The Unit Graph on Z, Q, R: An Exposition
 By William Gasarch

1 Introduction

Most of this writuep is from Chilakamarri [1].
We consider the following three graphs.
Definition 1. Let $n \geq 1 z$. We use x and y for n tuples.

1. $G_{Z^{\mathrm{n}}}$ is the graph with

$$
\begin{aligned}
& V=\mathbf{Z}^{n} \\
& E=\left\{(x, y) \in \mathbf{Z}^{n} \times \mathbf{Z}^{n}: d(x, y)=1\right\}
\end{aligned}
$$

2. $G_{Q^{n}}$ is the graph with

$$
\begin{aligned}
& V=\mathrm{Q}^{n} \\
& E=\left\{(x, y) \in \mathrm{Q}^{n} \times \mathrm{Q}^{n}: d(x, y)=1\right\}
\end{aligned}
$$

3. $G_{R^{n}}$ is the graph with

$$
\begin{aligned}
& V=\mathrm{R}^{n} \\
& E=\left\{(x, y) \in \mathrm{R}^{n} \times \mathrm{R}^{n}: d(x, y)=1\right\}
\end{aligned}
$$

The chromatic number of $G_{\mathrm{R}^{2}}, \chi\left(G_{\mathrm{R}^{2}}\right)$, is a well known open problem. It is called the HadwigerNelson problem. See HERE for the Wikipedia site. It is fairly easy to prove that $4 \leq \chi\left(G_{\mathrm{R}^{2}}\right) \leq 7$. Audrey de Grey [2] used a computer proof to show that $5 \leq \chi\left(G_{\mathrm{R}^{2}}\right)$.

In this paper we explore graph properties of $G_{Z^{n}}, G_{Q^{n}}$, and $G_{\mathrm{R}^{n}}$.

2 Connectivity: The $n=1$ Case

This is trivial but we include it for completeness.
Theorem 2. Let $n=1$. Then $G_{Z^{n}}, G_{Q^{n}}$, and $G_{\mathrm{R}^{n}}$ are all disconnected.
Proof. Let $x=0$ and $y=\frac{1}{2}$. If x and y are connected then the $d(x, y) \in \mathrm{N}$. Hence x and y are not connected.

For the rest of this section we assume $n \geq 2$.

3 Connectivity for $G_{Z^{n}}$

This is trivial but we include it for completeness.
Theorem 3. Let $n \geq 2$. Then $G_{Z^{n}}$ is connected.
Proof. Let $x, y \in Z^{n}$.
Let
$x=\left(x_{1}, \ldots, x_{n}\right)$
$y=\left(y_{1}, \ldots, y_{n}\right)$.

Assume $x_{1}<y_{1}$ (the proof for $x_{1}>y_{1}$ is similar).
The following is a path in $G_{\mathrm{Z}^{\mathrm{n}}}$.
$\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1}+1, x_{2}, \ldots, x_{n}\right),\left(x_{1}+2, x_{2}, \ldots, x_{n}\right), \ldots,\left(y_{1}, x_{2}, \ldots, x_{n}\right)$.
Repeat this procedure on each coordinate to get $\left(y_{1}, \ldots, y_{n}\right)$.

4 Connectivity for $G_{Q^{n}}$

This is the most interesting case for connectivity. We will prove that

1. For $n=2,3,4 G_{Q^{n}}$ is disconnected.
2. For $n \geq 5, G_{Q^{n}}$ is connected.

We will need the following lemma for both parts. We omit the proof which is just simple calculation
Lemma 4. Let $a, b, c \in Z$.

1. $a^{2} \equiv 0,1,4(\bmod 8)$.
2. $a^{2}+b^{2} \equiv 0,1,2,4,5(\bmod 8)$.
3. $a^{2}+b^{2}+c^{2} \equiv 0,1,2,3,4,5,6(\bmod 8)$.

4.1 For $n \in\{2,3,4\}, G_{Q^{n}}$ is not Connected

With the benefit of hindsight, we note a difference between $n=2,3,4$ and $n \geq 5$.

Lemma 5.

1. If $a_{1}^{2}+a_{2}^{2}=b^{2}$ and $\operatorname{gcd}\left(a_{1}, a_{2}, b\right)=1$ then $b \not \equiv 0(\bmod 4)$.
2. If $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=b^{2}$ and $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, b\right)=1$ then $b \not \equiv 0(\bmod 4)$.
3. If $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=b^{2}$ and $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}, b\right)=1$ then $b \not \equiv 0(\bmod 4)$.
4. There exists $a_{1}, a_{2}, a_{3}, a_{4},, a_{5}, b$ such that $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b\right)=1$ and $b \equiv 0(\bmod 4)$.

Proof.
The proofs of parts 1,2 , and 3 are by contradiction. We use the fact that if for all $a \in \mathbf{Z}$, $a^{2} \equiv 0,1,4(\bmod 8)$.

1. Assume $a_{1}^{2}+a_{2}^{2}=b^{2}$. and $b \equiv 0(\bmod 4)$. Then $b^{2} \equiv 0(\bmod 8)$. Hence

$$
a_{1}^{2}+a_{2}^{2}=b^{2} \equiv 0 \quad(\bmod 8)
$$

Since $\operatorname{gcd}\left(a_{1}, a_{2}, b\right)=1$, at least one of a_{1}, a_{2} is odd. Assume its a_{1}. Then

$$
a_{1}^{2} \equiv 1 \quad(\bmod 8)
$$

By Lemma 4 a

$$
a_{2}^{2} \equiv 0,1,4 \quad(\bmod 8) .
$$

Hence

$$
a_{1}^{2}+a_{2}^{2} \equiv 1,2,5 \not \equiv 0 \quad(\bmod 8)
$$

which is a contradiction.
2. Assume $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=b^{2}$ and $b \equiv 0(\bmod 4)$. Then $b^{2} \equiv 0(\bmod 8)$. Hence

$$
a_{1}^{2}+a_{2}^{2} a_{3}^{2}=b^{2} \equiv 0 \quad(\bmod 8) .
$$

Since $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}\right)=1$, at least one of a_{1}, a_{2}, a_{3} is odd. Assume its a_{1}. Then

$$
a_{1}^{2} \equiv 1 \quad(\bmod 8) .
$$

By Lemma 4 b

$$
a_{2}^{2}+a_{3}^{2} \equiv 0,1,2,4,5 \quad(\bmod 8)
$$

Hence

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \equiv 1,2,3,4,6 \not \equiv 0 \quad(\bmod 8)
$$

which is a contradiction.
3. Assume $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=b^{2}$. and $b \equiv 0(\bmod 4)$. Then $b^{2} \equiv 0(\bmod 8)$. Hence

$$
a_{1}^{2}+a_{2}^{2} a_{3}^{2}+a_{4}^{2}=b^{2} \equiv 0 \quad(\bmod 8) .
$$

Since $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}, b\right)=1$, at least one of $a_{1}, a_{2}, a_{3}, a_{4}$ is odd. Assume its a_{1}. Then

$$
a_{1}^{2} \equiv 1 \quad(\bmod 8) .
$$

By Lemma 4. c

$$
a_{2}+a_{3}^{2}+a_{4}^{2} \equiv 0,1,2,3,4,5,6 \quad(\bmod 8) .
$$

Hence

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \equiv 1,2,3,4,5,6,7 \not \equiv 0 \quad(\bmod 8) .
$$

which is a contradiction.
4. The following values satisfy the conditions: $a_{1}=1, a_{2}=2, a_{3}=3, a_{4}=5, a_{5}=19 . b=20$.

Lemma 6. If a sum of rationals equals $\frac{1}{4}$ then at least one of them has a denominator divisible by 4.

Proof. Assume, by way of contradiction, that there exists rationals $\frac{a_{1}}{b_{1}}, \ldots, \frac{a_{k}}{b_{k}}$ such that

$$
\sum_{i=1}^{k} \frac{a_{i}}{b_{i}}=\frac{1}{4}
$$

and, for all $i, b_{i} \not \equiv 0(\bmod 4)$.
Partition $\{1, \ldots, k\}$ as follows.

1. Let X be the set of all i such that

$$
b_{i} \not \equiv 0 \quad(\bmod 2) .
$$

Note that

$$
\sum_{i \in X} \frac{a_{i}}{b_{i}}=\frac{c_{X}}{d_{X}}
$$

where $c_{X} \not \equiv 0(\bmod 2)$.
2. Let Y be the set of all i such that

$$
b_{i} \equiv 2 \quad(\bmod 4) .
$$

For $i \in Y$ let c_{i} be such that $b_{i}=4 c_{i}+2$. Note that

$$
\sum_{i \in Y} \frac{a_{i}}{b_{i}}=\sum_{i \in Y} \frac{a_{i}}{4 c_{i}+2}=\frac{1}{2} \sum_{i \in Y} \frac{a_{i}}{22 c_{i}+1}=\frac{c_{Y}}{2 d_{Y}}
$$

where $c_{Y} \not \equiv 0(\bmod 2)$.
Since $(\forall i)\left[b_{i} \not \equiv 0(\bmod 4)\right], X \cup Y$ is a partition of $\{1, \ldots, k\}$. Hence using the comments made when defining the partition we have

$$
\sum_{i=1}^{k} \frac{a_{i}}{b_{i}}=\sum_{i \in X} \frac{a_{i}}{b_{i}}+\sum_{i \in Y} \frac{a_{i}}{b_{i}}=\frac{c_{X}}{d_{X}}+\frac{c_{Y}}{2 d_{Y}}=\frac{1}{4} .
$$

Multiply both sides by $4 d_{X} d_{Y}$ to get

$$
4 c_{X} d_{Y}+2 c_{Y} d_{X}=1 .
$$

The left hand side is even and he right hand side is odd, which is a contradiction.
We state but do not prove a generalization of Lemma 6. We will not be needing it.
Lemma 7. Let p be a prime and $e \geq 1$. If a sum of rationals equals $\frac{1}{p^{e}}$ then at least one of them has a denominator divisible by p^{e}.

Lemma 8. Let $n \geq 1$. Let $p \in \mathbb{Q}^{2}$. Then there exists a_{1}, a_{2}, b such that the following hold.

1. $p=\left(\frac{a_{1}}{b}, \frac{a_{2}}{b}\right)$ (note that both fractions have the same denominator).
2. $\operatorname{gcd}\left(a_{1}, a_{2}, b\right)=1$.

Proof. Let p be given as

$$
\left(\frac{c_{1}}{d_{1}}, \frac{c_{2}}{d_{2}}\right) .
$$

Then p is also

$$
\left(\frac{c_{1} d_{2}}{d_{1} d_{2}}, \frac{c_{2} d_{1}}{d_{1} d_{2}}\right) .
$$

If $\operatorname{gcd}\left(c_{1} d_{2}, c_{2}, d_{1}, d_{1} d_{2}\right)=1$ then we set $a_{1}=c_{1} d_{2}, a_{2}=c_{2} d_{1}, b=d_{1} d_{2}$. If $\operatorname{gcd}\left(c_{1} d_{2}, c_{2}, d_{1}, d_{1} d_{2}\right)=$ $e \geq 2$ then we set $a_{1}=c_{1} d_{2} / e, a_{2}=c_{2} d_{1} / e, b=d_{1} d_{2} / e$.

Theorem 9. The graphs $G_{\mathrm{Q}^{2}}, G_{\mathrm{Q}^{3}}$, and $G_{\mathrm{Q}^{4}}$ are not connected.
Proof. We do the proof for $G_{\mathrm{Q}^{2}}$. The proof is almost identical for $G_{\mathrm{Q}^{3}}$ and $G_{\mathrm{Q}^{4}}$. We will note the one place we use $n=2$ and say how to modify for $G_{Q^{3}}$ and $G_{Q^{4}}$.

Assume, by way of contradiction, that $G_{Q^{2}}$ is connected. Let $x=(0,0)$ and $y=\left(\frac{1}{4}, 0\right)$. Let the path between them be

$$
x, x_{1}, x_{2}, \ldots, x_{k}, y
$$

$d\left(x, x_{1}\right)=1$. So $x-x_{1}$ is on the unit sphere. $d\left(x_{1}, x_{2}\right)=1$. So $x_{2}-x_{1}$ is on the unit sphere.
\vdots
$d\left(x_{k-1}, x_{k}\right)=1$. So $x_{k}-x_{k-1}$ is on the unit sphere.
$d\left(x_{k}, y\right)=1$. So $y-x_{k}$ is on the unit sphere.
Add up all of those points on the unit sphere. You get

$$
\left(x-x_{1}\right)+\left(x_{1}-x_{2}\right)+\cdots+\left(x_{k}-x_{k-1}\right)+y-x_{k}=x+y=y .
$$

UPSHOT: $\left(\frac{1}{4}, 0\right)$ is the sum of points on the unit sphere.
Let z_{1}, \ldots, z_{k} be the points on the unit sphere that add up to ($\frac{1}{4}, 0$). For $1 \leq i \leq k$ let $z_{i}=\left(\frac{a_{i 1}}{b_{i}}, \frac{a_{i 2}}{b_{i}}\right.$ with $\operatorname{gcd}\left(a_{i 1}, a_{i 2}, b_{i}\right)=1$ (we are using Lemma 8).

Since z_{i} is on the unit sphere

$$
a_{i 1}^{2}+a_{i 2}^{2}=b_{i}^{2} .
$$

By Lemma 5 a, $b_{i} \not \equiv 0(\bmod 4)$. (We use Lemma 5 . a since we are dealing with $G_{Q^{2}}$. For $G_{Q^{3}}$ we use Lemma 5.b. For $G_{\mathrm{Q}^{4}}$ we use Lemma 5.c.) More to the point,

$$
(\forall 1 \leq i \leq k)\left[b_{i} \not \equiv 0 \quad(\bmod 4)\right] .
$$

Since $\sum_{i=1}^{k} z_{i}=\left(\frac{1}{4}, 0\right)$.

$$
\sum_{i=1}^{k} \frac{a_{i 1}}{b_{i}}=\frac{1}{4}
$$

By Lemma 6

$$
(\exists 1 \leq i \leq k)\left[b_{i} \equiv 0 \quad(\bmod 4) .\right.
$$

This is a contradiction.

4.2 For $n \geq 5 G_{Q^{n}}$ is Connected

With the benefit of hindsight, we note a difference between $n=2,3,4$ and $n \geq 5$.

Lemma 10.

1. Let $n \geq 5$. For all $N \in \mathrm{~N}, 4 N^{2}$ can be written as the sum of n squares, one of which is 1 .
2. Let $n \leq 4$. For an infinite number of $N \in Z, 4 N^{2}$ cannot be written as the sum of n squares, one of which is 1 .

Proof.

1. Recall that every number is the sum of 4 squares. Hence there exists a, b, c, d such that

$$
\begin{aligned}
& 4 N^{2}-1=a^{2}+b^{2}+c^{2}+d^{2} \\
& 4 N^{2}=a^{2}+b^{2}+c^{2}+d^{2}+1
\end{aligned}
$$

2. Let $N \equiv 0(\bmod 2)$. Assume, by way of contradiction, that there exists a, b, c such that

$$
\begin{gathered}
4 N^{2}=a^{2}+b^{2}+c^{2}+1 \\
4 N^{2}-1=a^{2}+b^{2}+c^{2} \\
4 N^{2}-1 \equiv a^{2}+b^{2}+c^{2} \quad(\bmod 8) .
\end{gathered}
$$

Since $N \equiv 0(\bmod 2)$ the left hand side is $\equiv 7(\bmod 8)$. By Lemma 4 c the right hand side is $\equiv 0,1,2,3,4,5,6$. Hence they are not equal mod 8 . That is a contradiction.

Lemma 11. Let $N \in \mathrm{Z}-\{0\}$.

1. In $G_{Q^{5}}$ there is a path between $(0,0,0,0,0)$ and $\left(\frac{1}{N}, 0,0,0,0\right)$.
2. Let $n \geq 5$. Let $1 \leq i \leq n$. In $G_{Q^{n}}$ there is a path between $(0, \ldots, 0)$ and $\left(0,0, \ldots, 0 \frac{1}{N}, 0, \ldots, 0\right)$ (the $\frac{1}{N}$ is in the ith place).

Proof. We prove part 1. The proof of part 2 is similar.
By Lemma 10 there exists a, b, c, d such that

$$
4 N^{2}=1+a^{2}+b^{2}+c^{2}+d^{2}
$$

Divide by $4 N^{2}$ to get:

$$
1=\left(\frac{1}{2 N}\right)^{2}+\left(\frac{a}{2 N}\right)^{2}+\left(\frac{b}{2 N}\right)^{2}+\left(\frac{c}{2 N}\right)^{2}+\left(\frac{d}{2 N}\right)^{2}
$$

Hence the following 2^{5} vectors are all on the Q^{5}-unit sphere:

$$
\left(\pm \frac{1}{2 N}, \pm \frac{a}{2 N}, \pm \frac{b}{2 N}, \pm \frac{c}{2 N}, \pm \frac{d}{2 N},\right)
$$

We now describe the path from $(0,0,0,0,0)$ to $\left(\frac{1}{N}, 0,0,0,0\right)$ by adding just two Q^{5}-unit sphere vectors to $(0,0,0,0,0)$ to get $\left(\frac{1}{N}, 0,0,0,0\right)$

$$
(0,0,0,0,0)+\left(\frac{1}{2 N}, \frac{a}{2 N}, \frac{b}{2 N}, \frac{c}{2 N}, \frac{d}{2 N},\right)+\left(\frac{1}{2 N},-\frac{a}{2 N},-\frac{b}{2 N},-\frac{c}{2 N},-\frac{d}{2 N},\right)=\left(\frac{1}{N}, 0,0,0,0\right)
$$

Lemma 12. Let $n \geq 1$. Let $x, y \in G_{Q^{n}}$. If there is a path from 0^{n} to x and from 0^{n} to y then there is a path from 0^{n} to $x+y$.

Proof.
Theorem 13. Let $n \geq 5$. Then $G_{Q^{n}}$ is connected.
Proof. We show that, for every vertex x of $G_{Q^{n}}$, there is a path from $(0, \ldots, 0)$ to x. Let

$$
x=\left(\frac{a_{1}}{N_{1}}, \ldots, \frac{b_{n}}{N_{n}}\right)
$$

By Lemma 11 there is a path from 0^{n} to $\left(\frac{1}{N}, 0, \ldots, 0\right)$. From this and Lemma 12 there is a path from 0^{n} to.

CONTINUE LATER

References

[1] K. B. Chilakamarri. Unit distance graphs in rational n-space. Discrete Mathematics, 69:213218, 1988. link.
[2] A. de Grey. The chromatic number of the plane is at least 5. Geocombinatorics, 28:5-18, 2018. arxiv link.

