [14, 32]
by a combinatorial proof. Szemeredi [33] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the analytic techniques of Roth; however,
we rely heavily on Gowers [13, 12]
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Def 12.1.9 Let sz(n) be the least number such that, for all A ⊆ [n], if
#(A) ≥ sz(n) then A has a 3-AP. Note that if A ⊆ [a, a + n − 1] and
#(A) ≥ sz(n) then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na}
and #(A) ≥ sz(n) then A has a 3-AP. More generally, if A is a subset of any
equally spaced set of size n, and #(A) ≥ sz(n), then A has a 3-AP.

Throughout this section the following hold.

1. n ∈ N is a fixed large prime.

2. Zn = {1, . . . , n} with modular arithmetic.

3. ω = e2πi/n.

4. If a is a complex number then |a| is its length.

5. If A is a set then |A| is its cardinality.

Counting 3-AP’s

Lemma 12.1.10 Let A, B, C ⊆ [n]. The number of (x, y, z) ∈ A × B × C
such that x + z ≡ 2y (mod n) is

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

Proof:
We break the sum into two parts:

Part 1:

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

Note that we can replace ω−r(x−2y+z) with ω0 = 1. We can then replace∑n
r=1 1 with n. Hence we have

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)n =
∑

x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)
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This is the number of (x, y, z) ∈ A×B×C such that x+z ≡ 2y (mod n).
Part 2:

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z).

We break this sum up depending on what the (nonzero) value of w =
x + z − 2y (mod n). Let

Su =
∑

x,y,z∈[n],x−2y+z=2

A(x)B(y)C(z)
n∑

r=1

ω−ru.

Since u 6= 0,
∑n

r=1 ω−ru =
∑n

r=1 ω−r = 0. Hence Su = 0.
Note that

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) =
1

n

n−1∑
u=1

Su = 0

The lemma follows from Part 1 and Part 2.

Lemma 12.1.11 Let A ⊆ [n]. Let B = C = A ∩ [n/3, 2n/3]. The number
of (x, y, z) ∈ A×B × C such that x, y, z forms a 3-AP is at least

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) −O(n).

Proof: By Lemma 12.1.10

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)

is the number of (x, y, z) ∈ A× B × C such that x + z ≡ 2y (mod n). This
counts three types of triples:

• Those that have x = y = z. There are n/3 of them.

• Those that have x + z = 2y + n. There are O(1) of them.
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• Those that have x 6= y, y 6= z, x 6= z, and x + z = 2y.

Hence

#({(x, y, z) : (x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}) =
1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)−O(n).

We are not done yet. Note that (5, 10, 15) may show up as (15, 10, 5).
Every triple appears at most twice. Hence

#({(x, y, z) : (x + z = 2y) ∧ x 6= y ∧ y 6= z ∧ x 6= z})
≤ 2#({(x, y, z) : (x < y < z)∧(x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}).
Therefore

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z)−O(n) ≤ the number of 3-AP’s with x ∈ A, y ∈ B, z ∈ C .

We will need to re-express this sum. For that we will use Fourier Analysis.

Fourier Analysis

Def 12.1.12 If f : Zn → N then f̂ : Zn → C is

f̂(r) =
∑
s∈[n]

f(s)ω−rs.

f̂ is called the Fourier Transform of f .

What does f̂ tell us? We look at the case where f is the characteristic
function of a set A ⊆ [n]. Henceforth we will use A(x) instead of f(x).

We will need the followng facts.

Lemma 12.1.13 Let A ⊆ {1, . . . , n}.

1. Â(n) = #(A).

2. maxr∈[n] |Â(r)| = #(A).
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3. A(s) = 1
n

∑n
r=1 Â(r)ω−rs. DO WE NEED THIS?

4.
∑n

r=1 |Â(r)|2 = n#(A).

5.
∑n

s=1 A(s) = 1
n

∑n
r=1 Â(r).

Proof:
Note that ωn = 1. Hence

Â(n) =
∑
s∈[n]

A(s)ω−ns =
∑
s∈[n]

A(s) = #(A).

Also note that

|Â(r)| = |
∑
s∈[n]

A(s)ω−rs| ≤
∑
s∈[n]

|A(s)ω−rs| ≤
∑
s∈[n]

|A(s)||ω−rs| ≤
∑
s∈[n]

|A(s)| = #(A).

Informal Claim: If Â(r) is large then there is an arithmetic sequence P
with difference r−1 (mod n) such that #(A ∩ P ) is large.

We need a lemma before we can proof the claim.

Lemma 12.1.14 Let n, m ∈ N, s1, . . . , sm, and 0 < λ, α, ε < 1 be given
(no order on λ, α, ε is implied). Assume that (λ − m−1

m
(λ + ε)) ≥ 0. Let

f(x1, . . . , xm) = |
∑m

j=1 xjω
sj |. The maximum value that f(x1, . . . , xm) can

achieve subject to the following two constraints (1)
∑m

j=1 xj ≥ λn, and (2)
(∀j)[0 ≤ xi ≤ (λ + ε) n

m
] is bounded above by εmn + (λ + ε) n

m
|
∑m

j=1 ωsj |

Proof:
Assume that the maximum value of f , subject to the constraints, is

achieved at (x1, . . . , xm). Let MIN be the minimum value that any vari-
able xi takes on (there may be several variables that take this value). What
is the smallest that MIN could be? By the contraints this would occur when
all but one of the variables is (λ + ε) n

m
and the remaining variable has value

MIN . Since
∑

xi
≥ λn we have

MIN + (m− 1)(λ + ε) n
m
≥ λn

MIN + m−1
m

(λ + ε)n ≥ λn
MIN ≥ λn− m−1

m
(λ + ε)n

MIN ≥ (λ− m−1
m

(λ + ε))n
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Hence note that, for all j,
xj −MIN ≤ xj − (λ− m−1

m
(λ + ε))n

Using the bound on xj from constraint (2) we obtain

xj −MIN ≤ (λ + ε) n
m
− (λ− m−1

m
(λ + ε))n

≤ ((λ + ε) 1
m
− (λ− m−1

m
(λ + ε)))n

≤ ((λ + ε) 1
m
− λ + m−1

m
(λ + ε))n

≤ εn

Note that

|
∑m

j=1 xjω
sj | = |

∑m
j=1(xj −MIN)ωsj +

∑m
j=1 MINωsj |

≤ |
∑m

j=1(xj −MIN)ωsj |+ |
∑m

j=1 MINωsj |
≤

∑m
j=1 |(xj −MIN)||ωsj |+ MIN |

∑m
j=1 ωsj |

≤
∑m

j=1 εn + MIN |
∑m

j=1 ωsj |
≤ εmn + MIN |

∑m
j=1 ωsj |

≤ εmn + (λ + ε) n
m
|
∑m

j=1 ωsj |

Lemma 12.1.15 Let A ⊆ [n], r ∈ [n], and 0 < α < 1. If |Â(r)| ≥ αn and
|A| ≥ λn then there exists m ∈ N, 0 < ε < 1, and an arithmetic sequence P
within Zn, of length n

m
±O(1) such that #(A∩P ) ≥ (λ+ε) n

m
. The parameters

ε and m will depend on λ and α but not n.

Proof: Let m and ε be parameters to be picked later. We will note
constraints on them as we go along. (Note that ε will not be used for a
while.)

Let 1 = a1 < a2 < · · · < am+1 = n be picked so that
a2 − a1 = a3 − a2 = · · · = am − am−1 and am+1 − am is as close to a2 − a1

as possible.
For 1 ≤ j ≤ m let

Pj = {s ∈ [n] : aj ≤ rs (mod n) < aj+1}.

Let us look at the elements of Pj. Let r−1 be the inverse of r mod n.

1. s such that aj ≡ rs (mod n), that is, s ≡ ajr
−1 (mod n).
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2. s such that aj + 1 ≡ rs (mod n), that is s ≡ (aj + 1)r−1 ≡ ajr
−1 + r−1

(mod n).

3. s such that aj +2 ≡ rs (mod n), that is s ≡ (aj +2)r−1 ≡ ajr
−1 +2r−1

(mod n).

4.
....

Hence Pj is an arithmetic sequence within Zn which has difference r−1.
Also note that P1, . . . , Pm form a partition of Zn into m parts of size n

m
+O(1)

each.
Recall that

Â(r) =
∑
s∈[n]

A(s)ω−rs.

Lets look at s ∈ Pj. We have that aj ≤ rs (mod n) < aj+1. Therefore
the values of {ωrs : s ∈ Pj} are all very close together. We will pick sj ∈ Pj

carefully. In particular we will constrain m so that it is possible to pick
sj ∈ Pj such that

∑m
j=1 ω−rsj = 0. For s ∈ Pj we will approximate ω−rs by

ω−rsj . We skip the details of how good the approximation is.
We break up the sum over s via Pj.

Â(r) =
∑

s∈[n] A(s)ω−rs

=
∑m

j=1

∑
s∈Pj

A(s)ω−rs

∼
∑m

j=1

∑
s∈Pj

A(s)ω−rsj

=
∑m

j=1 ω−rsj
∑

s∈Pj
A(s)

=
∑m

j=1 ω−rsj#(A ∩ Pj)

=
∑m

j=1 #(A ∩ Pj)ω
−rsj

αn ≤ |Â(r)| = |
∑m

j=1 #(A ∩ Pj)ω
−rsj |

We will not use ε. We intend to use Lemma 12.1.14; therefore we have
the contraint (λ− m−1

m
(λ + ε)) ≥ 0.

Assume, by way of contradiction, that (∀j)[|A∩Pj| ≤ (λ+ε) n
m

. Applying
Lemma 12.1.14 we obtain

|
m∑

j=1

#(A ∩ Pj)ω
−rsj | ≤ εmn + (λ + ε)

n

m
|

m∑
j=1

ω−rsj | = εmn.

Hence we have
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αn ≤ εmn
α ≤ εm.
In order to get a contradiction we pick ε and m such that α > εm.
Having done that we now have that (∃j)[|A ∩ Pj| ≥ (λ + ε) n

m
].

We now list all of the constraints introduced and say how to satisfy them.

1. m is such that there exists s1 ∈ P1, . . ., sm ∈ Pm such that
∑m

j=1 ω−rsj =
0, and

2. (λ− m−1
m

(λ + ε)) ≥ 0.

3. εm < α.

First pick m to satisfy item 1. Then pick ε small enough to satisfy items
2,3.

Lemma 12.1.16 Let A, B, C ⊆ [n]. The number of 3-AP’s (x, y, z) ∈ A ×
B × C is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

Proof:
The number of 3-AP’s is bounded below by

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) −O(n) =

We look at the inner sum.

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑

r=1

ω−r(x−2y+z) =

n∑
r=1

∑
x,y,z∈[n]

A(x)ω−rxB(y)ω2yrC(z)ω−rz =

n∑
r=1

∑
x∈[n]

A(x)ω−rx
∑
y∈[n]

B(y)ω2yr
∑
z∈Zr

C(z)ω−rz =
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n∑
r=1

Â(r)B̂(−2r)Ĉ(r).

The Lemma follows.

Main Theorem

Theorem 12.1.17 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for
all n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ : S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of
contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that #(A) ≥ λn
but A is 3-free.

Let B = C = A ∩ [n/3, 2n/3].
By Lemma 12.1.16 the number of 3-AP’s of A is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

We will show that either this is positive or there exists a set P ⊆ [n] that
is an AP of length XXX and has density larger than λ. Hence P will have a
3-AP.

By Lemma 12.1.13 we have Â(n) = #(A), B̂(n) = #(B), and Ĉ(n) =
#(C). Hence

1

2n
Â(n)B̂(n)Ĉ(n) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n) =
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1

2n
#(A)#(B)#(C) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

By Lemma 12.1.6 we can take #(B), #(C) ≥ nλ/4. We already have
#(A) ≥ λn. This makes the lead term Ω(n3); hence we can omit the O(n)
term. More precisely we have that the number of 3-AP’s in A is bounded
below by

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

We are assuming that this quantity is ≤ 0.

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
+

1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
< − 1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

Since the left hand side is positive we have

λ3n2

16
< | 1

n

∑n−1
r=1 Â(r)B̂(−2r)Ĉ(r)|

< 1
n
(max rÂ(r))

∑n−1
r=1 |B̂(−2r)||Ĉ(r)|

By the Cauchy Schwartz inequality we know that

n−1∑
i=1

|B̂(−2r)||Ĉ(r)| ≤ (
n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

Hence

λ3n2

16
< | 1

n
max

1≤r≤n−1
|Â(r)|(

n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

By Parsaval’s inequality and the definition of B and C we have
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n−1∑
i=1

|B̂(−2r)|2)1/2 ≤ n#(B) =
λn2

3

and

n−1∑
i=1

|Ĉ(r)|2)1/2 ≤ n#(C) =
λn2

3

Hence

λ3n2

16
< ( max

1≤r≤n−1
|Â(r)|) 1

n

λn2

3
= ( max

1≤r≤n−1
|Â(r)|)λn

3
.

Therefore

|Â(r) ≥ 3λ2n
16

.

12.1.3 What more is known?

The following is known.

Theorem 12.1.18 For every λ > 0 there exists n0 such that for all n ≥ n0,
sz(n) ≤ λn.

This has been improved by Heath-Brown [17] and Szemeredi [34]

Theorem 12.1.19 There exists c such that sz(n) = Ω(n 1
(log n)c ). (Szemeredi

estimates c ≤ 1/20).

Bourgain [3] improved this further to obtain the following.

Theorem 12.1.20 sz(n) = Ω(n
√

log log n
log n

).
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12.2 Ergodic Proofs of Van Der Waerden’s

Theorem

Van Der Waerden [35] proved the following combinatorial theorem in a com-
binatorial way

Theorem 12.2.1 For all c ∈ N, k ∈ N, any c-coloring of Z will have a
monochromatic arithmetic sequence of length k.

Furstenberg [10] later proved it using topological methods. We give a
detailed treatment of this proof using as much intuition and as little Topology
as needed. We follow the approach of [14] who in turn followed the approach
of [11].

12.2.1 Definitions from Topology

Def 12.2.2 X is a metric space if there exists a function d : X×X → R≥0

(called a metric) with the following properties.

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y) (this is called the triangle inequality).

Def 12.2.3 Let X, Y be metric spaces with metrics dX and dY .

1. If x ∈ X and ε > 0 then B(x, ε) = {y | dX(x, y) < ε}. Sets of this form
are called balls.

2. Let A ⊆ X and x ∈ X. x is a limit point of A if

(∀ε > 0)(∃y ∈ A)[d(x, y) < ε].

3. If x1, x2, . . . ∈ X then limi xi = x means (∀ε > 0)(∃i)(∀j)[j ≥ i =⇒
xj ∈ B(x, ε)].

4. Let T : X → Y .



142 CHAPTER 12. ADVANCED TOPICS*

(a) T is continuous if for all x, x1, x2, . . . ∈ X

lim
i

xi = x =⇒ lim
i

T (xi) = T (x).

(b) T is uniformly continuous if

(∀ε)(∃δ)(∀x, y ∈ X)[dX(x, y) < δ =⇒ dY (T (x), T (y)) < ε].

5. T is bi-continuous if T is a bijection, T is continuous, and T− is con-
tinuous.

6. T is bi-unif-continuous if T is a bijection, T is uniformly continuous,
and T− is uniformly continuous.

7. If A ⊆ X then

(a) A′ is the set of all limit points of A.

(b) cl(A) = A ∪ A′. (This is called the closure of A).

8. A set A ⊆ X is closed under limit points if every limit point of A is in
A.

Fact 12.2.4 If X is a metric space and A ⊆ X then cl(A) is closed under
limit points. That is, if x is a limit point of cl(A) then x ∈ cl(A). Hence
cl(cl(A)) = cl(A).

Note 12.2.5 The intention in defining the closure of a set A is to obtain
the smallest set that contains A that is also closed under limit points. In
a general topological space the closure of a set A is the intersection of all
closed sets that contain A. Alternatively one can define the closure to be
A ∪ A′ ∪ A′′ ∪ · · · . That · · · is not quite what is seems- it may need to go
into transfinite ordinals (you do not need to know what transfinite ordinals
are for this section). Fortunately we are looking at metric spaces where
cl(A) = A∪A′ suffices. More precisely, our definition agrees with the standard
one in a metric space.

Example 12.2.6
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1. [0, 1] with d(x, y) = |x− y| (the usual definition of distance).

(a) If A = (1
2
, 3

4
) then cl(A) = [1

2
, 3

4
].

(b) If A = {1, 1
2
, 1

3
, 1

4
, . . .} then cl(A) = A ∪ {0}.

(c) cl(Q) = R.

(d) Fix c ∈ N. Let BISEQ be the set of all c-colorings of Z. (It is
called BISEQ since it is a bi-sequence of colors. A bi-sequence is
a sequence in two directions.) We represent elements of BISEQ
by f : Z → [c].

2. Let d : BISEQ× BISEQ → R≥0 be defined as follows.

d(f, g) =

{
0 if f = g,

1
1+i

if f 6= g and i is least number s.t. f(i) 6= g(i) or f(−i) 6= g(−i).

(12.1)

One can easily verify that d(f, g) is a metric. We will use this in the
future alot so the reader is urged to verify it.

3. The function T is defined by T (f) = g where g(i) = f(i + 1). One can
easily verify that T is bi-unif-continuous. We will use this in the future
alot so the reader is urged to verify it.

Notation 12.2.7 Let T : X → X be a bijection. Let n ∈ N.

1. T (n)(x) = T (T (· · ·T (x) · · · )) means that you apply T to x n times.

2. T (−n)(x) = T−(T−(· · ·T−(x) · · · )) means that you apply T− to x n
times.

Def 12.2.8 If X is a metric space and T : X → X then

orbit(x) = {T (i)(x) | i ∈ N}
dorbit(x) = {T (i)(x) | i ∈ Z} (dorbit stands for for double-orbit)

Def 12.2.9 Let X be a metric space, T : X → X be a bijection, and x ∈ X.
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1.

CLDOT(x) = cl({. . . , T (−3)(x), T (−2)(x), . . . , T (2)(x), T (3)(x), . . .)

CLDOT(x) stands for Closure of Double-Orbit of x.

2. x is homogeneous if

(∀y ∈ CLDOT(x))[CLDOT(x) = CLDOT(y)].

3. X is limit point compact1 if every infinite subset of X has a limit point
in X.

Example 12.2.10 Let BISEQ and T be as in Example 12.2.6.2. Even
though BISEQ is formally the functions from Z to [c] we will use colors
as the co-domain.

1. Let f ∈ BISEQ be defined by

f(x) =

{
RED if |x| is a square;

BLUE otherwise.
(12.2)

The set {T (i)(f) | i ∈ Z} has one limit point. It is the function

(∀x ∈ Z)[g(x) = BLUE].

This is because their are arbitrarily long runs of non-squares. For any
M there is an i ∈ Z such that T (i)(f) and g agree on {−M, . . . , M}.
Note that

d(T (i)(f), g) ≤ 1

M + 1
.

Hence

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g}.
1Munkres [21] is the first one to name this concept “limit point compact”; however, the

concept has been around for a long time under a variety of names. Originally, what we
call “limit point compact” was just called “compact”. Since then the concept we call limit
point compact has gone by a number of names: Bolzano-Weierstrass property, Frechet
Space are two of them. This short history lesson is from Munkres [21] page 178.
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2. Let f ∈ BISEQ be defined by

f(x) =

{
RED if x ≥ 0 and x is a square or x ≤ 0 and x is not a square;

BLUE otherwise.

(12.3)

The set {T (i)(f) | i ∈ Z} has two limit points. They are

(∀x ∈ Z)[g(x) = BLUE]

and
(∀x ∈ Z)[h(x) = RED].

This is because their are arbitrarily long runs of REDs and arbitrarily
long runs of BLUEs.

CLDOT(f) = {T (i)(f) | i ∈ Z} ∪ {g, h}.

3. We now construct an example of an f such that the number of limit
points of {T (i)(f) | i ∈ Z} is infinite. Let fj ∈ BISEQ be defined by

fj(x) =

{
RED if x ≥ 0 and x is a jth power

BLUE otherwise.
(12.4)

Let Ik = {2k, . . . , 2k+1−1}. Let a1, a2, a3, . . . be a list of natural numbers
so that every single natural number occurs infinitely often. Let f ∈
BISEQ be defined as follows.

f(x) =

{
fj(x) if x ≥ 1, x ∈ Ik and j = ak;

BLUE if x ≤ 0.
(12.5)

For every j there are arbitrarily long segments of f that agree with some
translation of fj. Hence every point fj is a limit point of {T (i)f | i ∈ Z}.

Example 12.2.11 We show that BISEQ is limit point compact. Let A ⊆
BISEQ be infinite. Let f1, f2, f3, . . . ∈ A. We construct f ∈ BISEQ to be a
limit point of f1, f2, . . .. Let a1, a2, a3, . . . be an enumeration of the integers.

I0 = N
f(a1) = least color in [c] that occurs infinitely often in {fi(a1) | i ∈ I0}

I1 = {i | fi(a1) = f(a1)}
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Assume that f(a1), I1, f(a2), I2, . . . , f(an−1), In−1 are all defined and that
In−1 is infinite.

f(an) = least color in [c] that occurs infinitely often in {fi(an) | i ∈ In−1}
In = {i | (∀j)[1 ≤ j ≤ n =⇒ fi(aj) = f(aj)]}

Note that In is infinite.

Note 12.2.12 The argument above that BISEQ is limit point compact is a
common technique that is often called a compactness argument.

Lemma 12.2.13 If X is limit point compact, Y ⊆ X, and Y is closed under
limit points then Y is limit point compact.

Proof: Let A ⊆ Y be an infinite set. Since X is limit point compact A
has a limit point x ∈ X. Since Y is closed under limit points, x ∈ Y . Hence
every infinite subset of Y has a limit point in Y , so Y is limit point compact.

Def 12.2.14 Let X be a metric space and T : X → X be continuous. Let
x ∈ X.

1. The point x is recurrent for T if

(∀ε)(∃n)[d(T (n)(x), x) < ε].

Intuition: If x is recurrent for T then the orbit of x comes close to x
infinitely often. Note that this may be very irregular.

2. Let ε > 0, r ∈ N, and w ∈ X. w is (ε, r)-recurrent for T if

(∃n ∈ N)[d(T (n)(w), w) < ε∧d(T (2n)(w), w) < ε∧· · ·∧d(T (rn)(w), w) < ε.]

Intuition: If w is (ε, r)-recurrent for T then the orbit of w comes
within ε of w r times on a regular basis.

Example 12.2.15



12.2. ERGODIC PROOFS OF VAN DER WAERDEN’S THEOREM 147

1. If T (x) = x then all points are recurrent (this is trivial).

2. Let T : R → R be defined by T (x) = −x. Then, for all x ∈ R,
T (T (x)) = x so all points are recurrent.

3. Let α ∈ [0, 1]. Let T : [0, 1] → [0, 1] be defined by T (x) = x + α
(mod 1).

(a) If α = 0 or α = 1 then all points are trivially recurrent.

(b) If α ∈ Q, α = p
q

then it is easy to show that all points are recurrent

for the trivial reason that T (q)(x) = x + q(p
q
) (mod 1) = x.

(c) If α /∈ Q then T is recurrent. This requires a real proof.

12.2.2 A Theorem in Topology

Def 12.2.16 Let X be a metric space and T : X → X be a bijection. (X, T )
is homogeneous if, for every x ∈ X,

X = CLDOT(x).

Example 12.2.17

Let X = [0, 1], d(x, y) = |x− y|, and T (x) = x + α (mod 1).

1. If α ∈ Q then (X, T ) is not homogeneous.

2. If α /∈ Q then (X, T ) is homogeneous.

3. Let f, g ∈ BISEQ, so f : Z → {1, 2} be defined by

f(x) =

{
1 if x ≡ 1 (mod 2);

2 if x ≡ 0 (mod 2)
(12.6)

and

g(x) = 3− f(x).

Let T : BISEQ → BISEQ be defined by

T (h)(x) = h(x + 1).
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Let X = CLDOT(f). Note that

X = {f, g} = CLDOT(f) = CLDOT(g).

Hence (X, T ) is homogeneous.

4. All of the examples in Example 2.9 are not homogeneous.

The ultimate goal of this section is to show the following.

Theorem 12.2.18 Let X be a metric space and T : X → X be bi-unif-
continuous. Assume (X, T ) is homogeneous. Then for every r ∈ N, for
every ε > 0, T has an (ε, r)-recurrent point.

Important Convention for the Rest of this Section:

1. X is a metric space.

2. T is bi-unif-continuous.

3. (X, T ) is homogeneous.

We show the following by a multiple induction.

1. Ar: (∀ε > 0)(∃x, y ∈ X,n ∈ N)

d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε ∧ · · · ∧ d(T (rn)(x), y) < ε.

Intuition: There exists two points x, y such that the orbit of x comes
very close to y on a regular basis r times.

2. Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)

d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε.

Intuition: For any z there is an x such that the orbit of x comes very
close to z on a regular basis r times.

3. Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X)(∃n ∈ N)(∃ε′ > 0)

T (n)(B(x, ε′)) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′)) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′))) ⊆
B(z, ε).

Intuition: For any z there is an x such that the orbit of a small ball
around x comes very close to z on a regular basis r times.
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4. Dr: (∀ε > 0)(∃w ∈ X,n ∈ N)

d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), w) < ε.

Intuition: There is a point w such that the orbit of w comes close to
w on a regular basis r times. In other words, for all ε, there is a w that
is (ε, r)-recurrent.
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Lemma 12.2.19 (∀ε > 0)(∃M ∈ N)(∀x, y ∈ X)

min{d(x, T (−M)(y)), d(x, T (−M+1)(y)), . . . , d(x, T (M)(y))} < ε

Proof:
Intuition: Since (X, T ) is homogeneous, if x, y ∈ X then x is close to some
point in the double-orbit of y (using T ).

Assume, by way of contradiction, that (∃ε > 0)(∀M ∈ N)(∃xM , yM ∈ X)

min{d(xM , T (−M)(yM)), d(xM , T (−M+1)(yM)), . . . , d(xM , T (M)(yM))} ≥ ε

Let x = limM→∞ xM and y = limM→∞ yM . Since (X, T ) is homogeneous
(so it is the closure of a set) and Fact 12.2.4, x, y ∈ X. Since (X, T ) is
homogeneous

X = {T (i)(y) | i ∈ Z} ∪ {T (i)(y) | i ∈ Z}′.
Since x ∈ X

(∃∞i ∈ Z)[d(x, T (i)(y)) < ε/4].

We don’t need the ∃∞, all we need is to have one such I. Let I ∈ Z be
such that

d(x, T (I)(y)) < ε/4

Since T (I) is continuous, limM yM = y, and limM xM = x there exists
M > |I| such that

d(T (I)(y), T (I)(yM)) < ε/4 ∧ d(xM , x) < ε/4.

Hence

d(xM , T (I)(yM)) ≤ d(xM , x)+d(x, T (I)(y))+d(T (I)(y), T (I)(yM)) ≤ ε/4+ε/4+ε/4 < ε.

Hence d(xM , T (I)(yM)) < ε. This violates the definition of xM , yM .

Note 12.2.20 The above lemma only used that T is continuous, not that T
is bi-unif-continuous.
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Ar =⇒ Br

Lemma 12.2.21 Ar: (∀ε > 0)(∃x, y ∈ X, n ∈ N)
d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ · · · ∧ d(T (rn)(x), y) < ε
=⇒
Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)
d(T (n)(x), z) < ε∧ d(T (2n)(x), z) < ε∧ · · · ∧ d(T (rn)(x), z) < ε.

Proof:
Intuition: By Ar there is an x, y such that the orbit of x will get close to
y regularly. Let z ∈ X. Since (X, T ) is homogeneous the orbit of y comes
close to z. Hence z is close to T (s)(y) and y is close to T (in)(x), so z is close
to T (in+s)(x) = T (in)(T (s)(x)). So z is close to T (s)(x) on a regular basis.
Note: The proof merely pins down the intuition. If you understand the
intuition you may want to skip the proof.

Let ε > 0.

1. Let M be from Lemma 12.2.19 with parameter ε/3.

2. Since T is bi-unif-continuous we have that for s ∈ Z, |s| ≤ M , T (s) is
unif-cont. Hence there exists ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ (∀s ∈ Z, |s| ≤ M)[d(T (s)(a), T (s)(b)) < ε/3].

3. Let x, y ∈ X, n ∈ N come from Ar with ε′ as parameter. Note that

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

Let z ∈ X. Let y be from item 3 above. By the choice of M there exists
s, |s| ≤ M , such that

d(T (s)(y), z) < ε/3.

Since x, y, n satisfy Ar with ε′ we have

d(T (in)(x), y) < ε′ for 1 ≤ i ≤ r.

By the definition of ε′ we have

d(T (in+s)(x), T (s)(y)) < ε/3 for 1 ≤ i ≤ r.

Note that
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d(T (in)(T (s)(x), z)) ≤ d(T (in)(T (s)(x)), T (s)(y))+d(T (s)(y), z) ≤ ε/3+ε/3 < ε.

Br =⇒ Cr

Lemma 12.2.22 Br: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N)
d(T (n)(x), z) < ε ∧ d(T (2n)(x), z) < ε ∧ · · · ∧ d(T (rn)(x), z) < ε
=⇒
Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X, n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆

B(z, ε).

Proof:
Intuition: Since the orbit of x is close to z on a regular basis, balls around
the orbits of x should also be close to z on the same regular basis.

Let ε > 0 and z ∈ X be given. Use Br with ε/3 to obtain the following:

(∃x ∈ X, n ∈ N)[d(T (n)(x), z) < ε/3∧d(T (2n)(x), z) < ε/3∧· · ·∧d(T (rn)(x), z) < ε/3].

By uniform continuity of T (in) for 1 ≤ i ≤ r we obtain ε′ such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ (∀i ≤ r)[d(T (in)(a), T (in)(b)) < ε2]

We use these values of x and ε′.
Let w ∈ T (in)(B(x, ε′)). We show that w ∈ B(z, ε) by showing d(w, z) < ε.
Since w ∈ T (in)(B(x, ε′)) we have w = T (in)(w′) for w′ ∈ B(x, ε′). Since

d(x, w′) < ε′

we have, by the definition of ε′,

d(T (in)(x), T (in)(w′)) < ε/3.

d(z, w) = d(z, T (in)(w′)) ≤ d(z, T (in)(x))+d(T (in)(x), T (in)(w′)) ≤ ε/3+ε/3 < ε.

Hence w ∈ B(zε).

Note 12.2.23 The above proof used only that T is unif-continuous, not
bi-unif-continuous. In fact, the proof does not use that T is a bijection.
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Cr =⇒ Dr

Lemma 12.2.24 Cr: (∀ε > 0)(∀z ∈ X)(∃x ∈ X,n ∈ N, ε′ > 0)
T (n)B(x, ε′) ⊆ B(z, ε) ∧ T (2n)(B(x, ε′) ⊆ B(z, ε) ∧ · · · ∧ T (rn)(B(x, ε′) ⊆

B(z, ε)
=⇒
Dr: (∀ε > 0)(∃w ∈ X, n ∈ N)
d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.

Proof:
Intuition: We use the premise iteratively. Start with a point z0. Some z1

has a ball around its orbit close to z0. Some z2 has a ball around its orbit
close to z1. Etc. Finally there will be two zi’s that are close: in fact the a ball
around the orbit of one is close to the other. This will show the conclusion.

Let z0 ∈ X. Apply Cr with ε0 = ε/2 and z0 to obtain z1, ε1, n1 such that

T (in1)(B(z1, ε1)) ⊆ B(z0, ε0) for 1 ≤ i ≤ r.

Apply Cr with ε1 and z1 to obtain z2, ε2, n2 such that

T (in2)(B(z2, ε2)) ⊆ B(z1, ε1) for 1 ≤ i ≤ r.

Apply Cr with ε2 and z2 to obtain z3, ε3, n3 such that

T (in3)(B(z3, ε3)) ⊆ B(z2, ε2) for 1 ≤ i ≤ r.

Keep doing this to obtain z0, z1, z2, . . ..
One can easily show that, for all t < s, for all i 1 ≤ i ≤ r,

T (i(ns+ns+1+···+ns+t))(B(zs, εs)) ⊆ B(zt, εt)

Since X is closed z0, z1, . . . has a limit point. Hence

d(zs, zt) < ε0.

Using these s, t and letting ns + · · ·+ ns+t = n we obtain

T (in)(B(zs, εs)) ⊆ B(zt, εt)

Hence

d(T (in)(zs), zt) < εt.
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Let w = zs. Hence, for 1 ≤ i ≤ r

d(T (in)(w), w) ≤ d(T (in)(zs), zs) ≤ d(T (in)(zs), zt) + d(zt, zs) < εt + ε0 < ε.

Dr =⇒ Ar+1

Lemma 12.2.25 Dr: (∀ε > 0)(∃w ∈ X, n ∈ N)

d(T (n)(w), w) < ε ∧ d(T (2n)(w), w) < ε ∧ · · · ∧ d(T (rn)(w), y) < ε.

=⇒
Ar+1: (∀ε > 0)(∃x, y ∈ X, n ∈ N)

d(T (n)(x), y) < ε ∧ d(T (2n)(x), y) < ε∧ , . . . , d(T ((r+1)n)(x), y) < ε.

Proof:

By Dr and (∀x)[d(x, x) = 0] we have that there exists a w ∈ X and n ∈ N
such that the following hold.

d(w, w) < ε
d(T (n)(w), w) < ε

d(T (2n)(w), w) < ε
...

d(T (rn)(w), w) < ε

We rewrite the above equations.

d(T (n)(T (−n)(w)), w) < ε
d(T (2n)(T (−n)(w)), w) < ε
d(T (3n)(T (−n)(w)), w) < ε

...
d(T (rn)(T (−n)(w)), w) < ε

d(T ((r+1)n)(T (−n)(w)), w) < ε

Let x = T (−n)(w) and y = w to obtain
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d(T (n)(x), y) < ε
d(T (2n)(x), y) < ε
d(T (3n)(x), y) < ε

...
d(T (rn)(x), y) < ε

d(T ((r+1)n)(x), y) < ε

Theorem 12.2.26 Assume that

1. X is a metric space,

2. T is bi-unif-continuous.

3. (X, T ) is homogeneous.

For every r ∈ N, ε > 0, there exists w ∈ X, n ∈ N such that w is (ε, r)-
recurrent.

Proof:
Recall that A1 states

(∀ε)(∃x, y ∈ X)(∃n)[d(T (n)(x), y) < ε].

Let x ∈ X be arbitrary and y = T (y). Note that

d(T (1)(x), y) = d(T (x), T (x)) = 0 < ε.

Hence A1 is satisfied.
By Lemmas 12.2.21, 12.2.22, 12.2.24, and 12.2.25 we have (∀r ∈ N)[Dr].

This is the conclusion we seek.

12.2.3 Another Theorem in Topology

Recall the following well known theorem, called Zorn’s Lemma.

Lemma 12.2.27 Let (X,�) be a partial order. If every chain has an upper
bound then there exists a maximal element.
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Proof: See Appendix TO BE WRITTEN

Lemma 12.2.28 Let X be a metric space, T : X → X be bi-continuous,
and x ∈ X. If y ∈ CLDOT(x) then CLDOT(y) ⊆ CLDOT(x).

Proof: Let y ∈ CLDOT(x). Then there exists i1, i2, i3, . . . ∈ Z such that

T (i1)(x), T (i2)(x), T (i3)(x), . . . → y.

Let j ∈ Z. Since T (j) is continues

T (i1+j)(x), T (i2+j)(x), T (i3+j)(x), . . . → T (j)y.

Hence, for all j ∈ Z,

T (j)(y) ∈ cl{T (ik+j)(x) | k ∈ N} ⊆ cl{T (i)(x) | i ∈ Z} = CLDOT(x).

Therefore

{T (j)(y) | j ∈ Z} ⊆ CLDOT(x).

By taking cl of both sides we obtain

CLDOT(y) ⊆ CLDOT(x).

Theorem 12.2.29 Let X be a limit point compact metric space. Let T :
X → X be a bijection. Then there exists a homogeneous point x ∈ X.

Proof:
We define the following order on X.

x � y iff CLDOT(x) ⊇ CLDOT(y).

This is clearly a partial ordering. We show that this ordering satisfies the
premise of Zorn’s lemma.

Let C be a chain. If C is finite then clearly it has an upper bound. Hence
we assume that C is infinite. Since X is limit point compact there exists x,
a limit point of C.



12.2. ERGODIC PROOFS OF VAN DER WAERDEN’S THEOREM 157

Claim 1: For every y, z ∈ C such that y � z, z ∈ CLDOT(y).
Proof: Since y � z we have CLDOT(z) ⊆ CLDOT(y). Note that

z ∈ CLDOT(z) ⊆ CLDOT(y).

End of Proof of Claim 1
Claim 2: For every y ∈ C x ∈ CLDOT(y).
Proof: Let y1, y2, y3, . . . be such that

1. y = y1,

2. y1, y2, y3, . . . ∈ C,

3. y1 � y2 � y3 � · · · , and

4. limi yi = x.

Since y ≺ y2 ≺ y3 ≺ · · · we have (∀i)[CLDOT(y) ⊇ CLDOT(yi)].
Hence (∀i)[yi ∈ CLDOT(y)]. Since limi yi = x, (∀i)[yi ∈ CLDOT(y)], and
CLDOT(y) is closed under limit points, x ∈ CLDOT(y).
End of Proof of Claim 2

By Zorn’s lemma there exists a maximal element under the ordering �.
Let this element be x.
Claim 3: x is homogeneous.
Proof: Let y ∈ CLDOT(x). We show CLDOT(y) = CLDOT(x).

Since y ∈ CLDOT(x), CLDOT(y) ⊆ CLDOT(x) by Lemma 12.2.28.
Since x is maximal CLDOT(x) ⊆ CLDOT(y).
Hence CLDOT(x) = CLDOT(y).

End of Proof of Claim 3

12.2.4 VDW Finally

Theorem 12.2.30 For all c, for all k, for every c-coloring of Z there exists
a monochromatic arithmetic sequence of length k.

Proof:
Let BISEQ and T be as in Example 12.2.6.2.
Let f ∈ BISEQ. Let Y = CLDOT(f). Since BISEQ is limit point

compact and Y is closed under limit points, by Lemma 12.2.13 Y is limit
point compact. By Theorem 12.2.29 there exists g ∈ X such that CLDOT(g)
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is homogeneous. Let X = CLDOT(g). The premise of Theorem 12.2.26 is
satisfied with X and T . Hence we take the following special case.

There exists h ∈ X, n ∈ N such that h is (1
4
, k)-recurrent. Hence there

exists n such that

d(h, T (n)(h)), d(h, T (2n)(h)), . . . , d(h, T (rn)(h)) <
1

4
.

Since for all i, 1 ≤ i ≤ r, d(h, T (in)(h)) < 1
4

< 1
2

we have that

h(0) = h(n) = h(2n) = · · · = h(kn).

Hence h has an AP of length k. We need to show that f has an AP of
length k.

Let ε = 1
2(kn+1)

. Since h ∈ CLDOT(g) there exists j ∈ Z such that

d(h, T (j)(g)) < ε.

Let ε′ be such that

(∀a, b ∈ X)[d(a, b) < ε′ =⇒ d(T (j)(a), T (j)(b)) < ε].

Since g ∈ CLDOT(f) there exists i ∈ Z such that d(g, T (i)(f)) < ε′. By
the definition of ε′ we have

d(T (j)(g), T (i+j)(f)) < ε.

Hence we have

d(h, T (i+j)(f)) ≤ d(h, T (j)(g)) + d(T (j)(g), T (i+j)f) < 2ε ≤ 1

kn + 1
.

Hence we have that h and T (i+j)(f) agree on {0, . . . , kn}. In particular
h(0) = f(i + j).
h(n) = f(i + j + n).
h(2n) = f(i + j + 2n).

...
h(kn) = f(i + j + kn).
Since

h(0) = h(n) = · · · = h(kn)
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we have

f(i + j) = f(i + j + n) = f(i + j + 2n) = · · · = f(i + j + kn).

Thus f has a monochromatic arithmetic sequence of length k.
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