Certifying a Number is in A using Polynomials

(This post was done with the help of Max Burkes and Larry Washington.)

During this post, N*{1,2,3,...}.

Recall: Hilbert’s 10th problem was to (in todays terms) find an algorithm
that would, on input a polynomial p(zy,...,x,) € Z[z|, determine if there
are integers ay, . .., a, such that p(as,...,a,) =0.

From the combined work of Martin Davis, Yuri Matiyasevich, Hillary
Putnam, and Julia Robinson it was shown that there is no such algorithm.
I have a survey on the work done since then, see

https://arxiv.org/abs/2104.07220.

The following is a corollary of their work:

Main Theorem Let A C N* be an r.e. set. There is a polynomial

p(y07yl> <. 7yﬂ) € Z[yOa Yiy - ,yn] such that

(x € A) iff Baq,...,a, € N)[(p(x,a1,...,a,) =0)A (z > 0)]}.
Note

1. Actual examples of polynomials p are of the form

P1Y0s Yt -2 Yn)? + D20, Yts s Un) >+ A P (Yos Yts - -+ 5 Un)?

as a way of saying that we want aq,...,a, such that the following are
all true simultaneously:

pl(xaa’lw"van) :07 p2($7a17"'7an) :07 "'7pm($aal7"'7an) :07

2. The condition x > 0 can be phrased

(321, 29, 23, 24)[x — 1 — zf — zg — z§ _ Zi =0).

This phrasing uses that every natural number is the sum of 4 squares.

The Main theorem gives a ways to certify that x € A: Find ay,...,a, € Z
such that p(z,as,...,a,) =0.

Can we really find such a4,...,a,?



A High School student, Max Burkes, working with my math colleague
Larry Washington, worked on the problem of finding a4, ..., a,.

Not much is known on this type of problem. We will see why soon. Here
is a list of what is known.

1. Jones, Sato, Wada, Wiens (see
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/Jonesh10.pdf)

obtained a 26-variable polynomial q(z1,...,xe) € Z[x,...,x9] such
that

x € PRIMES iff (Jay,...as € N)[(q(ay,...,ax =x) A (z > 0)].

To obtain a polynomial that fits the main theorem take

p(z, 21, ..., T2, 21, 22, 23, 24) = (1—q(21, ..., Tog)) 2 H (2] +25+25+23 )2

Jones et al. wrote the polynomial ¢ using as variables a, ...,z which
is cute since thats all of the letters in the English Alphabet. See their
paper pointed to above, or see Max’s paper here: https://www.cs.
umd . edu/~gasarch/BLOGPAPERS/BurkesMax . pdf

2. Nachiketa Gupta, in his Masters Thesis, (see
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/PrimeThesis.pdf)

tried to obtain the the 26 numbers ay, . . ., ass such that g(aq, . .., ax) =
2 where ¢ is the polynomial that Jones et al. came up with. Nachiketa
Gupta found 22 of them. The other 4 are, like the odds of getting a
Royal Fizzbin, astronomical. Could todays computers (21 years later)
or Al or Quantum or Quantum Al obtain those four numbers? No, the
numbers are just to big.

3. There is a 19-variable polynomial p from the Main Theorem for the set

{(z,y,k): 2" =y}.



See Max’s paper here https://www.cs.umd.edu/~gasarch/BLOGPAPERS/
BurkesMax.pdf Page 2 and 3, equations 1 to 13. The polynomial p is
the sum of squares of those equations. So for example r(z,y,z) = 1
becomes (r(x,y,2) — 1)2.

Max Burkes found the needed numbers to prove 1 = 1 and 22 = 4.
The numbers for the 22 = 4 are quite large, though they can be written
down (as he did). His paper is here

https://www.cs.umd.edu/~gasarch/BLOGPAPERS/BurkesMax . pdf

Some Random Thoughts:

1. Tt is good to know some of these values, but we really can’t go much
further.

2. Open Question: Can we obtain polynomials for primes and other r.e.
sets so that the numbers used are not that large. Tangible goals: (1)
Get a complete verification-via-polynomials that 2 is prime. (2) The
numbers to verify that 23 = 8.

3. In a 1974 book about progress on Hilbert’s problems (I reviewed it in
this book rev col:

https://www.cs.und.edu/~gasarch/bookrev/44-4.pdf.

there is a chapter on Hilbert’s 10 problem by Davis-Matiyasevich-
Robinson that notes the following. Using the polynomial for primes,
there is a constant ¢ such that, for all primes p there is a computation
that shows p is prime in < ¢ operations. The article did not men-
tion that the operations are on enormous numbers. OPEN: Is there
some way to verify a prime with a constant number of operations using
numbers that are not quite so enormous.



