
Reflections on Trusting ‘Trustlessness’ in the era

of “Crypto”/Blockchains

Evangelos Georgiadis∗

November 8, 2021

#Crypto represents a generational shift to trust in math and
logic over trust in human behavior. #BTC#EOS #ETH
Brendan Blumer (2021/01/13)

Trust is a funny word, noun and concept, (see https://www.merriam-webster.
com/dictionary/trust), particularly in the realm of code or programs. Trust,
or for that matter, trustlessness, is a key value proposition in a field that de-
serves Peter A. Thiel’s 0 to 1 innovation status (see https://www.amazon.

com/Zero-One-Notes-Startups-Future/dp/0804139296), namely, decentral-
ized Finance, (DeFi), or as block.one attempts to distinguish, “compliant open
source Programmable Finance” (ProFi), where computation supposedly hap-
pens in a “completely trustless and secure manner”.

This key proposition deserves a more granular, if not critical, inspection,
not just because notionally, (in cumulative terms) trillions of USD are residing
on blocks and tokens (see https://coinmarketcap.com/charts/), but because
theoretical computer science might offer

1. insightful perspectives or a constructive framework to think and reason,
2. useful toolkits, and
3. a richer understanding of intrinsic computational limitations/properties

that might impact “trustlessness”

‘Trust’ and ‘security’ are properties that have often been discussed and analyzed
on a protocol level and, in particular, the consensus level. The reader might
be interested in Vitalik Buterin’s (more generic, yet still useful) take on Trust
Models (see https://vitalik.ca/general/2020/08/20/trust.html).

We argue that at the most granular level, the user remains at the mercy of
the “human element” which, in some capacity and to some degree, has been
hardcoded into the codebase and thus protocol. (NB: A poor yet instruc-
tive analogy might be the theme of bias in ML/AI algorithms.) Additionally,
even though the codebase might be open source, and thus inspectable, vali-
dating integrity of a million-loc-long codebase isn’t something that the average

∗CQuant Technologies Limited: egeorg@cquant.xyz

1

https://www.merriam-webster.com/dictionary/trust
https://www.merriam-webster.com/dictionary/trust
https://www.amazon.com/Zero-One-Notes-Startups-Future/dp/0804139296
https://www.amazon.com/Zero-One-Notes-Startups-Future/dp/0804139296
https://coinmarketcap.com/charts/
https://vitalik.ca/general/2020/08/20/trust.html


user is capable of. At last, even if theoretical computer science has toolk-
its to offer for automatically detecting obvious deficiencies either via formal
verification methods, or employing our cool friends at Runtime Verification
Inc (see, https://runtimeverification.com), the problem of fixing bugs at
the protocol level, in a decentralized setting, morphs into a non-trivial coor-
dination problem where a lot of human behavior is necessitated – see Neha
Narula et al’s article Responsible Vulnerability Disclosure in Cryptocurrencies
(see https://dl.acm.org/doi/10.1145/3372115).

Fixing bugs at that level might require hardforks, which in turn begs the
very essence of trustlessness.

In the spirit of Ken L. Thompson’s (1984) Turing Award Lecture, Reflections
on Trusting Trust (see https://dl.acm.org/doi/10.1145/358198.358210),
we would like to reflect on who and what we should trust, is it ... (NB: We
employ a three levels of analysis approach to put things into perspective: actors,
software/hardware level, systemic level.)

1. (actors) the architects that came up with the foundational blue-prints (aka
conceptual proof: protocol/consensus mechanisms)?

2. (actors) the software engineers that implemented the code (for the various
layers)? or the

3. (software/hardware) the actual language that is supposed to help us –
the users – (efficiently and accurately) communicate with the machines or
nodes?

4. (systemic) intrinsic limitations/properties that arise from sufficiently so-
phisticated computation?

(1) – (2): Actors can be classified as being either myopic or corrupt but never
omniscient! (there’s a fine line between these two – almost semantics). Myopic
architects or software engineers leave behind “bugs”, whereas corrupt software
engineers or architects engineer “features”.

For example, a corrupt architect (be it a nation state, or someone incen-
tivised to go rogue) will aim for conceptual corruption – providing a perfectly
sound solution with exploitable properties. (This is the type of exploits that
goes potentially unnoticed via any formal verification method of a codebase. Ad-
ditionally, represents a more sophisticated variant of Ken Thompson’s “Trojan
horse” concept.) A vivid primer of conceptual corruption is Markus G Kuhn’s
1 page, 3 column article entitled Backdoor Engineering (see

https://cacm.acm.org/magazines/2018/11/232225-technical-perspective-backdoor-engineering/

fulltext).
Kuhn talks about saboteurs infiltrating teams and luring them to construct-

ing sound machinery – ‘provable security based on number-theoretical assump-
tions’ – with exploitable properties. Of course, our very good and diligent friends
at the NSA (see https://www.nsa.gov) are working towards that direction fo-
cusing on a few cryptographic key primitives – causing some blockchains such as
Ethereum to employ KECCAK-256 which does not follow the FIPS-202 based
standard (aka SHA-3) that was finalized in 2015.

2

https://runtimeverification.com
https://dl.acm.org/doi/10.1145/3372115
https://dl.acm.org/doi/10.1145/358198.358210
https://cacm.acm.org/magazines/2018/11/232225-technical-perspective-backdoor-engineering/fulltext
https://cacm.acm.org/magazines/2018/11/232225-technical-perspective-backdoor-engineering/fulltext
https://www.nsa.gov


On the other hand, a myopic architect might not possess sufficient insights to
forsee potential risks impacting “trustlessness” and go with what is convenient
and readily available.

(3): The question of whether TCS offers any toolkits that can detect con-
ceptual correction is unknown to this author, but probably known to our friends
at Fort Maede.

Theoretical computer science has many toolkits to offer in regard to formal
software verification, the most prominent being, Coq (see https://coq.inria.

fr/) and HOL (see https://hol-theorem-prover.org/).
It is also delightful to see how our friends from Algorand (see https://www.

algorand.com) employed these technologies to verify a certain property of Algo-
rand’s consensus mechanism (see https://runtimeverification.com/blog/

formally-verifying-algorand-reinforcing-a-chain-of-steel-modeling-and-safety/).
That said, obvious trust issues with these toolkits remain, and have been high-
lighted in Donald MacKenzie’s book Mechanizing Proof: Computing, Risk, and
Trust (see https://mitpress.mit.edu/books/mechanizing-proof).

(4): Finally, and perhaps more interestingly, on the systemic level, the ques-
tion of how trustlessness can be exploited in a computationally universal setting
(i.e., assuming that a given consensus protocol turns out to be computationally
universal in some notion) should be explored.

The moral of the story might not be as obvious as Ken Thompson led us to
believe, namely,

You can’t trust code that you did not totally create yourself.(p.763)

A more trustworthy but less gratifying conclusion might be Don Knuth’s famous
line:

Beware of bugs in the above code; I have only proved it correct,
not tried it.

3

https://coq.inria.fr/
https://coq.inria.fr/
https://hol-theorem-prover.org/
https://www.algorand.com
https://www.algorand.com
https://runtimeverification.com/blog/formally-verifying-algorand-reinforcing-a-chain-of-steel-modeling-and-safety/
https://runtimeverification.com/blog/formally-verifying-algorand-reinforcing-a-chain-of-steel-modeling-and-safety/
https://mitpress.mit.edu/books/mechanizing-proof

