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In this note, we study under which conditions various sets (even easy ones) can be
associated with a witnessing relation that is #P complete. We show a sufficient condition
for an N P set to have such a relation. This condition applies also to many N P -complete
sets, as well as to many sets in P .
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1. Introduction

By definition, every set in N P has a polynomial time
decidable witnessing relation that defines it (see defini-
tions in Section 1.1). In fact, every N P set has infinitely
many such witnessing relations. Given such a relation, its
counting version is the function that assigns to every x
the number of y’s such that (x, y) is in the relation. The
class #P consists of all such functions (i.e., arising from
all witnessing relations of all N P sets). A relation is #P
complete if its counting version is in #P , and if every
function in #P can be computed by a polynomial time
Turing machine with oracle access to the counting version
of that relation. To date, all known N P complete sets have
a defining relation which is #P complete (for example,
counting the number of satisfying assignments for Boolean
formulas, or counting the number of Hamiltonian cycles
in a graph, are both #P complete). However, an N P set
does not have to be hard in order to have a defining rela-
tion which is #P complete. One example is the celebrated
result that counting the number of perfect matchings in
a bipartite graph is #P -complete [3], whereas deciding
whether there exists such a matching is in P .
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Another (albeit unnatural) example is the following
proof that even extremely easy sets can have a witnessing
relation that is #P -complete. Let RSAT be the natural wit-
nessing relation for SAT (consisting of all pairs of a Boolean
formula and an assignment that satisfies it), and consider
the relation RSAT ∪ ({0,1}∗ × {λ}) (where λ is the empty
string). Then, the set defined by this relation is {0,1}∗ , yet
this relation is clearly #P -complete.

In this note, we study under which conditions “easy”
N P sets (for example, sets in P ) have a witnessing rela-
tion that is #P complete. We show a sufficient condition
for an N P set to have such witnessing relation. In partic-
ular, the condition holds for every set that is “markable”,
as defined by Hartmanis and Berman [2] (see definition in
Section 2).2 This condition applies also to certain sets in P .

In the rest of this section we present relevant defini-
tions, and discuss related previous results. In Section 2 we
prove our result, which consists of a sufficient condition
for the aforementioned question.

1.1. Definitions

For a string x, we denote by |x| the length of x. Given a
set of strings S , we denote by S the set {0,1}∗ \ S . Given

2 This notion was defined by Hartmanis and Berman, but was not given
a name in [2].
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a function f we say that it is honest if there exists some
polynomial q such that |x| � q(| f (x)|) for all x. Given a
function f we denote by f |A the restriction of f to the
elements of A. When defining strings in the form (·), (·,·),
etc., we implicitly assume some 1–1, efficient, efficiently
invertible encoding from

⋃
n∈N

({0,1}∗)n to {0,1}∗ .

1.1.1. N P -witnessing relations and witnesses
By definition, for every set L in N P , there exists an

algorithm V such that:

• x ∈ L if and only if there exists y such that V (x, y) = 1.
• There exists a polynomial q such that if V (x, y) = 1

then |y| � q(|x|).
• The running time of V is polynomial in its input.

We call V a verification algorithm for L. Note that V well-
defines L (i.e., L = {x | ∃yV (x, y) = 1}), thus, we say that
L is the set defined by V . Such a verification algorithm is
not unique. In fact, every set L in N P has infinitely many
verification algorithms. Every such algorithm induces a re-
lation R: the set of pairs that this algorithm accepts. This
relation, too, well-defines L (i.e., L = {x | ∃y(x, y) ∈ R}). We
call such a relation an N P -witnessing relation, or briefly a
witnessing relation, and say that L is the set defined by R .

Given a witnessing relation R and (x, y) ∈ R we say that
y is a witness, or a solution, for x with respect to R .

1.1.2. #P -completeness of N P -witnessing relations
Given a relation R we define the function #R by

#R(x) = |{y: (x, y) ∈ R}|. We call #R the counting version
of R . We define #P as {#R: R is a witnessing relation}.
We say that a relation R ∈ #P is #P -complete if every
function in #P can be computed by a polynomial time
oracle machine with oracle access to #R . (Note that the
oracle to #R is a function oracle.)

1.2. Related work

In a previous work, Fischer et al. [1] studied under what
conditions N P -complete sets have a defining relation that
is #P -complete. The following theorem is a direct conse-
quence of Theorem 3.9 in [1]:

Theorem 1.1. Let f be a Karp-reduction (i.e., polynomial-time
many-to-one reduction) of SAT to L ∈ N P , and suppose that f
meets the following conditions:

1. f |SAT is 1–1.
2. f |SAT is honest.
3. There exists a set S ∈ N P such that L \ image( f ) ⊆ S and

image( f ) ∩ L ⊆ S.

Then, L has a witnessing relation that is #P -complete.

Note that L must be an N P -complete set in order to
meet the hypothesis of the theorem (i.e., SAT is reduced
to L). We mention that SAT is merely a set that has a
#P -complete witnessing relation. Indeed, the use of SAT
in the statement of the theorem is arbitrary, and any other
set that has a #P -complete witnessing relation will do.
2. Our result

We prove a sufficient condition for an N P set to have
a #P -complete witnessing relation. The condition is appli-
cable also to sets that are not N P -complete.

Theorem 2.1. Let L be some set in N P . Suppose there exists
a polynomial time computable function f : {0,1}∗ �→ {0,1}∗
such that:

1. image( f ) ⊆ L.
2. f is 1–1.
3. f is honest.
4. There exists a set S ∈ N P such that L \ image( f ) ⊆ S and

image( f ) ⊆ S.

Then, L has a witnessing relation that is #P -complete.

We stress that, as opposed to Theorem 1.1, f is not
a reduction of some #P -complete set to L. Thus, for the
conditions to hold, L does not necessarily have to be N P -
complete. It is easy to come-up with sets in P that meet
the conditions (see discussion following the proof).

Proof. We construct a new verification algorithm for L,
that essentially “embeds” RSAT (the natural witnessing re-
lation for SAT), in the witnessing relation induced by this
verification algorithm (while still defining L). This will en-
able reducing #RSAT to the counting version of the induced
relation. Since RSAT is #P -complete, the theorem follows.

Let V L and V S be verification algorithms for L and S ,
respectively. We define the following verification algorithm
V ′ for L: accept w as a witness for x if and only if one of
the following conditions hold:

1. w = (φ) where f (φ) = x.
2. w = (φ, τ ) where f (φ) = x and τ is a satisfying as-

signment for φ.
3. w = (y, z) where V S (x, y) = 1 and V L(x, z) = 1.

Let us first show that V ′ defines L. To see this, note
that every instance in L is either in image( f ) or in S , and
thus will be accepted by conditions 1 or 3 of V ′ , respec-
tively; and every instance not in L is not in image( f ) and
thus cannot be accepted by conditions 1 and 2 of V ′ , while
condition 3 accepts only instances in L.

To complete the proof, we show that #RSAT(φ) =
#R V ′ ( f (φ))−1 where R V ′ is the relation induced by V ′ . To
see this, note that for every unsatisfiable φ, the L-instance
f (φ) is accepted by condition 1, and only by it. Since f
is 1–1 such f (φ) will have exactly one witness under R V ′
(i.e., w = (φ)). For every satisfiable φ, every satisfying as-
signment contributes exactly one witness to the L-instance
f (φ) (by condition 2 of V ′), and since f is 1–1, no other
formula is mapped to f (φ), thus there are no other wit-
nesses contributed by condition 2 of V ′ . The first condition
contributes exactly one more witness (again, since f is
1–1). Finally, condition 3 contributes no witness (since
f (φ) is not in S). �
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We show, that the sufficient condition is met for every
“markable set”. First, we define this notion:

Definition 2.2 (Markable Sets [2]). A set L ⊆ {0,1}∗ is mark-
able if it is nonempty, and if there exists a marking func-
tion E : {0,1}∗ × {0,1}∗ �→ {0,1}∗ and a decoding function
D : {0,1}∗ �→ {0,1}∗ such that:

• E and D are polynomial-time computable.
• For every p, x ∈ {0,1}∗ it holds that E(p, x) ∈ L if and

only if x ∈ L.
• For every p, x ∈ {0,1}∗ it holds that D(E(p, x)) = p.

Corollary 2.3. Every markable set has a witnessing relation that
is #P -complete.

Proof. We show that every markable set meets the suf-
ficient condition of Theorem 2.1. Let L be a markable
set, and E and D as above. Let a be an arbitrary string
in L (L is nonempty by the hypothesis). Then, we define
f (x) = E(x,a) and S = image( f ).

We show that f and S meet the conditions in the
hypothesis of Theorem 2.1. From the second condition of
Definition 2.2 it is straightforward that image( f ) ⊆ L. We
show that the function f is 1–1: Suppose f (x) = f (x′).
Then x = D(E(x,a)) = D( f (x)) = D( f (x′)) = D(E(x′,a)) =
x′ . Next, we show that the function f is honest: Let q be a
polynomial that bounds the running time of D . Then, since
D( f (x)) = D(E(x,a)) = x, it follows that |x| � q(| f (x)|). As
for the conditions L \ image( f ) ⊆ S and image( f ) ⊆ S , they
follow trivially from the definition of S . Lastly, in order to
show that S is in N P we will show an algorithm that ef-
ficiently decides S (thus showing that in fact S ∈ P ): given
a string y, the algorithm rejects if y = f (D(y)), else it ac-
cepts. Now, if y ∈ S then y /∈ image( f ), so it cannot be
that y = f (D(y)) and the algorithm accepts. On the other
hand, if y /∈ S , then y ∈ image( f ), so there exists x such
that f (x) = y, so f (D(y)) = f (D( f (x))) = f (D(E(x,a))) =
f (x) = y, so the algorithm rejects as required. �

Note that the construction in the proof does not make
use of the full computational power of Turing reductions.
Rather, the constructed set L has a witnessing relation that
is complete for #P under Krentel’s metrical reductions
(i.e., 1-tt-reductions) [4].
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