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For each vertex v of a graph G, we consider the numbers of subgraphs of each
isomorphism class which lie in the neighbourhood or complementary neighbour-
hood of v. These numbers, summed over v, satisfy a series of identities that
generalise some previous results of Goodman and ourselves. As sample applica-
tions, we improve the previous upper bounds on two Ramsey numbers. Specifically,
we show that R(5, 5)�49 and R(4, 6)�41. We also give some experimental
evidence in support of our conjecture that R(5, 5)=43. � 1997 Academic Press

1. INTRODUCTION

We shall only consider graphs without multiple edges or loops. For
s, t, n�1, an (s, t)-graph is a graph without cliques of order s or inde-
pendent sets of order t, and an (s, t, n)-graph is an (s, t)-graph of order n.
Similarly, an (s, t, n, e)-graph is an (s, t, n)-graph with e edges. Let
R(s, t), R(s, t, n) and R(s, t, n, e) denote the set of all (s, t)-graphs, (s, t, n)-
graphs and (s, t, n, e)-graphs, respectively. The Ramsey number R(s, t) is
defined to be the least n>0 such that there is no (s, t, n)-graph.

A regularly updated survey of the most recent results on this subject can
be found in [20].
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In Section 2, we derive some identities involving subgraph counts, which
form the basis of our approach. In Section 3, we show that R(5, 5)�49,
which improves over the previous bound of 50 [17]. Nevertheless, the
correct value is more likely to be 43, for the reasons we give in Section 4.
Finally, in Section 5, we show that R(4, 6)�41 by linear programming
methods. Comprehensive surveys of the history of R(5, 5) and R(4, 6) will
be given in the appropriate sections.

2. SUBGRAPH IDENTITIES

For two graphs J and G, let s(J, G) denote the number of induced sub-
graphs of G that are isomorphic to J. It will be convenient to permit both
J and G to be the ``graph'' K0 , which has no vertices or edges. In this case
we define s(K0 , G)=1 for all G and s(J, K0)=0 for all J{K0 .

A summary of much of what is known about this ``algebra of subgraphs''
can be found in [12]. For our purposes, the following theorem is
important.

Theorem 2.1. (a) For each disconnected graph J, there is a sequence of
connected graphs J1 , J2 , ..., Jk and a polynomial pJ with rational coefficients
such that

s(J, G)= pJ (s(J1 , G), s(J2 , G), ..., s(Jk , G))

for every graph G.

(b) There is no sequence of nonisomorphic connected graphs
J1 , J2 , ..., Jk and nonzero polynomial p such that

p(s(J1 , G), s(J2 , G), ..., s(Jk , G))=0

for all graphs G.

Proof. Part (a) was proved by Whitney [26], while part (b) follows
from a considerably stronger result of Erdo� s, Lova� sz and Spencer [3]. K

We will need a particular case of part (a) of this theorem, stated as
Lemma 2.1 below. For m�0 and 0� j�m, define the graphs Tm, j as
follows. For m=0, define T0, 0=K1 . For m>0, Tm, 0 is the disconnected
graph Km _ K1 , and for j�0, Tm, j+1 is formed by adding one edge to
Tm, j . It is easy to see that this defines Tm, j uniquely up to isomorphism
and that Tm, m=Km+1.
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Lemma 2.1. Suppose G is a graph with n vertices. Then, for m�0,

(n&m) s(Km , G)= :
m

j=0

;m, j s(Tm, j , G), (1)

where

m+1, if j=m;

;m, j={2, if j=m&1;

1, if 0� j�m&2.

Proof. Since n=s(K1 , G) and Tm, 0 is the only disconnected graph
appearing here, this is an special instance of Theorem 2.1 (a).

The cases m=0, 1 are easy to check, so we can assume m�2. Both sides
of (1) count the number of subgraphs of the form Km _ K1 , induced or not.
The left side of (1) is obvious in this context. For the right side, consider
the number j of edges that join the Km to the K1 . These m+1 vertices
induce a subgraph Tm, j . Finally, note that each subgraph Tm, j can arise in
s(Km , Tm, j)=;m, j such ways. K

For m=2, Lemma 2.1 becomes

(n&2) s(K2 , G)=s(T2, 0 , G)+2s(T2, 1 , G)+3s(K3 , G),

which is equivalent to Goodman's identity [7].
We will find it convenient to adopt the following notational conventions.

If G is a graph, then VG and EG are its vertex set and edge set, respec-
tively. If v # VG and W�VG, then NG(v, W)=[w # W | vw # EG]. The
subgraph of G induced by W will be denoted by G[W]. Also define the
induced subgraphs G+

v =G[NG(v, VG)] and G&
v =G[VG&NG(v, VG)

&[v]].

Lemma 2.2. Let J and G be graphs.

(a) If J has k�1 vertices of degree |VJ |&1, then

ks(J, G)= :
v # VG

s(J$, G+
v ),

where J$ is the result of removing from J a vertex of degree |VJ |&1.

(b) If J has k�1 vertices of degree 0, then

ks(J, G)= :
v # VG

s(J", G&
v ),

where J" is the result of removing from J a vertex of degree 0.
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Proof. In case (a), each subgraph isomorphic to J lies in [v] _
NG(v, VG) for exactly k vertices v, so both sides of the identity count
induced subgraphs isomorphic to J with a vertex of maximum degree
distinguished. Case (b) is similar. K

Each of the subgraphs involved in Lemma 2.1 matches one of the types
considered by Lemma 2.2. This yields a family of identities involving those
functions. Let $i, j denote the Kronecker delta.

Theorem 2.2. For m�1, every graph G satisfies

:
v # VG

s(Km , G&
v )

= :
v # VG \(n�m&s(K1 , G+

v )+m&2) s(Km&1, G+
v )

+(m&1) s(Km , G+
v )+ :

m&2

j=1

(1+$j, m&2) j
j+1

s(Tm&1, j , G+
v )+ .

Proof. The case m=1 is easy to check directly, so we will assume
m�2.

From Lemma 2.2, using (b) for j=0 and (a) for j>0, we have

s(Tm, j , G)={
1

1+$m, 1

:
v # VG

s(Km , G&
v ),

1
j+$j, m

:
v # VG

s(Tm&1, j&1 , G+
v ),

for j=0;

for 1� j�m.

Applying Lemma 2.2 (a) for J=Km , we can substitute into Lemma 2.1 to
obtain

n&m
m

:
v # VG

s(Km&1 , G+
v )

= :
v # VG

s(Km , G&
v )+ :

m

j=1

;m, j

j+$j, m
:

v # VG

s(Tm&1, j&1 , G+
v ). (2)

All the subgraphs appearing as the first argument of s( ) in (2) are con-
nected except Tm&1, 0 . Using Lemma 2.1 again, we have that

s(Tm&1, 0 , G+
v )=

1
;m&1, 0 \(s(K1 , G+

v )&m+1) s(Km&1 , G+
v )

& :
m&1

j=1

;m&1, j s(Tm&1, j , G+
v )+ .
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Substituting into (2) and collecting similar terms gives the desired iden-
tity. K

The case of m=1 is elementary, and the case of m=2 is equivalent to
Goodman's identity. Though less obvious, the identity for m=3 can be
derived from Lemma 2 of [15]. The later identities are new as far as we
know.

It is interesting to consider the question of the completeness of
Theorem 2.2. That is, what other identities of similar form are there? We
have explored this question by experimental means. Consider identities
with the general form

:
v # VG

p(G+
v , G&

v )=0,

where p is a polynomial in items of the form s(J, G+
v ) and s(J, G&

v ) for
some family of connected graphs J. The coefficients can be arbitrary
functions of n=s(K1 , G). The restriction to connected J is justified by
Theorem 2.1. We further forbid the term s(K1 , G&

v ), as it can be replaced
by n&1&s(K1 , G+

v ).
Define the degree of p to be the maximum total number of vertices

appearing (as the first argument of s) in a single term of p. Our experiment
was to take large numbers of random graphs of the same order, and count
the numbers s(J, G+

v ) and s(J, G&
v ) for each vertex v and small connected

graph J. Then we formed a matrix of values of the possible terms of p, up
to some fixed degree with one row per graph and one column per term.
The rank of this matrix, and linear relationships between the columns, tell
us about identities satisfied by the set of graphs we have chosen. In par-
ticular, linear independence can prove the nonexistence of particular types
of identity for these graphs and hence for all graphs. For example, we have
established:

Lemma 2.3. The only identities of degree at most 6, in which p can be
separated as p(G+

v , G&
v )= p1(G+

v )+ p2(G&
v ), are those of Theorem 2.2 and

their linear combinations.

If p does not have to separate in the manner of the lemma, we suspect
that further identities exist. For example, the following identity of degree 4
holds for such a large number of random graphs (many thousands) that we
conjecture it to hold always. Let Pk and Ck denote the path and cycle of
length k, respectively.

Conjecture 1. For every graph G, �v # VG ( p1(G+
v )+ p2(G&

v )+
p3(G+

v , G&
v ))=0, where
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p1(X)=n(n&3) s(K1 , X)&(n2+2n&6) s(K1 , X)2+3ns(K1 , X)3

&2s(K1 , X)4+2(n2+n&8) s(K2 , X)&12s(K2 , X)2

&12(n&1) s(K1 , X) s(K2 , X)

+12s(K1 , X)2 s(K2 , X)+72s(C4 , X)

+12(n&2) s(K3 , X)+24s(K1, 3 , X)

+24s(P4 , X)+24s(T3, 1 , X)

+12(n+2) s(P3 , X)&24s(K1 , X) s(P3 , X)+32s(T3, 2 , X),

p2(Y)=4s(K2 , Y)2&12s(K1, 3 , Y)&8s(C4 , Y)&8s(T3, 1 , Y)

&24s(T3, 2 , Y)+2(n&8) s(P3 , Y),

and

p3(X, Y)=4s(K1 , X) s(P3 , Y)&2(n&2) s(K1 , X)s(K2 , Y)

+4s(K1 , X)2 s(K2 , Y).

We also have a tentative identity of degree 5, but it is even more com-
plicated. We expect that there is a rich theory of such identities, but we
have merely scratched the surface.

3. A PROOF THAT R(5, 5)�49

A history of the known bounds on R(5, 5) is presented in Table I. The
initials ``LP'' refer to linear programming techniques.

Our theorem that R(4, 5)=25 [17] implies immediately that R(5, 5)�
50. Moreover, it implies that any (5, 5, 49)-graph G must be regular of
degree 24, with each G+

v being a (4, 5, 24)-graph and each G&
v being the

complement of a (4, 5, 24)-graph. (Note that G� , the complement of G, is
also a (5, 5, 49)-graph.) Applying the case m=2 of Theorem 2.2, we find

:
v # VG

s(K2 , G&
v )=588+ :

v # VG

s(K2 , G+
v ).

Since also s(K2 , G&
v )=( 24

2 )&s(K2 , G� +
v ), we have that

:
v # VG

(s(K2 , G+
v )+s(K2 , G� +

v ))=12936.

However, from the computations reported in [17] we know that (4, 5, 24)-
graphs have at most 132 edges, and that there are no such graphs with
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TABLE I

The History of Bounds on R(5, 5)

Year Reference Lower Upper Comments

1965 Abbott [1] 38 Quadratic residues in Z37

1965 Kalbfleish [9] 59 Pointer to a future paper
1967 Giraud [6] 58 Combinatorics 6 LP
1968 Walker [24] 57 Combinatorics 6 LP
1971 Walker [25] 55 Combinatorics 6 LP
1973 Irving [8] 42 Sum-free sets
1989 Exoo [4] 43 Simulated annealing
1992 McKay 6 Raddziszowski [15] 53 (4, 4)-graph enumeration 6 LP
1994 McKay 6 Radziszowski [16] 52 LP 6 computation
1995 McKay 6 Radziszowski [17] 50 Implication of R(4, 5)=25
1995 McKay 6 Radziszowski 49 This paper

maximum degree greater than 11. This leaves only graphs regular of
degree 11, which gives the following key lemma.

Lemma 3.1. Let G be a (5, 5, 49)-graph. Then, for each vertex v, G+
v and

G� +
v are (4, 5, 24, 132)-graphs which are regular of degree 11.

It is possible to derive some reasonably strong restrictions on those
(4, 5, 24, 132)-graphs which might fit into a (5, 5, 49)-graph, but we
decided to aim instead to find all (4, 5, 24, 132)-graphs. Two such graphs
were found previously by Thomason [23], under the stronger conditions
of both regularity and a constant number of triangles on each edge. These
are the graphs H1 and H2 given in Fig. 1.

Both H1 and H2 are vertex-transitive, so for information we give their
automorphism groups. Define

g1=(0 1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22 23),

g2=(0 12)(1 17)(2 22)(3 15)(4 20)(5 13)(6 18)

(7 23)(8 16)(9 21)(10 14)(11 19),

g3=(1 11)(2 10)(3 9)(4 8)(5 7)(13 23)(14 22)(15 21)(16 20)(17 19),

g4=(0 12)(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)

(7 17)(8 16)(9 15)(10 14)(11 13).

Then Aut(H1)=(g1 , g2 , g3) , of order 48, and Aut(H2)=(g1 , g4) , of
order 24.

From now on, H will denote a (4, 5, 24, 132)-graph. Since H is
11-regular, it is easy to see that s(K2 , H &

v )=s(K2 , H +
v )+11 for each v.
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Fig. 1. Adjacency matrices for H1 and H2 .

Thus, we can find H by ``gluing'' together some X # R(3, 5, 11, e) and
Y # R(4, 4, 12, e+11) for some e. The number of possibilities is listed in
Table II.

Theorem 2.2 can help us to reduce the number of possibilities somewhat.

Lemma 3.2. For some v, s(K2 , H +
v )�19.

Proof. For 15�e�18, the right side of Theorem 2.2 is at most 9 for
every graph in R(3, 5, 11, e), but the left side is at least 10 for every graph
in R(4, 4, 12, e+11). (These numbers were directly computed from the
graphs themselves.) Hence no combination of such graphs can satisfy the
identity. K

TABLE II

Numbers of Potential Parts of (4, 5, 24, 132)-Graphs

e |R(3, 5, 11, e)| |R(4, 4, 12, e+11)|

15 1 8
16 6 177
17 19 1906
18 31 13332
19 30 58131
20 13 163757
21 4 302088
22 1 370368
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Given Lemma 3.2, we can construct all of R(4, 5, 24, 132) using the
methods described in [17], but there are many more cases to process and
they are more difficult computationally. Fortunately, we can take advan-
tage of the regularity to improve the efficiency of the search.

To describe the improved search, it is necessary to summarise the setting
from [17]. That paper should be consulted for more details.

Suppose we have a particular X # R(3, 5, 11) and Y # R(4, 4, 12) and we
wish to build them into H # R(4, 5, 24, 132). We need to choose the edges
between X and Y. A feasible cone is a subset of VY that covers no clique
of order 3. To avoid cliques of order 4, the neighbourhood in Y of each
vertex in X must be a feasible cone. The set of all feasible cones can be
packed into a smaller number of intervals of feasible cones, which are sets
of cones of the form [B, T]=[W | B�W�T].

Suppose m=|VX|. If C0 , ..., Cm&1 are feasible cones, then F(X, Y ;
C0 , ..., Cm&1) denotes the graph H with vertex v such that H +

v =X,
H &

v =Y and NH(i, VY)=Ci for 0�i�m&1. Similarly, if I0 , ..., Im&1 are
intervals, then F (X, Y ; I0 , ..., Im&1) consists of all (4, 5, 24, 132)-graphs
F(X, Y ; C0 , ..., Cm&1) such that Ci # Ii for 0�i�m&1. The primary tool
is a set of collapsing rules, which take as an argument a sequence (X, Y ;
I0 , ..., Im&1) and return a sequence (X, Y ; I$0 , ..., I$m&1) such that I$i �Ii for
0�i�m&1 and F (X, Y ; I$0 , ..., I$m&1)=F (X, Y ; I0 , ..., Im&1). A collaps-
ing rule is also permitted to generate the special event FAIL if F(X, Y ; I0 ,
..., Im&1)=<.

Four collapsing rules are given in [17]. If we have restrictions on the
size of feasible cones, we can add some more rules:

Define two functions K, T : 2VY � 2VY such that, for W�VY,

K(W)=, [[x, y] | x, y # W and [x, y] # EH];

L(W)=, [[w, x, y, z]|w, x, y, z # W are distinct

and [w, x], [ y, z] # EH],

with the understanding that the value of the intersection is VY if it has no
arguments. These functions can be precomputed quickly for all W�VY
using simple recurrences.

Suppose that for each u # VX, Cu is required to satisfy lu�|Cu |�hu . Let
the corresponding interval be Iu=[Bu , Tu]. Then we can define the
following rules:

(a) Suppose u # VX.
if |Bu |>hu , then FAIL.
if |Bu |=hu , then Tu :=Bu
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(b) Suppose u # VX.
if |Tu |<lu , then FAIL
if |Tu |=lu , then Bu :=Tu

(c) Suppose [u, v] # EX and |Tu |=lu+1.
if K(Bv & Tu)=<, then FAIL
else Bu :=Bu _ (Tu&K(Bv & Tu))

(d) Suppose [u, v] # EX, |Tu |=lu+1, and |Tv |=lv+1.
if |L(Tu & Tv)|�1, then FAIL
else Bu :=Bu _ (Tu&L(Tu & Tv))

Lemma 3.3. Rules (a)�(d ) are valid collapsing rules.

Proof. Rules (a) and (b) are an obvious application of the size restric-
tions.

Suppose [x, y] # EY, x, y # Bv & Tu and |Tu |=lu+1. We can't have
that x, y # Cu because then [u, v, x, y] is a clique, so we must have one
of x, y missing from Cu and all the rest of Tu equal to Cu (or else
|Cu |<lu).

Extending the same argument, we see that exactly one element of
K(Bv & Tu) must be avoided and the rest of Tu included. This is rule (c).

Suppose [w, x], [ y, z] # EY, where w, x, y, z are distinct elements of
Tu & Tv , |Tu |=lu+1, and |Tv |=lv+1. As before, exactly one of w and x,
and exactly one of y and z, are not in Cu & Cv . The restrictions on the sizes
of Tu and Tv imply that each of Cu and Cv are missing one of [w, x, y, z]
(but not the same one) and so must equal all of the rest of Tu and Tv ,
respectively. Applying this idea simultaneously to all pairs of edges
[w, x], [ y, z] gives rule (d). K

The method by which these collapsing rules were built into a search pro-
cedure was the same as in [17], so we will not repeat it. Several implemen-
tations were made and compared at intermediate points on a large number
of examples. Then the fastest was run to completion, establishing the
following theorem.

Theorem 3.1. The only two (4, 5, 24, 132)-graphs are those in Fig. 1.

Theorem 3.2. R(5, 5)�49.

Proof. If there exists a (5, 5, 49)-graph G, then by Lemma 3.1 and
Theorem 3.1 we know that G+

v and G� +
v are one of H1 and H2 . Consider

the identity of Theorem 2.2 applied to G for m=4.
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The relevant subgraph counts are as follows

s(K2 , H1)=s(K2 , H2)=132; s(K3 , H1)=s(K3 , H2)=176

s(K4 , H1)=s(K4 , H2)=0; s(T3, 1 , H1)=s(T3, 1 , H2)=1584

s(T3, 2 , H1)=s(T3, 1 , H2)=792

s(K4 , H� 1)=144; s(K4 , H� 2)=138.

The terms on the right side of the identity are 132 for both H1 and H2 ,
but the terms on the left side are 144 and 138 for the two possible sub-
graphs. Thus the identity cannot be satisfied and we have a contradiction.

The fact that H1 and H2 cannot be built into a (5, 5, 49) graph was
previously proved by Thomason [23]. K

4. WHAT IS R(5, 5)?

The effort required to bring the upper bound on R(5, 5) down to 49 was
considerable, but still it is a long way from the best lower bound of 43. In
this section we explain why we believe that the correct value is closer to the
lower end of this range. In fact, together with Geoff Exoo, we make the
following strong conjecture:

Conjecture 2. R(5, 5)=43.

We further conjecture, though this time with Geoff 's dissent, that the
number of (5, 5, 42)-graphs is precisely 656.

The same set of 656 (5, 5, 42)-graphs, consisting of 328 graphs and their
complements, was found by several paths. Firstly, we took a few known
(5, 5, 42)-graphs found by Exoo, removed three vertices from them in all
possible ways, then extended the resulting (5, 5, 39)-graphs back to
(5, 5, 42)-graphs using a variation of the one-vertex extension algorithm
given in [17]. This process was repeated until no further (5, 5, 42)-graphs
were found.

Needless to say, we checked that none of these 656 graphs can be
extended to (5, 5, 43)-graphs.

The second construction method was devised and coded by Geoff Exoo.
Starting with a random graph on 30 vertices, edges are inserted or deleted
using the simulated annealing rules until a (5, 5, 30)-graph is obtained.
Then an extra vertex is appended randomly and the new graph adjusted in
the same way to make a (5, 5, 31)-graph. This process is repeated until
finally a (5, 5, 42)-graph is obtained. The search is very difficult, and at
most several (5, 5, 42)-graphs per day are generated, but we ran it on
many computers for a very long time, making 5812 (5, 5, 42)-graphs
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altogether. The result was that each of the 656 known (5, 5, 42)-graphs was
constructed at least once, but no new graphs were found.

A third construction method, using a similar incremental structure but
with tabu search instead of simulated annealing, constructed hundreds of
(5, 5, 42)-graphs but none were new. A number of attempts to bias the
search away from where the known graphs are were unsuccessful in finding
anything new. Finally, more than one decade of cpu time was expended in
searching the neighbourhoods of the known (5, 5, 42)-graphs, defined by
the numbers of common edges or the size of common subgraphs. For
example, 100 random 36-vertex subgraphs were formed and extended to 42
vertices in all possible ways, making over 65 million (5, 5, 42)-graphs that
were all isomorphic to the known graphs.

The fact that several independent processes that start with a random
graph repeatedly find only the known (5, 5, 42)-graphs leads us to strongly
suspect that our collection of (5, 5, 42)-graphs is complete. It is not possible
to put this belief on a quantitative level, but as a mere illustration suppose
that there were in fact 658 (5, 5, 42)-graphs (one extra and its complement)
and that Exoo's program generates (5, 5, 42)-graphs uniformly at random
(an unlikely proposition). Then after 5812 trials our chance of not dis-
covering the extra graphs is (656�658)5812

r2.5_10&7.
We wish to encourage our readers to devise further heuristic searches for

(5, 5, 42)-graphs, to support this evidence. In fact, we propose the construc-
tion of (5, 5, 42)-graphs as a challenging benchmark for heuristic search
methods.

For completeness, we give some information on the known (5, 5, 42)-
graphs, restricting our counts to those with fewer edges than their com-
plements. Of these 328 graphs, 212 have trivial automorphism groups and
the others have a single nontrivial involution without fixed points. The
number of edges ranges from 423 to 430, with the number of graphs in
each class being 1, 7, 29, 66, 89, 77, 43, and 16, respectively. (Note the
bimodal nature of this distribution when the complements are included.)
All the vertices have degrees between 19 and 22, inclusive. The graphs
themselves are available from the authors.

All the isomorphism and automorphism computations required for this
paper were performed by the first author's program nauty [13]. Distribu-
tion of tasks across a workstation network was performed with the help of
autoson [14].

5. A PROOF THAT R(4, 6)�41

A summary of the history of bounds on R(4, 6) can be found in
Table III. In this section we will show how the identities from Section 2
and some data from [17] imply that R(4, 6)�41.
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TABLE III

The History of Bounds on R(4, 6)

Year Reference Lower Upper Comments

1965 Kalbfleish [9] 30 Cyclic graph, not presented
1965 Kalbfleish [9] 47 Bound announced, not derived
1966 Kalbfleish [10] 34 Cyclic graph
1967 Kalbfleish [11] 46 Edge counting
1968 Walker [24] 45 Combinatorics 6 LP
1971 Walker [25] 44 Combinatorics 6 LP
1993 Exoo [5] 35 Simulated annealing
1994 McKay 6 Radziszowski [16] 43 (4, 4)-graph enumeration 6 LP
1995 McKay 6 Radziszowski 41 This paper

First, some words about linear programming. The great majority of
available linear programming codes employ floating point arithmetic and
are subject to the usual questions of correctness and accuracy that inexact
arithmetic implies. The linear programs that arise in our work are not
exceptionally large, but often have properties (such as high-dimensional
optimum facets) that give trouble to floating point codes. Some exact
implementations are available, for example in the symbolic algebra package
Maple [2], but they are quite slow in operation.

We have taken a hybrid approach to these problems, helped by the fact
that there are usually exact solutions to our linear programs which are
rational points with small common denominators. Firstly, the routine
E04MBF from the NAG library [19] is called to obtain an approximate
solution. Sometimes it is necessary to apply it to the dual program, or
to apply it repeatedly with different starting points. When tentative
approximate feasible points in both the primal and dual programs are
found, they are converted to rational points by guessing a common
denominator (using continued fractions). These guessed feasible points are
then tested for actual feasibility using the original inequalities and exact
arithmetic. If this test succeeds, we have proven the optimality of the solu-
tion. To guard against gross errors, all linear program solutions were
compared to the approximate solutions given by LINDO [22].

Note that strictly speaking we are dealing with integer linear programs,
not rational linear programs. However, in our experience, it is rare for
there not to be an integer feasible point with objective equal to the rounded
value of the rational optimum. The exceptional cases have no importance
that we know of, so we will not attempt to present them here.

We will now describe our approach, in terms of a linear program
LP(s, t, n) for an (s, t, n)-graph G. This is similar to, but more general than,
linear programs we have defined previously [15, 16].
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For convenience, for any graph X, define the functions v(X)=
s(K1 , X), e(X)=s(K2 , X), t(X)=s(K3 , X) and p(X)=s(T2, 1 , X). Then we
can write cases m=2, 3 of Theorem 2.2 as

:
v # VG

2e(G&
v )= :

v # VG

g2(G+
v , |VG| ) (I2)

and

:
v # VG

3t(G&
v )= :

v # VG

g3(G+
v , |VG| ) (I3)

where

g2(X, n)=v(X)(n&2v(X))+2e(X),

g3(X, n)=e(X)(n&3v(X)+3)+6t(X)+3p(X).

Suppose we have bounds as follows:

(a) d $�n&R(s, t&1) and d"�R(s&1, t)&1.

(b) e$1(i)�e(X)�e"1(i) for every (s&1, t, i)-graph X.

(c) e$2(i)�e(X)�e"2(i) for every (s, t&1, i)-graph X.

(d) t$(i, j)�t(X)�t"(i, j) for every (s, t&1, i, j)-graph X.

(e) g$3(i, j)�g3(X, n)�g"3(i, j) for every (s&1, t, i, j)-graph X.

The variables of LP(s, t, n) are as follows:

(i) ni is the number of vertices of G having degree i, for d $�i�d".

(ii) gi, j is the number of vertices v of G such that v(G+
v )=i and

e(G+
v )= j, for d $�i�d" and e$1(i)� j�e"1(i).
(iii) hi, j is the number of vertices v of G such that v(G&

v )=i and
e(G&

v )= j, for n&d"&1�i�n&d $&1 and e$2(i)� j�e"2(i).

The constraints of LP(s, t, n) are as follows. In each case, the sums are
taken over all values of the summation indices for which the summand
exists:

(A) :
i

ni=n.

(B) :
j

gi, j=ni , for d $�i�d".

(C ) :
j

hn&i&1, j=ni , for d $�i�d".
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(D) 2 :
i, j

jhn&i&1, j=:
i, j

(i(n&2i)+2j) gi, j .

(E$) 3 :
i, j

t$(i, j) hn&i&1, j�:
i, j

g"3(i, j) gi, j .

(E") 3 :
i, j

t"(i, j) hn&i&1, j�:
i, j

g$3(i, j) gi, j .

The correctness of (A), (B) and (C) is clear from the interpretation of the
variables. Equation (D) is just identity (I2). The two inequalities (E$) and
(E") are a consequence of identity (I3), comparing lower bounds for one
side against upper bounds for the other.

Let us apply our linear programs to show that there are no (4, 6, 41)-
graphs. Since R(3, 6)=18 and R(4, 5)=25, we can take d $=16 and
d"=17. The (3, 6)-graphs are known completely [18, 21], so we can find
best values of e$1 , e"1 , g$ and g". However, the values e$2 , e"2 , t$ and t" depend
on the (4, 5, 23)-graphs and (4, 5, 24)-graphs, of which our knowledge is
incomplete. Hence we begin by constructing the linear programs
LP(4, 5, 23) and LP(4, 5, 24). Using the fact from [17] that (4, 5, 24)-
graphs have at most 132 edges, we find the bounds e$2(23)=98,
e"2(23)=130, e$2(24)=109 and e"2(24)=132. Bounds on t(X) for (4, 5)-
graphs can be found in Table IV.

TABLE IV

Bounds on the Number of Triangles in (4, 5, n, e)-Graphs

n=23 n=24

e t e t e t e t

98 90�98 115 106�153 109 112�112 126 130�168
99 88�104 116 109�154 110 111�117 127 133�169

100 87�109 117 113�156 111 110�121 128 135�170
101 85�113 118 116�157 112 110�125 129 138�172
102 83�117 119 119�158 113 109�128 130 142�173
103 82�121 120 122�160 114 108�131 131 146�174
104 82�125 121 126�161 115 108�135 132 176�176
105 84�128 122 129�162 116 107�138
106 85�131 123 133�164 117 107�142
107 87�134 124 138�165 118 109�145
108 89�137 125 142�166 119 112�148
109 91�141 126 147�168 120 114�151
110 92�142 127 153�169 121 117�154
111 94�144 128 159�170 122 119�156
112 97�146 129 166�172 123 122�159
113 100�149 130 172�173 124 125�162
114 103�151 125 127�165

207RAMSEY NUMBERS



File: 582B 174116 . By:CV . Date:19:03:97 . Time:10:56 LOP8M. V8.0. Page 01:01
Codes: 4416 Signs: 2437 . Length: 45 pic 0 pts, 190 mm

Having the values in Table IV, we can construct LP(4, 6, 41). It is
infeasible, which demonstrates the following theorem.

Theorem 5.1. R(4, 6)�41.

It is perhaps worth noting that exactly the same result is obtained
without constraint (E"). This is also true of the lower bounds in Table 4,
which are those needed for constraint (E$), but not for the upper bounds.

Unfortunately, the linear program LP(4, 6, 40) has many feasible points,
so the existence of a (4, 6, 40)-graph remains a possibility. However, we
note that the result R(4, 6)�40 would follow if it was known that
(4, 5, 22)-, (4, 5, 23)- and (4, 5, 24)-graphs had at least 93, 105 and 113
edges, respectively. These bounds are quite likely to hold, but we have not
proved them.

Concerning the exact value of R(4, 6), we expect that the current lower
bound of 35 is correct. However, our evidence for this is less persuasive
than for our similar feelings about the conjecture that R(5, 5)=43. We
have 30 (4, 6, 34)-graphs so far, produced by making modifications to some
graphs provided by Exoo, and proved that there are no others sharing a
31-vertex induced subgraph with one of these 30. However we have not
performed any major heuristic searches.

Finally, we give some information on the known (4, 6, 34)-graphs. Of
these 30 graphs, 13 have trivial automorphism groups and the others have
a single nontrivial involution with 8 fixed points. The number of edges
ranges from 222 to 227, with the number of graphs in each class being 2,
4, 8, 10, 5, and 2, respectively. The graphs themselves are available from
the authors.
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