There is a long path in the divisor graph.

by

Andrew D. Pollington

Let D_n denote the graph whose vertices are the numbers 1, 2, ..., n with an edge joining a and b if either a|b or b|a. Hegyvári has posed the problem of estimating the length of the longest simple path in the divisor graph. He and Erdös have shown that a simple path can have length at most $(1-\log 2)n$, for large n, see [1]. Recently Pomerance [2] has shown that the longest path has length which is o(n). In this note we obtain in an estimate in the opposite direction. We exhibit a path of length

n exp(-(2 +
$$\varepsilon$$
) $\sqrt{\log n \log \log n}$).

From now on, by a path, we shall always mean a simple path, i.e., a path which passes through a vertex at most once. The length of a path will be the number of vertices through which it passes.

The existence of this long path in D_n depends on finding a long path in the inclusion graph I_m , on subsets of $\{a_1,\ldots,a_m\}$. We shall need.

<u>Lemma</u>. If k<m there is a path in the inclusion graph I_m which visits every k-element subset of $\{a_1, \ldots, a_m\}$ but which visits no subset with more than k + l elements.

Note: If k = m - 1, then the Gray code is such a path.

 $\underline{\text{Proof}}$. Let $M_1(a_1, \ldots, a_m)$ denote the path

$$a_1 \rightarrow a_1 a_2 \rightarrow a_2 \rightarrow \dots \rightarrow a_{m-1} a_m \rightarrow a_m$$

Let $W_i(a_1, \ldots, a_m)$ denote the reversal of the path $M_i(a_1, \ldots, a_m)$. We define $M_i(a_1, \ldots, a_m)$ recursively:

$$M_{i}(a_{1}, ..., a_{m}) = a_{1} + a_{1}W_{i-1}(a_{2}, ..., a_{m})$$

$$+ a_{2} + a_{2}W_{i-1}(a_{3}, ..., a_{m})$$

$$+ ...$$

$$+ a_{m-i+1} + a_{m-i+1}W_{i-1}(a_{m-i+2}, ..., a_{m})$$

It is easily checked that the path $\mathbf{M}_k(\mathbf{a_1},\ \dots,\ \mathbf{a_m})$ satisfies the lemma. We now prove:

Theorem. Given $\epsilon>0$ there is an n_0 , so that , for all $n>n_0$ there is a simple path in D_n of length at least

$$n \exp(-(2 + \varepsilon) \sqrt{\log n \log \log n})$$
.

<u>Proof.</u> Put k + 1 = [$\sqrt{\log n/\log\log n}$]. Let m be the greatest integer for which there is a prime $p_m < n^{1/k+1}$. Then, by the lemma, there is a simple path which visits $2\binom{m}{k}$ distinct subsets of $\{p_1, \ldots, p_m\}$ and no subsets with more than k + 1 elements. Therefore there is a path in D_n which visits $2\binom{m}{k}$ vertices.

Now $\binom{m}{k} \ge \binom{m}{k}^k$ for $n > n_1$ and $m > (k+1)n^{1/k+1}$ elog n for $n > n_2$, by the prime number theorem.

With this choice of k we then have $\binom{m}{k} > n \, \exp(-(2 + \varepsilon) \, \sqrt{\log n \, \log \, \log \, n})$ for all $n > n(\varepsilon)$.

References

- [1] Erdős, Freud and Hegyvári. Arithmetical properties of permutations of integers. Acta Math. Acad. Sci. Hung (to appear).
- [2] Pommerance. On the longest simple path in the divisor graph. Congressus Numerantium (to appear).

Andrew D. Pollington Brigham Young University Provo, Utah 84602