
Placing Pennies on a Chessboard to Obtain Distinct Distances
By William Gasarch

1 Introduction

Neither the problem nor the solution of the topic of this paper are mine. I heard the problem
at the Boston AMS-MAA joint meeting in Boston in 2023, though it seems to be due to Matt
Parker (I have not been able to find a reference). I blogged about it asking for a solution
and was pointed to a website which had a solution. This paper is essentially that solution,
only (1) with details that are normally (and correctly) left to the reader filled in, (2) some
suggested open problems, and (3) references to papers with similar problems.

Convention 1.1 Throughout this paper (1) an n× n chessboard has all squares 1× 1, (2)
pennies have diameter 1, (3) the distance between two pennies is the distance between their
centers.

Def 1.2 Let k, n ∈ N+ with k ≤ n.

1. (k, n) is placeable if there is a way to place k pennies on an n×n chessboard such that
all the distances are distinct.

2. n is placeable if (n, n) is placeable.

Matt Parker asked the following:
Which n are placeable?

Oscar Cunningham, in his blog here:
https://oscarcunningham.com/670/unique-distancing-problem/

solved the problem with help from Gal Holowitz. We state what he claims and give comments
on it:

1. Oscar Cunningham used a computer search and found that, for 3 ≤ n ≤ 7, n is
placeable. This was also shown by Erdős and Guy [1] (see Section 4 for more on that
paper) who we suspect did not use a computer. We give the placements of Erdős and
Guy in the appendix.

2. Oscar Cunningham used a computer search to show that, for 8 ≤ n ≤ 11, n is not
placeable. We pose the following open question: find a human-readable proof.
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3. Gal Holowitz used a computer search to show that, for 12 ≤ n ≤ 14, n is no placeable.
We pose the following open question: find a human-readable proof.

4. Oscar Cunningham states that
But for the n = 15 case their code is still running!

That was written in 2020 so one presumes the code has stopped running. In any case,
the n = 15 case did not seem amenable to a computer search. Oscar Cunningham then
gave an elegant human-readable proof that 15 is not placeable. We present that proof
in this paper.

5. Oscar Cunningham says that for all n ≥ 16

it is trivial that there are no solutions (what we call placements) because the
number of pairs of counters (what we call pennies) is greater than the number
of possible distances on the grid.

While this is true, we did not think it was trivial. Hence we have provided a short
proof.

2 15 is NOT Placeable

Def 2.1 Let f(n) be the number of numbers that can be written as the sum of 2 squares in
at least 2 ways using numbers from {0, . . . , n− 1}.

Lemma 2.2 The number of distances between squares on the n× n chessboard is

≤ n(n− 1)

2
+ n− 1− f(n).

Proof: The set of distances between squares is the set of distances from the left bottom
square (LBS) to all of the other squares, minus repeats. First look at the distance from the
LBS to the top right square. Then from the LBS to the two squares that are furthest away
in the second-to-top row. Etc. This is 1 + 2 + · · ·+ (n− 1) = n(n−1)

2
. Then we add in all of

the squares in the bottom row except the LBS. That’s n− 1. We then subtract the number
of repeats which is ≥ f(n). Hence the number of distances is

≤ 1 + 2 + 3 + · · ·+ (n− 1) + (n− 1)− f(n) =
n(n− 1)

2
+ n− 1− f(n)
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Theorem 2.3 15 is not placeable.

Proof:
f(15) ≥ 14. We list 14 numbers that can be written as a2 + b2 with a, b ∈ {1, . . . , 15}. It

turns out that f(15) = 14 though we do not need that and do not prove it.
25 = 0× 0 + 5× 5 = 3× 3 + 4× 4
50 = 1× 1 + 7× 7 = 5× 5 + 5× 5
65 = 1× 1 + 8× 8 = 4× 4 + 7× 7
85 = 2× 2 + 9× 9 = 6× 6 + 7× 7
100 = 0× 0 + 10× 10 = 6× 6 + 8× 8
125 = 2× 2 + 11× 11 = 5× 5 + 10× 10
130 = 3× 3 + 11× 11 = 7× 7 + 9× 9
145 = 1× 1 + 12× 12 = 8× 8 + 9× 9
169 = 0× 0 + 13× 13 = 5× 5 + 12× 12
170 = 1× 1 + 13× 13 = 7× 7 + 11× 11
185 = 4× 4 + 13× 13 = 8× 8 + 11× 11
200 = 10× 10 + 10× 10 = 2× 2 + 14× 14
205 = 3× 3 + 14× 14 = 6× 6 + 13× 13
221 = 10× 10 + 11× 11 = 5× 5 + 14× 14

Since f(15) ≥ 14, by Lemma 2.2 the number of possible distances is

≤ 15× 14

2
+ 14− 14 =

15× 14

2
=

(
15

2

)
.

AH-HA! To place 15 pennies you need to achieve
(
15
2

)
distances. Hence EVERY distance

must appear.
All of the distances are of the form

√
a2 + b2 where 1 ≤ a ≤ b ≤ 14. We list here the top

6 distances.

1.
√
142 + 142 =

√
392.

2.
√
132 + 142 =

√
365.

3.
√
122 + 142 =

√
340.

4.
√
132 + 132 =

√
338.

5.
√
112 + 142 =

√
317.

6.
√
122 + 132 =

√
313.
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We try to place pennies to get these distances and show that we cannot.
The largest distance,

√
392, can only be achieved by having two pennies in opposite

diagonal corners. Hence we can assume that p1 and p2 are as in Figure 1. We use X to
indicate spots where no penny can go since they are equidistant from p1 and p2.

p1 X
X

X
X

X
X

X
X

X
X

X
X

X
X

X p2

Figure 1: Placement of p1 and p2

1. d(p1, p2) =
√
392
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The second largest distance,
√
132 + 142 =

√
365 can only be achieved by going from

corner to the space next to the oppoiste diagonal corner . Given where we place p1 and p2
the only way to achieve this is to place p3 as in Figure 2. We once again place X’s in places
where no penny can go.

p1 p3 X X
X X X

X
X

X
X

X
X

X
X

X
X

X
X X

X X p2

Figure 2: Placement of p1, p2, p3

1. d(p1, p2) =
√
392

2. d(p1, p3) = 1,

3. d(p2, p3) =
√
365
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The third largest distance,
√
122 + 142 =

√
340 can only be acheived by going from a

corner to two away from the diagonally opposite corner (pennies p2 and p5 in Figure 4).
Given how we placed p1, p2, p3 there are 3 ways to place a penny to achieve this. This is not
what we want! We want there to be only one way! Hence we put off getting this distance
for now.

The fourth largest distance,
√
132 + 132 =

√
338, is from a corner to the square that is

diagonally next to the diagonally opposite corner. Given where we placed p1, p2, p3, the only
way to achieve this is placing p4 as in Figure 3

p1 p3 X X X
X X X X X

X X X
X X

X X
X X

X X
X X

X X
X X

X X
X X

X X X X X
X X X p4 X
X X X p2

Figure 3: Placement of p1, p2, p3, p4

1. d(p1, p2) =
√
392

2. d(p1, p3) = 1

3. d(p1, p4) =
√
338

4. d(p2, p3) =
√
365

5. d(p2, p4) =
√
2

6. d(p3, p4) =
√
313
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We now place the third largest distance,
√
142 + 122 =

√
340. As noted earlier, this can

only be acheived by going from a corner to two away from the diagonally opposite corner
Given how we place p1, p2, p3, p4 there we are forced to place p5 as in Figure 4.

p1 p3 X X X
X X X X X
p5 X X X

X X
X X

X X
X X

X X
X X

X X
X X

X X
X X X X X

X X X p4 X
X X X p2

Figure 4: Placement of p1, p2, p3, p4, p5

1. d(p1, p2) =
√
392

2. d(p1, p3) = 1

3. d(p1, p4) =
√
338

4. d(p1, p5) = 2

5. d(p2, p3) =
√
365

6. d(p2, p4) =
√
2

7. d(p2, p5) =
√
340

8. d(p3, p4) =
√
313

9. d(p3, p5) =
√
5

10. d(p4, p5) =
√
290
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p1 p3 X p62 X X
X X X X X
p5 X X X
p26 X X

X X
X X

X X
X X

X X
X X

X X
X X p16

X X X X X
X X X p4 Xp56
X p16 Xp36 X p2

Figure 5: Attempt to Place p6

We now try to place p6 to create the fifth largest distance,
√
112 + 142 =

√
317. We

show this cannot be done. For 1 ≤ i ≤ 5 we place p6 in the place(s) it needs to be to get
d(pi, p6) =

√
317. We label those places pi6.

Recall that we cannot use a distance twice.

1. For both p16’s, d(p
1
6, p4) =

√
5 = d(p3, p5).

2. For one of the p26, d(p
2
6, p5) = d(p1, p3) = 1. For the other one d(p26, p3) = d(p1, p5) = 2.

3. p36 is on an X spot.

4. There is no p46 since it would be off the board.

5. p56 is on an X spot.

3 For all n ≥ 16, n is not placeable

Theorem 3.1
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1. Let a, b, c, d ∈ N with (a, b) ̸= (c, d) such that 4 ≤ a, c and 1 ≤ b, d ≤ 3. Then
a2 + b2 ̸= c2 + d2, so 5(a2 + b2) ̸= 5(c2 + d2).

2. If n ≥ 33 then f(n) ≥ n.

3. If n ≥ 16 then f(n) ≥ n.

4. For all n ≥ 16 the number of distances between spaces on the n × n chess board is
≤

(
n
2

)
− 1.

5. For all n ≥ 16, n is not placeable.

Proof:
1) There are three cases.
Case 1: a = c. Then we have b ̸= d. We can assume b2 < d2. Hence we get

a2 + b2 < c2 + d.

Case 2: a < c so c − a > 0. Since 4 ≤ a, c and a < c we have a + c ≥ 9. Using all of this
we get:

c2 − a2 = (c+ a)(c− a) ≥ a+ c ≥ 9

so

a2 + 9 ≤ c2.

Now we look at a2 + b2. Since b ≤ 3, b2 ≤ 9. Hence

a2 + b2 ≤ a2 + 9 ≤ c2.

Since d ≥ 1, c2 < c2 + d2. Combining this with the above equation we get

a2 + b2 ≤ a2 + 9 ≤ c2 < c2 + d2.

Hence a2 + b2 ̸= c2 + d2.
Case 3: c < a. Similar to Case 2.

2) For each (a, b) with a > b > 0 we can write 5(a2 + b2) as a sum of two squares in two
different ways:

5(a2 + b2) = (|a− 2b|)2 + (2a+ b)2 = (a+ 2b)2 + (2a− b)2.
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Since a > b > 0, we see that 2a+ b is larger than the other numbers, so these representations
are distinct.

For n ≥ 33 we will use this to get many elements of {1, . . . , n} that can be written as the
sum of two squares in two different ways. We need to spilt up cases for n even and n odd.
Note that we will only need 2a+ b ≤ n since that is the largest number.

Case 0: n even: Let 4 ≤ a ≤ n−4
2

and 1 ≤ b ≤ 3. There are n−10
2

× 3− 2 = 3n
2
− 17 pairs

(a, b). When n ≥ 34, this is ≥ n.
We now show that 2a+ b ≤ n.

2a+ b ≤ 2

(
n− 4

2

)
+ 3 < n

Case 1: n odd: Let 4 ≤ a ≤ n−3
2

and 1 ≤ b ≤ 3. We have n−9
2

× 3 − 2 = 3n
2
− 31

2
pairs.

When n ≥ 31, this is ≥ n.
We now show that 2a+ b ≤ n.

2a+ b ≤ 2

(
n− 3

2

)
+ 3 = n.

3) Part 2 we only need to prove the theorem for n = 16, . . . , 32.
By the proof of Theorem 2.3 we know that f(15) ≥ 14. We indicate what numbers to

add to that list of 14.
16: Add 225 and 250:

225 = 0× 0 + 15× 15 = 9× 9 + 12× 12
250 = 5× 5 + 15× 15 = 9× 9 + 13× 13
So f(16) ≥ 14 + 2 = 16.

17,18: Add 260 and 265:
260 = 2× 2 + 16× 16 = 8× 8 + 14× 14
265 = 11× 11 + 12× 12 = 3× 3 + 16× 16
So f(17) ≥ 16 + 2 = 18.
Hence f(18) ≥ 18.

19,20,21,22: Add 365, 370, 377, 410:
365 = 13× 13 + 14× 14 = 2× 2 + 19× 19
370 = 3× 3 + 19× 19 = 9× 9 + 17× 17
377 = 11× 11 + 16× 16 = 4× 4 + 19× 19
410 = 11× 11 + 17× 17 = 7× 7 + 19× 19
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So f(19) ≥ 18 + 4 = 22.
Hence f(20), f(21), f(22) are all ≥ 22.

23,24,25,26,27,28,29,30: Add 530, 533, 545, 565, 578, 610, 629, 650.
530 = 13× 13 + 19× 19 = 1× 1 + 23× 23
533 = 2× 2 + 23× 23 = 7× 7 + 22× 22
545 = 16× 16 + 17× 17 = 4× 4 + 23× 23
565 = 6× 6 + 23× 23 = 9× 9 + 22× 22
578 = 17× 17 + 17× 17 = 7× 7 + 23× 23
610 = 13× 13 + 21× 21 = 9× 9 + 23× 23
629 = 10× 10 + 23× 23 = 2× 2 + 25× 25
650 = 11× 11 + 23× 23 = 17× 17 + 19× 19
So f(23) ≥ 22 + 8 = 30.
Hence f(23), f(24), f(25), f(26), f(27), f(28), f(29), f(30) are all ≥ 30.

31,32: Add 962 and 965.
962 = 11× 11 + 29× 29 = 1× 1 + 31× 31
965 = 17× 17 + 26× 26 = 2× 2 + 31× 31
So f(31) ≥ 30 + 2 = 32.
Hence f(32) ≥ 32.

4) By Lemma 2.2 the number of distances is
(
n
2

)
+ n− 1− f(n). By Part 3, f(n) ≥ n.

Hence the number of distances is ≤
(
n
2

)
− 1.

5) Let n ≥ 16. If n is placeable then there is a way to place n pennies on the n×n chessboard
so that all

(
n
2

)
distances occur. By Part 4 there are ≤

(
n
2

)
− 1 distances. Hence this cannot

happen.

4 Similar Problems

Erdős and Guy [1] posed the following question: Given n, what is the max k such that (k, n)
is placeable. They showed that if (k, n) is placeable and n is large then, for all ϵ > 0,

Ω(n2/3−ϵ) ≤ k ≤ O

(
n

(log n)1/4

)
.

The Erdős Distance Problem is the following: Given n points in the plane what is the
minimum number of distinct distances. This is denoted by g(n). Erdős showed that
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Ω(
√
n) ≤ g(n) ≤ O

(
n√
log n

)
.

Some sources say Erdős conjectured (∀c < 1)[g(n) = Ω(nc)]. Some sources say that
Erdős conjectured g(n) ≥ Ω( n√

logn
). There was steady progress on better lower bounds (see

the Wikipedia page on Erdos Distinct Distance Problem) with the best result being by Guth
and Katz [2], who showed g(n) ≥ Ω( n

logn
). This solves the first conjecture but not the second.

5 Open Problems

1. The placements for 3,4,5,6,7 are ad-hoc. We would like a theorem from which these
(or some of these) placements are corollaries.

2. The proofs that, for 8 ≤ n ≤ 14, n is not placeable was done by a computer. While we
are confident that these proofs are valid, we would like to see a human-readable proof.
Perhaps like the proof that 15 is not placeable. We suspect that (a) for n = 14 this
is quite possible, though it may be a bit longer than we like, and (b) for n = 8 it will
need new ideas.

3. What happens if you ask these problems in higher dimensions?

4. What happens with other metrics?
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A Placements for 3,4,5,6,7

p1

p2 p3

Figure 6: 3 is Placeable

p1

p2 p3
p4

Figure 7: 4 is Placeable

p1

p2 p3
p4

p5

Figure 8: 5 is placeable
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p4 p5

p3
p6

p2
p1

Figure 9: 6 is placeable

p4 p7
p6

p2 p3

p1 p5

Figure 10: 7 is placeable
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