The Unit Graph on Z, Q, R: An Exposition By William Gasarch

1 Introduction

Most of this writuep is from Chilakamarri [1]. We consider the following three graphs.

Definition 1. Let $n \ge 1z$. We use x and y for n tuples.

1. G_{Z^n} is the graph with

$$\begin{array}{ll} V = & \mathsf{Z}^n \\ E = & \{(x,y) \in \mathsf{Z}^n \times \mathsf{Z}^n \colon d(x,y) = 1\} \end{array}$$

2. $G_{\mathbf{Q}^n}$ is the graph with

$$V = \mathbf{Q}^n$$

$$E = \{(x, y) \in \mathbf{Q}^n \times \mathbf{Q}^n \colon d(x, y) = 1\}$$

3. G_{R^n} is the graph with

$$\begin{array}{ll} V = & \mathsf{R}^n \\ E = & \{(x,y) \in \mathsf{R}^n \times \mathsf{R}^n \colon d(x,y) = 1\} \end{array}$$

The chromatic number of $G_{\mathbb{R}^2}$, $\chi(G_{\mathbb{R}^2})$, is a well known open problem. It is called the *Hadwiger-Nelson* problem. See HERE for the Wikipedia site. It is fairly easy to prove that $4 \leq \chi(G_{\mathbb{R}^2}) \leq 7$. Audrey de Grey [2] used a computer proof to show that $5 \leq \chi(G_{\mathbb{R}^2})$.

In this paper we explore graph properties of G_{Z^n} , G_{Q^n} , and G_{R^n} .

2 Connectivity: The n = 1 Case

This is trivial but we include it for completeness.

Theorem 2. Let n = 1. Then G_{Z^n} , G_{Q^n} , and G_{R^n} are all disconnected.

Proof. Let x = 0 and $y = \frac{1}{2}$. If x and y are connected then the $d(x, y) \in \mathbb{N}$. Hence x and y are not connected.

For the rest of this section we assume $n \ge 2$.

3 Connectivity for G_{Z^n}

This is trivial but we include it for completeness.

Theorem 3. Let $n \geq 2$. Then G_{Z^n} is connected.

Proof. Let $x, y \in Z^n$. Let $x = (x_1, \dots, x_n)$ $y = (y_1, \dots, y_n)$. Assume $x_1 < y_1$ (the proof for $x_1 > y_1$ is similar). The following is a path in $G_{\mathbb{Z}^n}$. $(x_1, x_2, \ldots, x_n), (x_1 + 1, x_2, \ldots, x_n), (x_1 + 2, x_2, \ldots, x_n), \ldots, (y_1, x_2, \ldots, x_n)$. Repeat this procedure on each coordinate to get (y_1, \ldots, y_n) .

4 Connectivity for G_{Q^n}

This is the most interesting case for connectivity. We will prove that

- 1. For $n = 2, 3, 4 G_{Q^n}$ is disconnected.
- 2. For $n \geq 5$, $G_{\mathbf{Q}^n}$ is connected.

We will need the following lemma for both parts. We omit the proof which is just simple calculation

Lemma 4. Let $a, b, c \in Z$.

1. $a^2 \equiv 0, 1, 4 \pmod{8}$.

- 2. $a^2 + b^2 \equiv 0, 1, 2, 4, 5 \pmod{8}$.
- 3. $a^2 + b^2 + c^2 \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$.

4.1 For $n \in \{2, 3, 4\}$, G_{Q^n} is not Connected

With the benefit of hindsight, we note a difference between n = 2, 3, 4 and $n \ge 5$.

Lemma 5.

- 1. If $a_1^2 + a_2^2 = b^2$ and $gcd(a_1, a_2, b) = 1$ then $b \neq 0 \pmod{4}$.
- 2. If $a_1^2 + a_2^2 + a_3^2 = b^2$ and $gcd(a_1, a_2, a_3, b) = 1$ then $b \neq 0 \pmod{4}$.
- 3. If $a_1^2 + a_2^2 + a_3^2 + a_4^2 = b^2$ and $gcd(a_1, a_2, a_3, a_4, b) = 1$ then $b \not\equiv 0 \pmod{4}$.

4. There exists $a_1, a_2, a_3, a_4, a_5, b$ such that $gcd(a_1, a_2, a_3, a_4, a_5, b) = 1$ and $b \equiv 0 \pmod{4}$.

Proof.

The proofs of parts 1,2, and 3 are by contradiction. We use the fact that if for all $a \in \mathbb{Z}$, $a^2 \equiv 0, 1, 4 \pmod{8}$.

1. Assume $a_1^2 + a_2^2 = b^2$. and $b \equiv 0 \pmod{4}$. Then $b^2 \equiv 0 \pmod{8}$. Hence

$$a_1^2 + a_2^2 = b^2 \equiv 0 \pmod{8}.$$

Since $gcd(a_1, a_2, b) = 1$, at least one of a_1, a_2 is odd. Assume its a_1 . Then

$$a_1^2 \equiv 1 \pmod{8}$$

By Lemma 4.a

$$a_2^2 \equiv 0, 1, 4 \pmod{8}.$$

Hence

$$a_1^2 + a_2^2 \equiv 1, 2, 5 \not\equiv 0 \pmod{8}$$

which is a contradiction.

2. Assume $a_1^2 + a_2^2 + a_3^2 = b^2$ and $b \equiv 0 \pmod{4}$. Then $b^2 \equiv 0 \pmod{8}$. Hence

$$a_1^2 + a_2^2 a_3^2 = b^2 \equiv 0 \pmod{8}.$$

Since $gcd(a_1, a_2, a_3) = 1$, at least one of a_1, a_2, a_3 is odd. Assume its a_1 . Then

 $a_1^2 \equiv 1 \pmod{8}.$

By Lemma 4.b

$$a_2^2 + a_3^2 \equiv 0, 1, 2, 4, 5 \pmod{8}$$

Hence

$$a_1^2 + a_2^2 + a_3^2 \equiv 1, 2, 3, 4, 6 \not\equiv 0 \pmod{8}$$

which is a contradiction.

3. Assume $a_1^2 + a_2^2 + a_3^2 + a_4^2 = b^2$. and $b \equiv 0 \pmod{4}$. Then $b^2 \equiv 0 \pmod{8}$. Hence

$$a_1^2 + a_2^2 a_3^2 + a_4^2 = b^2 \equiv 0 \pmod{8}$$

Since $gcd(a_1, a_2, a_3, a_4, b) = 1$, at least one of a_1, a_2, a_3, a_4 is odd. Assume its a_1 . Then

$$a_1^2 \equiv 1 \pmod{8}.$$

By Lemma 4.c

$$a_2 + a_3^2 + a_4^2 \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$$

Hence

$$a_1^2 + a_2^2 + a_3^2 + a_4^2 \equiv 1, 2, 3, 4, 5, 6, 7 \not\equiv 0 \pmod{8}.$$

which is a contradiction.

4. The following values satisfy the conditions: $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $a_4 = 5$, $a_5 = 19$. b = 20.

Lemma 6. If a sum of rationals equals $\frac{1}{4}$ then at least one of them has a denominator divisible by 4.

Proof. Assume, by way of contradiction, that there exists rationals $\frac{a_1}{b_1}, \ldots, \frac{a_k}{b_k}$ such that

$$\sum_{i=1}^{k} \frac{a_i}{b_i} = \frac{1}{4}$$

and, for all $i, b_i \not\equiv 0 \pmod{4}$. Partition $\{1, \ldots, k\}$ as follows.

1. Let X be the set of all i such that

$$b_i \not\equiv 0 \pmod{2}$$
.

Note that

$$\sum_{i \in X} \frac{a_i}{b_i} = \frac{c_X}{d_X}$$

where $c_X \not\equiv 0 \pmod{2}$.

2. Let Y be the set of all i such that

$$b_i \equiv 2 \pmod{4}$$
.

For $i \in Y$ let c_i be such that $b_i = 4c_i + 2$. Note that

$$\sum_{i \in Y} \frac{a_i}{b_i} = \sum_{i \in Y} \frac{a_i}{4c_i + 2} = \frac{1}{2} \sum_{i \in Y} \frac{a_i}{22c_i + 1} = \frac{c_Y}{2d_Y}$$

where $c_Y \not\equiv 0 \pmod{2}$.

Since $(\forall i)[b_i \not\equiv 0 \pmod{4}]$, $X \cup Y$ is a partition of $\{1, \ldots, k\}$. Hence using the comments made when defining the partition we have

$$\sum_{i=1}^{k} \frac{a_i}{b_i} = \sum_{i \in X} \frac{a_i}{b_i} + \sum_{i \in Y} \frac{a_i}{b_i} = \frac{c_X}{d_X} + \frac{c_Y}{2d_Y} = \frac{1}{4}.$$

Multiply both sides by $4d_Xd_Y$ to get

$$4c_X d_Y + 2c_Y d_X = 1.$$

The left hand side is even and he right hand side is odd, which is a contradiction.

We state but do not prove a generalization of Lemma 6. We will not be needing it.

Lemma 7. Let p be a prime and $e \ge 1$. If a sum of rationals equals $\frac{1}{p^e}$ then at least one of them has a denominator divisible by p^e .

Lemma 8. Let $n \ge 1$. Let $p \in \mathbb{Q}^2$. Then there exists a_1, a_2, b such that the following hold.

- 1. $p = \left(\frac{a_1}{b}, \frac{a_2}{b}\right)$ (note that both fractions have the same denominator).
- 2. $gcd(a_1, a_2, b) = 1.$

Proof. Let p be given as

$$(\frac{c_1}{d_1}, \frac{c_2}{d_2})$$

Then p is also

$$(\frac{c_1d_2}{d_1d_2}, \frac{c_2d_1}{d_1d_2})$$

If $gcd(c_1d_2, c_2, d_1, d_1d_2) = 1$ then we set $a_1 = c_1d_2, a_2 = c_2d_1, b = d_1d_2$. If $gcd(c_1d_2, c_2, d_1, d_1d_2) = d_1d_2$. $e \ge 2$ then we set $a_1 = c_1 d_2/e$, $a_2 = c_2 d_1/e$, $b = d_1 d_2/e$.

Theorem 9. The graphs G_{Q^2} , G_{Q^3} , and G_{Q^4} are not connected.

Proof. We do the proof for $G_{\mathbb{Q}^2}$. The proof is almost identical for $G_{\mathbb{Q}^3}$ and $G_{\mathbb{Q}^4}$. We will note the one place we use n = 2 and say how to modify for G_{Q^3} and G_{Q^4} .

Assume, by way of contradiction, that $G_{\mathbb{Q}^2}$ is connected. Let x = (0,0) and $y = (\frac{1}{4},0)$. Let the path between them be

$$x, x_1, x_2, \ldots, x_k, y$$

 $d(x, x_1) = 1$. So $x - x_1$ is on the unit sphere. $d(x_1, x_2) = 1$. So $x_2 - x_1$ is on the unit sphere. ÷

 $d(x_{k-1}, x_k) = 1$. So $x_k - x_{k-1}$ is on the unit sphere.

 $d(x_k, y) = 1$. So $y - x_k$ is on the unit sphere.

Add up all of those points on the unit sphere. You get

$$(x - x_1) + (x_1 - x_2) + \dots + (x_k - x_{k-1}) + y - x_k = x + y = y.$$

UPSHOT: $(\frac{1}{4}, 0)$ is the sum of points on the unit sphere.

Let z_1, \ldots, z_k be the points on the unit sphere that add up to $(\frac{1}{4}, 0)$. For $1 \leq i \leq k$ let $z_i = (\frac{a_{i1}}{b_i}, \frac{a_{i2}}{b_i}$ with $gcd(a_{i1}, a_{i2}, b_i) = 1$ (we are using Lemma 8). Since z_i is on the unit sphere

$$a_{i1}^2 + a_{i2}^2 = b_i^2$$

By Lemma 5.a, $b_i \not\equiv 0 \pmod{4}$. (We use Lemma 5.a since we are dealing with G_{Q^2} . For G_{Q^3} we use Lemma 5.b. For G_{Q^4} we use Lemma 5.c.) More to the point,

$$(\forall 1 \le i \le k) [b_i \not\equiv 0 \pmod{4}].$$

Since $\sum_{i=1}^{k} z_i = (\frac{1}{4}, 0).$

$$\sum_{i=1}^{k} \frac{a_{i1}}{b_i} = \frac{1}{4}$$

By Lemma 6

$$(\exists 1 \le i \le k) [b_i \equiv 0 \pmod{4}].$$

This is a contradiction.

4.2 For $n \ge 5$ G_{Q^n} is Connected

With the benefit of hindsight, we note a difference between n = 2, 3, 4 and $n \ge 5$.

Lemma 10.

- 1. Let $n \ge 5$. For all $N \in \mathbb{N}$, $4N^2$ can be written as the sum of n squares, one of which is 1.
- 2. Let $n \leq 4$. For an infinite number of $N \in \mathsf{Z}$, $4N^2$ cannot be written as the sum of n squares, one of which is 1.

Proof.

1. Recall that every number is the sum of 4 squares. Hence there exists a, b, c, d such that

$$4N^2 - 1 = a^2 + b^2 + c^2 + d^2$$

$$4N^2 = a^2 + b^2 + c^2 + d^2 + 1$$

2. Let $N \equiv 0 \pmod{2}$. Assume, by way of contradiction, that there exists a, b, c such that

$$4N^{2} = a^{2} + b^{2} + c^{2} + 1$$
$$4N^{2} - 1 = a^{2} + b^{2} + c^{2}$$

$$4N^2 - 1 \equiv a^2 + b^2 + c^2 \pmod{8}.$$

Since $N \equiv 0 \pmod{2}$ the left hand side is $\equiv 7 \pmod{8}$. By Lemma 4.c the right hand side is $\equiv 0, 1, 2, 3, 4, 5, 6$. Hence they are not equal mod 8. That is a contradiction.

-		-

Lemma 11. Let $N \in Z - \{0\}$.

- 1. In G_{Q^5} there is a path between (0, 0, 0, 0, 0) and $(\frac{1}{N}, 0, 0, 0, 0)$.
- 2. Let $n \ge 5$. Let $1 \le i \le n$. In $G_{\mathbb{Q}^n}$ there is a path between $(0, \ldots, 0)$ and $(0, 0, \ldots, 0\frac{1}{N}, 0, \ldots, 0)$ (the $\frac{1}{N}$ is in the *i*th place).

Proof. We prove part 1. The proof of part 2 is similar.

By Lemma 10 there exists a, b, c, d such that

$$4N^2 = 1 + a^2 + b^2 + c^2 + d^2$$

Divide by $4N^2$ to get:

$$1 = \left(\frac{1}{2N}\right)^2 + \left(\frac{a}{2N}\right)^2 + \left(\frac{b}{2N}\right)^2 + \left(\frac{c}{2N}\right)^2 + \left(\frac{d}{2N}\right)^2$$

Hence the following 2^5 vectors are all on the \mathbb{Q}^5 -unit sphere:

$$\left(\pm\frac{1}{2N},\pm\frac{a}{2N},\pm\frac{b}{2N},\pm\frac{c}{2N},\pm\frac{d}{2N},\right)$$

We now describe the path from (0, 0, 0, 0, 0) to $(\frac{1}{N}, 0, 0, 0, 0)$ by adding just two Q⁵-unit sphere vectors to (0, 0, 0, 0, 0) to get $(\frac{1}{N}, 0, 0, 0, 0)$

$$(0,0,0,0,0) + \left(\frac{1}{2N}, \frac{a}{2N}, \frac{b}{2N}, \frac{c}{2N}, \frac{d}{2N}, \right) + \left(\frac{1}{2N}, -\frac{a}{2N}, -\frac{b}{2N}, -\frac{c}{2N}, -\frac{d}{2N}, \right) = \left(\frac{1}{N}, 0, 0, 0, 0\right)$$

Lemma 12. Let $n \ge 1$. Let $x, y \in G_{\mathbb{Q}^n}$. If there is a path from 0^n to x and from 0^n to y then there is a path from 0^n to x + y.

Proof.

Theorem 13. Let $n \geq 5$. Then G_{Q^n} is connected.

Proof. We show that, for every vertex x of $G_{\mathbb{Q}^n}$, there is a path from $(0, \ldots, 0)$ to x. Let

$$x = \left(\frac{a_1}{N_1}, \dots, \frac{b_n}{N_n}\right)$$

By Lemma 11 there is a path from 0^n to $(\frac{1}{N}, 0, ..., 0)$. From this and Lemma 12 there is a path from 0^n to.

CONTINUE LATER

References

- K. B. Chilakamarri. Unit distance graphs in rational n-space. Discrete Mathematics, 69:213– 218, 1988. link.
- [2] A. de Grey. The chromatic number of the plane is at least 5. Geocombinatorics, 28:5–18, 2018. arxiv link.