Standard and NonStandard Dice: An Exposition

William Gasarch - University of MD

If you roll two standard 6-sided dice then

1. 2: $(1,1)$. ONE way. Prob $\frac{1}{36}$.
2. 3: $(1,2),(2,1)$. TWO ways. Prob $\frac{1}{18}$.
3. 4: $(1,3),(2,2),(3,1)$. THREE ways. Prob $\frac{1}{12}$.
4. 5: $(1,4),(2,3),(3,2),(4,1)$. FOUR ways. Prob $\frac{1}{9}$.
5. 6: $(1,5),(2,4),(3,3),(4,2),(5,1)$ FIVE ways. Prob $\frac{5}{36}$.
6. 7: $(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$ SIX ways. Prob $\frac{1}{6}$.
7. 8: $(2,6),(3,5),(4,4),(5,3),(6,2)$ FIVE ways. Prob $\frac{5}{36}$.
8. 9: $(3,6),(4,5),(5,4),(6,3)$ FOUR ways. Prob $\frac{1}{9}$.
9. 10: $(4,6),(5,5),(6,4)$ THREE ways. Prob $\frac{1}{12}$.
10. 11: $(5,6),(6,5)$ TWO ways. Prob $\frac{1}{18}$.
11. 12: $(6,6)$ ONE way. Prob $\frac{1}{36}$.

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

$$
x^{1} x^{5}+x^{2} x^{4}+x^{3} x^{3}+x^{4} x^{2}+x^{5} x^{1}=5 x^{6}=(\text { Number of ways to get } 6) x^{6}
$$

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

$$
x^{1} x^{5}+x^{2} x^{4}+x^{3} x^{3}+x^{4} x^{2}+x^{5} x^{1}=5 x^{6}=(\text { Number of ways to get } 6) x^{6}
$$

Coefficient of x^{n} is number of ways to get n.

Example of Non-Standard Labelings

What is we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

Example of Non-Standard Labelings

What is we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

$$
\left(2 x^{5}+3 x^{2}+x\right)\left(x^{7}+4 x^{3}+x\right)=2 x^{12}+3 x^{9}+9 x^{8}+2 x^{6}+12 x^{5}+4 x^{4}+3 x^{3}+x^{2}
$$

Example of Non-Standard Labelings

What is we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

$$
\left(2 x^{5}+3 x^{2}+x\right)\left(x^{7}+4 x^{3}+x\right)=2 x^{12}+3 x^{9}+9 x^{8}+2 x^{6}+12 x^{5}+4 x^{4}+3 x^{3}+x^{2}
$$

1. 12: TWO ways. Prob $\frac{1}{18}$.
2. 9: THREE ways. Prob $\frac{1}{12}$.
3. 8: NINE ways. $\operatorname{Prob} \frac{1}{4}$.
4. 6: TWO ways. Prob $\frac{1}{18}$.
5. 5: TWELVE ways. Prob $\frac{1}{3}$.
6. 4: FOUR ways. Prob $\frac{1}{9}$.
7. 3: THREE ways. Prob $\frac{1}{12}$.
8. 2: ONE ways. Prob $\frac{1}{36}$.

Is there a Non-Standard Labeling That. . .

Question Is there a nonstandard labeling of dice that gives the same probabilities as the standard dice?

Is there a Non-Standard Labeling That. . .

Question Is there a nonstandard labeling of dice that gives the same probabilities as the standard dice?
Question Phrased In Terms of Polynomials Does there exists $a_{1} \geq \cdots \geq a_{6}$ and $b_{1} \geq \cdots \geq b_{6}$ such that

Is there a Non-Standard Labeling That...

Question Is there a nonstandard labeling of dice that gives the same probabilities as the standard dice?
Question Phrased In Terms of Polynomials Does there exists $a_{1} \geq \cdots \geq a_{6}$ and $b_{1} \geq \cdots \geq b_{6}$ such that

$$
\begin{gathered}
\left(x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}+x^{a_{5}}+x^{a_{6}}\right)\left(x^{b_{1}}+x^{b_{2}}+x^{b_{3}}+x^{b_{4}}+x^{b_{5}}+x^{b_{6}}\right)= \\
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)^{2}
\end{gathered}
$$

Is there a Non-Standard Labeling That... Cont.

$$
\begin{gathered}
\left(x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}+x^{a_{5}}+x^{a_{6}}\right)\left(x^{b_{1}}+x^{b_{2}}+x^{b_{3}}+x^{b_{4}}+x^{b_{5}}+x^{b_{6}}\right)= \\
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)^{2}=x^{2}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)^{2}= \\
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}
\end{gathered}
$$

Is there a Non-Standard Labeling That. . . Cont.

$$
\begin{gathered}
\left(x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}+x^{a_{5}}+x^{a_{6}}\right)\left(x^{b_{1}}+x^{b_{2}}+x^{b_{3}}+x^{b_{4}}+x^{b_{5}}+x^{b_{6}}\right)= \\
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)^{2}=x^{2}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)^{2}= \\
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}
\end{gathered}
$$

What properties do the polys we are looking for have?

1. $a_{6}=1$ and $b_{6}=1$ since otherwise cannot get a 2 . So both poly's have a factor of x.
2. $\left(1^{a_{1}}+1^{a_{2}}+x^{a_{3}}+1^{a_{4}}+1^{a_{5}}+1^{a_{6}}\right)=6$. So if $f(x)$ is a factor need $f(1)=6$.

Is there a Non-Standard Labeling That. . . Cont.

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}=
$$

$$
x(x+1)^{a}\left(x^{2}-x+1\right)^{b}\left(x^{2}+x+1\right)^{c} * x(x+1)^{2-a}\left(x^{2}-x+1\right)^{2-b}\left(x^{2}+x+1\right)^{2-c}
$$

Is there a Non-Standard Labeling That. . . Cont.

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}=
$$

$x(x+1)^{a}\left(x^{2}-x+1\right)^{b}\left(x^{2}+x+1\right)^{c} * x(x+1)^{2-a}\left(x^{2}-x+1\right)^{2-b}\left(x^{2}+x+1\right)^{2-c}$.

Since $f(1)=6$ and $g(1)=6$ we have conditions $1 \times 2^{a} \times 1^{b} \times 3^{c}=6$ and $1 \times 2^{2-a} \times 1^{2-b} \times 3^{2-c}=6$. So

$$
a=1 \quad b \in\{0,1,2\} \quad c=1 .
$$

Is there a Non-Standard Labeling That. . . Cont.

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}=
$$

$x(x+1)^{a}\left(x^{2}-x+1\right)^{b}\left(x^{2}+x+1\right)^{c} * x(x+1)^{2-a}\left(x^{2}-x+1\right)^{2-b}\left(x^{2}+x+1\right)^{2-c}$.

Since $f(1)=6$ and $g(1)=6$ we have conditions $1 \times 2^{a} \times 1^{b} \times 3^{c}=6$ and $1 \times 2^{2-a} \times 1^{2-b} \times 3^{2-c}=6$. So

$$
a=1 \quad b \in\{0,1,2\} \quad c=1 .
$$

$b=0$ and $b=2$ are symmetric so we just do $b=0$ and $b=1$.

The Non-Standard Labeling

Case $b=0$: Then the polynomials for the dice are $x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$. $x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x$.

The Non-Standard Labeling

Case $b=0$: Then the polynomials for the dice are $x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$. $x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x$. So the dice are $(1,2,2,3,3,4)$ and ($1,3,4,5,6,8$). GREAT- these are nonstandard dice that give the same probs as standard dice.

The Non-Standard Labeling

Case $b=0$: Then the polynomials for the dice are $x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$.
$x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x$.
So the dice are $(1,2,2,3,3,4)$ and ($1,3,4,5,6,8$).
GREAT- these are nonstandard dice that give the same probs as standard dice.

Case $b=1$: Then the polynomials for the dice are $x(x+1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)=\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)$. $x(x+1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)=\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)$.
So the dice are $(1,2,3,4,5,6)$ and $(1,2,3,4,5,6)$.
The standard dice.
Upshot there is only ONE pair of nonstandard dice that give the same probabilities as the standard dice. That pair is $(1,2,2,3,3,4)$ and ($1,3,4,5,6,8$).

