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A PROOF OF A PARTITION THEOREM FOR [Q]n
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(Communicated by Alan Dow)

Abstract. In this note we give a proof of Devlin’s theorem via Milliken’s
theorem about weakly embedded subtrees of the complete binary tree 2<N.
Unlike the original proof which is (still unpublished) long and uses the language
of category theory, our proof is short and uses direct combinatorial reasoning.

A tree is any partially ordered set (T,≤) such that for any t ∈ T the set {s ∈
T : s ≤ t} is well ordered by the induced order. Given a tree T we say that S is
a subtree of T if S ⊆ T . From now on we will suppose that every tree has a root,
i.e. we will suppose that every tree has the unique minimal element. We will also
suppose that that for a given tree T , for every t ∈ T ,{s ∈ T : s ≤ t} is finite. By
Succ(t, T ) we will denote the set {s ∈ T : t ≤ s} and by Pred(t, T ) we will denote
the set {s ∈ T : s ≤ t}. Given a tree T and t ∈ T by IS(t, T ) we will denote the set
of immediate succesors of t in T . By T (n) we will denote the n-th level of T , i.e.
the set of all t ∈ T such that |{s ∈ T : s ≤ t, s 6= t}| = n. For a tree T , height(T )
will denote sup{n+ 1 : T (n) 6= ∅}. We say that a tree (T,≤) is perfect if for every
t ∈ T there is s ∈ T such that t ≤ s and |IS(s, T )| ≥ 2. Given a tree T and nodes
s and t in T by s ∧ t we will denote the maximal node in T which is below both s
and t. If A ⊆ T , by ∧(A) we will denote the ∧ - closure of A, the smallest subset
A′ of T containing A such that (∀s, t ∈ A′)s ∧ t belongs to A′.

Most of the time we shall be working inside the complete binary tree 2<N ordered
by end-extension which we denote by ⊆. We shall also need to consider the two
orderings on 2<N, <lex and ≤Q, which we introduce in the following two definitions.

Definition 0.1. Let s, t ∈ 2<N. We say that s is lexicographically less than t and
write s <lex t provided the following hold: s and t are incomparable and if i ∈ N is
the maximal integer such that s � i+ 1 = t � i+ 1, then s(i + 1) < t(i + 1).

Definition 0.2. Given s, t ∈ 2<N put t ≤Q s iff s = t or ((s ⊆ t and sˆ0 ⊆ t) or
(t ⊆ s and tˆ1 ⊆ s) or (s and t are incomparable and t <lex s)).

Note that while ≤Q is a total order <lex is not. But, <lex is a total order on
any antichain of 2<N and in fact it agrees with ≤Q. It is also easy to check that
(2<N,≤Q) has the order type η.

Let A ∈ [2<N]n for some n ∈ N. From now on by {a1, ..., an}≤Q we will denote
the enumeration of elements of A with respect to ≤Q.
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Figure 1.

Definition 0.3. Suppose that S is a subtree of T . We say that S is strongly
embedded in T (see Figure 1 for the case T = 2<N) if the following hold:

1) If s is a nonmaximal in S and t ∈ IS(s, T ), then Succ(t, T ) ∩ IS(s, S) is a
singleton,

2) If height(T ) = ω and height(S) ≤ ω there is strictly increasing function
f : height(S)→ ω such that S(n) ⊆ T (f(n)) for each n ∈ height(S).

Suppose in the previous definition we drop requirement 2), and instead of 1) we
have:

1′) If s is a nonmaximal in S and t ∈ IS(s, T ), then Succ(t, T )∩IS(s, S) is either
a singleton or empty.

Then we say that S is weakly embedded in T .
By WEm<ω(T ) we will denote the set of all finite weakly embedded subtrees of

T .

Definition 0.4. Given a strongly embedded subtree T of 2<N and trees A and B
weakly embedded in T , we say that A and B have the same embedding type and
we write A ∼Em B provided the following hold:

1) There is a bijection f : A→ B satisfying a ⊆ a′ iff f(a) ⊆ f(a′).
2) If a ∈ A∩T (n), a′ ∈ A∩T (n′), f(a) ∈ B∩T (m), and f(a′) ∈ B∩T (m′), then

n < n′ iff m < m′.
3) Suppose n ∈ ω and there is d ∈ A∩T (n). Suppose a ∈ T (n) with (Succ(a, T )\
{a}) ∩ A 6= ∅. Pick c ∈ (Succ(a, T ) \ {a}) ∩ A, and let b be the unique
node with b ∈ Pred(c, T ) ∩ T (n + 1). Suppose f(d) ∈ T (m), and write
a′ and b′ for the unique nodes a′ ∈ (Pred(f(c), T ) \ {f(c)}) ∩ T (m) and
b′ ∈ Pred(f(c), T )∩T (m+ 1). Then we require that aˆ0 ⊆ b iff a′ˆ0 ⊆ b′ (see
Figure 2).

Note that this is not the same as the original definition given in [3]. Originally,
we have that in a finitely branching tree T , for each t ∈ T there is a linear order ≺
on IS(t, T ). In other words, for each t ∈ T , IS(t, T ) can be enumerated as

IS(t, T ) = {is(t, T )(j) : j ∈ |IS(t, T )|}
so that

is(t, T )(i) ≺ is(t, T )(j)⇔ i ∈ j ∈ |ISt, T )|.
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Figure 2.

Also, in 3) of the previous definition of the embedding type of a weakly embedded
subtree, it is required that for each i ∈ |Is(a, T )|, b = is(a, T )(i) iff b′ = is(a′, T )(i).
In the case of strongly embedded subtrees of the complete binary tree we naturally
take the ordering <lex to be the linear order ≺. Then it is easy to see that our
definition is equivalent to the original one when working with strongly embedded
subtrees of 2<N. We write EmA(T ) for the collection of all weakly embedded
subtrees B of T with A ∼Em B. The following theorem, which is due to Milliken
[3], is crucial for our proof.

Theorem 0.5. Suppose that T is a perfect strongly embedded subtree of 2<N, that
A ∈ WEm<ω(T ), and that EmA(T ) =

⋃
i∈r Ci. Then there is a perfect strongly

embedded subtree S of T and k ∈ r such that EmA(T ) ∩WEm<ω(S) ⊆ Ck.

We will now state the theorem which is due to Devlin [2].

Theorem 0.6. We have:
1) η → (η)n<ω/tn ,
2) η 9 (η)n<ω/tn−1

where t1 = 1 and tn =
∑n−1

i=1

(
2n− 2
2i− 1

)
titn−i for n ≥ 2.

We will prove three lemmas which will prove Theorem 0.6. The first two prove
1), and the last proves 2).

From now on we identify the rationals with the set of all finite sequences of 0’s
and 1’s.

Given a colouring c : [2<N]n → r, it naturally induces a colouring c′ : F → r
where F is a family of all subsets A of 2<N such that there is an A′ ∈ [2<N]n and
A = ∧(A′). It is easy to see that we have only finitely many different embedding
types which appear as a ∧ - closure of n-element subsets of 2<N. For example the
∧ - closure of a pair in 2<N gives us seven different embedding types. These are
(see Figure 3) {{∅, 0}, {∅, 1}, {∅, 0, 1}, {∅, 0, 10}, {∅, 0, 11}, {∅, 1, 00}, {∅, 1, 01}}.

Hence, we can apply Theorem 0.5 successively finitely many times to get a perfect
strongly embedded subtree T of the complete binary tree 2<N such that if A =
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Figure 3.

X

Figure 4.

{a1, a2, ..., an} and B = {b1, b2, ..., bn} are two different n-element subsets of T and
if ∧(A) ∼Em ∧(B), then c(A) = c(B). We can assume without loss of generality
that we have the complete binary tree 2<N such that all n-element subsets which
have ∧ - closure of the same embedding type are monochromatic.

It turns out that there is a subset X of 2<N large enough in the sense that it has
order type η under <lex and which has the property that for each n the members
of [X ]n realise the minimal possible number of embedding types over all subsets of
2<N of order type η under ≤Q. We introduce the set X in the following definition.

Definition 0.7. Let {en : n ∈ N} be an enumeration of the complete binary
tree with the property that for any two en, em we have m < n iff |em| < |en| or
(|em| = |en| and em <lex en). Define φ : 2<N → 2<N by induction as follows:
φ(∅) = ∅ and given φ(t) if tˆi = en put φ(tˆi) = φ(t)ˆiˆ00...0 and |φ(tˆi)| = 3n,
where i = 0, 1. From now on by W and X we will denote the following two sets,
W = φ′′2<N and X = {φ(t)ˆ01 : t ∈ 2<N} (see Figure 4).

Note that X is an antichain and that (X,<lex) = (X ≤Q) has the order type
η. Let A ∈ [X ]n be arbitrary. It is easy to see that | ∧ (A)| = 2n − 1. It is
also easy to see that for any Y ⊆ X we have ∧(Y ) = {s ∧ t : s, t ∈ Y }. Let
∧(A) = {a1, a2, ..., a2n−1}≤Q . Define a well-ordering <WA of the set {1, 2, ..., 2n−1}
as follows: i <WA j iff |ai| < |aj |. Then we have the following lemma.
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Lemma 0.8. Let A and B be two n-element subsets of X. If ∧(A) ∼Em ∧(B),
then <WA=<WB .

Proof. We will prove this by induction on n. For n = 1 the lemma holds trivially.
Suppose that the lemma is true for every k ≤ n and let us prove the lemma for n+1.
Let A,B ∈ [X ]n+1 and let A′ = {a1, a2, ..., a2n+1}≤Q and B′ = {b1, b2, ..., b2n+1}≤Q
where A′ = ∧(A) and B′ = ∧(B). Let ak and bl be the roots of A′ and B′

respectively. Set A1 = {x ∈ A′ : akˆ0 ⊆ x} , A2 = {x ∈ A′ : akˆ1 ⊆ x}
and similarly define B1 and B2. Then, if f : A′ → B′ is a bijection witnessing
A′ ∼Em B′ it is easy to see that f(ak) = f(bl) and therefore k = l. Also, it is
easy to see that f � A1 is a bijection from A1 onto B1 witnessing A1 ∼Em B1 and
f � A2 is a bijection from A2 onto B2 witnessing A2 ∼Em B2. Therefore, we can
apply inductive hypothesis to A1, B1 and to A2 and B2 and easily conclude the
lemma.

Hence, from the lemma above one concludes that the embedding type of the
∧(A) of some A ∈ [X ]n is determined completely by its well-ordering <WA . This
will help us to count the number of possible colours for n-tuples of X .

Lemma 0.9. For each n let tn be the minimal number of embedding types which
appear as the ∧-closure of n-element subsets of X. Then

t1 = 1 and tn =
n−1∑
i=1

(
2n− 2
2i− 1

)
titn−i.

Proof. That t1 = 1 is easy and well-known. So, suppose that n > 1 and let
A′ be the ∧ - closure of some n-element subset A = {a1, a2, ..., an} in X . Set
B′ = {x ∈ A′ : aˆ0 ⊆ x} and C′ = {x ∈ A′ : aˆ1 ⊆ x} where a is the root of A′.
Let l = |{ai : ai ∈ B′}| and r = |{ai : ai ∈ C′}|. Note that 1 ≤ l, r and l + r = n.
Note also that B′ = ∧(B) and C′ = ∧(C) where B = A ∩ B′ and C = A ∩ C′.
Note that for fixed l, r ≤ n we have by inductive hypothesis tltr different types
of pairs 〈B,C〉. By the previous lemma structure A′ is completely determined by
its well-ordering <WA . The well-ordering <WA interlaces the well-orderings <WB

and <WC and adjoins a as the <WA minimal element. (For n = 2 and n = 3 see
Figure 6 and Figure 7 respectively.) The number of possible ways <WB and <WC

can be interlaced to form <WA is
(|B′|+|C′|
|B′|

)
=
(

2n−2
2l−1

)
. Therefore, the total number

of possibilities for A′ is

tn =
n−1∑
l=1

(
2n− 2
2l − 1

)
tltn−l.

This proves 1) of Devlin’s theorem. The next lemma will prove 2).

Lemma 0.10. Let S ⊆ X and let S have ≤Q - order type η. Then for every
P ∈ [X ]n there is A ∈ [S]n such that ∧(P ) ∼Em ∧(A).

Proof. Set S′ = {x ∈W : both {s ∈ S : xˆ0 ⊆ s} and {s ∈ S : xˆ1 ⊆ s} are densely
ordered by ≤Q}. We will prove that S′ is a perfect subtree. Let s′ be the root of the
∧(S). Note that s′ ∈ W . Put U = {t ∈ S : s′ˆ0 ⊆ t} and V = {t ∈ S : s′ˆ1 ⊆ t}.
Then U and V are nonempty, U ∪ V = S and ∀u ∈ U and ∀v ∈ V we have that
u ≤Q v. Since S has order type η, U and V are densely ordered by ≤Q and s′ ∈ S′.
Given s ∈ S′ put U = {t ∈ S : sˆ0 ⊆ t} and let U ′ = U \ {u ∈ U : u is an
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Figure 5.

Figure 6. Embedding types in the case n = 2

endpoint of the dense linear order (U,≤Q)}. Let u be the ⊆ - least node of the
∧(U ′). As above, both {w ∈ U ′ : uˆ0 ⊆ w} and {w ∈ U ′ : uˆ1 ⊆ w} are densely
ordered by ≤Q. Because the only points deleted from U to form U ′ were endpoints,
{w ∈ U : uˆ0 ⊆ w} and {w ∈ U : uˆ1 ⊆ w} are also both densely ordered by ≤Q.
Hence u ∈ S′. By the same argument, v ∈ S′ is found such that sˆ1 ⊆ v. Note
that |IS(s, S′)| = 2 for every s ∈ S′. Let f : S′ → S be a fixed one-to-one function
such that

a) sˆ0 ⊆ f(s)

for every s ∈ S′. It is easy to define such a function by induction because by the
construction {s ∈ S : xˆ0 ⊆ s} is infinite for every x ∈ S′. Let Z be the perfect
subtree of S′ (see Figure 5) with the property that for every x, y ∈ Z:

b) |x| < |y| iff |x| < |f(y)| iff |f(x)| < |y| iff |f(x)| < |f(y)|,
c) if x ∈ Z(m), y ∈ Z(n), then |x| < |y| iff m < n or (m = n and x <lex y).
Again, it is easy to construct such a subtree because S′ is perfect. Define by

induction a bijection ψ : W → Z as follows: put ψ(root(W )) = root(Z). Having de-
fined ψ �

⋃
k≤nW (k), let W (n+ 1) = {w1, ..., w2n+1} and Z(n+ 1) = {z1, ..., z2n+1}

be enumerations of n + 1-st levels of W and Z respectively such that for all
1 ≤ i, j ≤ 2n+1 we have i < j iff |wi| < |wj | iff |zi| < |zj|. Then put ψ(wi) = zi for
all 1 ≤ i ≤ 2n+1. Note that we must have necessarily:
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Figure 7. Embedding types in the case n = 3

d) w1ˆ0 ⊆ w2 iff ψ(w1)ˆ0 ⊆ ψ(w2) for every w1, w2 ∈W and
e) (w1 ∧w2)ˆ0 ⊆ w1 iff (ψ(w1) ∧ ψ(w2))ˆ0 ⊆ ψ(w1) for every w1, w2 ∈ W .
Let P = {p1, ..., pn}≤Q ∈ [X ]n. Let P ′ = {p : pˆ01 ∈ P}, A′ = ψ′′P ′ and

A = f ′′A′. Let f ′ : ∧(P ) → ∧(A) be an extension of f defined as follows: given
pi, pi+1 ∈ P put f ′(pi ∧ pi+1) = f(ψ(p′i)) ∧ f(ψ(p′i+1)) where p′i, p

′
i+1 ∈ P ′ are

unique elements such that p′iˆ01 = pi and p′i+1ˆ01 = pi+1, and for every pi ∈ P
put f ′(pi) = f(ψ(p′i)) where p′i ∈ P ′ is the unique element such that p′iˆ01 = pi.
It is easy to see that f ′ is a bijection from ∧(P ) onto ∧(A). Let us prove that f ′

satisfies 1), 2) and 3) of Definition 0.4. 1) follows from the definition of ψ and f
and f ′. By a), b) and c) we have that f ′ satisfies 2), and 3) follows from a), d) and
e). Hence, ∧(P ) ∼Em ∧(A). This finishes the proof of the lemma.
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