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Let U, be the infinite graph with n-dimensional rational space Q" as vertex set and two
vertices joined by an edge if and only if the distance between them is exactly 1. The
connectedness and clique numbers of the graphs U, are discussed.

1. Introduction and definitions

Let R"” and Q" denote real and rational n-space, zcuipped with the usual
Euclidean metric. Let G, denote the infinite graph whose vertices are the points
of R", two vertices adjacent if and only if the distance between them is exactly 1.
It is easy to see that G, is connected for » =2 and the maximum number of points
in R" that are pairwise unit distance apart (the clique number of G,) is n + 1 for
n =1. However, the chromatic number of G, is so far unknown for n =2 [1].

Let U, be the subgraph of G, induced by those vertices that are in Q". In
Section 2 we shall prove that U, is connected if and only if n = 5. In Section 3 we
shall determine the clique number w(n) of U,. For even n, w(n) isn+1orn
according as n +1 is or is not a perfect square. For odd n, if the diophantine
equation nx?—2(n — 1)y*= z? has an integer solution (x, y, z) with x #0, then
w(n)=n+1 or n according as 1(n + 1) is or ic not a perfect square; otherwise,
w(ny=n-1.

2. The connectedness of U,

In this section we shall first prove that U,, U, Us, and U, are all disconnecied
and prove that U, is connected for n=35.

Lemma 1. There is no path in U, connecting the origin (0, 0, 0, 0) to (3, 0, 0, 0).

Proof. Suppose there is. Then, equivalently, there are finitely many points on the
unit sphere in Q* whose sum is (3, 0,0, 0). Let (a,/b, @/b, as/b, as/b) be such a
point, where a,, a,, a3, a4, and b have no common factor and

a?+a2+at+ai=b2 1)
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If b is divisible by 4, then at least one of a,, a3, a3, a, is 0odd, and so the left-hand
side of (1) is not divisible by 8 whereas the right-hand side is. (Recall that the
only squares modulo 8 are 0, 1, and 4.) Thus b is either odd or twice an odd
integer. But the sum of a finite number of fractions with denominators of this
form cannot be equal to }. This completes the proof of the lemma. [

Theorem 2. The graphs Uy, U,, Us, and U, are all disconnected.

Proof. This follows immediately from Lemma 1, since there are obvious
subgraphs of U, that contain the points (0,0,0,0) and (3,0,0,0) and are
isomorphic to U;, U,, and U;, respectively. 0O

Theorem 3. The graph U, is connected for n =5.

Proof. First note that if there exist two paths in U,,, one connecting @ to x and the
other connecting @ to y, then there exists a path from 0 to x +y in U,. With this
observation, it suffices to show that there is a path from € to
»,0,...,0,1/N,0,...,0) in U, for every non-zero integer N with 1/N in the
ith coordinate for i=1,2,...,n. Consider the integer 4N>—1. Since it is
positive it can be written as a sum of four squares by Lagrange’s Four Square
Theorem. Hence, 4N — 1 =a?+ b+ ¢* + d? for some integers a, b, c, and d, or,
equivalently,

=)+ )+ GR) + )+ ()- @

So, there are edges in U, joining 0 and

1 a b c d
G 3% taw a9 *ov
This shows that there is a path of length 2 in U, ccnmecting @ to

(1/N,0,0,.. ., 0). By repeating the above with 1/2N in the ith coordinate, the
desired path is obtained. This completes the proof of the theorem. [J

0,0,...,0).

3. The cligue number of U,

A set of points will be called unidistant if they are pairwise unit distance apart.
Let w(n) denote the maximum number of unidistant points in Q" (the clique
number of U,). We may remark that any unidistant set can be translated so that
the translated unidistant set contains 0. In this section, we first find bounds for
w(r) and then evaluate w(n).

Lemma 4. w(n)<n+ 1.
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Proof. Let {0, y,, y,, . . ., -4 be a unidistant set in Q". Let A be the r X n matrix
whose rows are y;, ¥, - - . , y- Now the r X r matrix AAT has 1’s on the principal
diagonal and } everywhere else. AA” is a non-singular matrix and so,

r =rank(AA") <rank(4) <n.

From this it follows immediately that w(n) <=n + 1. This completes the proof of
the lemma. Ol

Lenima 5. If n =4, then w(n)=n if n is even and w(n)=n—1if n is odd.

Proof. If n is even, define a set S, of » unidistant points as follows:

x,=0

x=(1,0,0,...,0)

x=03%%410...,0)

x==(3,41,-3,0,....0)

x5=(3,%,0,0.3,3,0,...,0)
4,%0,0,4,-3,0,...,0)

L &
i

If n is odd, define a set 7, of n — 1 unidistant points by adding an extra coordinate
zero to the end of each vector in §,_,. O

Theorem 6. w(n) =n + 1 if and only if a set of n unidistant poinis exist in Q" and
(n +1)/2" is a rational square.

Proof. If w(n) =n + 1, then with no loss of generality let {0, x,, . .., x,} be a set
of the n+1 unidistant points in Q". Let A be the nXn matrix having
X, X, ...,X, as its rows. It is clear that det(A) (the determinant of A) is a
rational number. Now det(AAT) = (n + 1)/2" = squarc of det(4), thus showing
that (n + 1)/2" is a rational square.

Suppose (z + 1)/2” is a rational square and {0, %y, . .., X,_,} is a unidistant set
of n points. We will construct a point x, so that {0,x,,...,x,} isa unidistant set
in Q". Consider the (n — 1) X n matrix B having x4, . . . , ¥,-1 a8 its rows. Let B;
be the (n — 1) X (n — 1) matrix obtained from B by deleting its ith column, and let
a;=(—1)"*' det(B,), for i=1,2, ..., n. Defining a vector ¥ =(a;, @, ..., @),
we observe that it has the following properties;

(1) xisir Q"

(2) x is orthogonal *o0 x,, X2, - . . , X, (follows from construction),

(3) I'x||>=det(BB™)=n/2""" (easily verified and also a consequence of the

Cauchy-Binet Theorem).
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Define a vector x, = kx + ¢, where

1
c=;(x1 +xpte o+ x,)

and
2t fn+1

k n 2

The vector x, is in Q" since k is a rational number. From properties (2) and (3)
above, it follows that

lleall* = &2 fixll® + 2kx - ¢ + lle]l®

227 2p+1 n 1 ( (n—l)(n—Z))
== o 2"‘1+0+n2 n—1+ 2
_n+l n—l_1
2 T

and

e, =201 = il — 2, - 3 + il

=1_;2l-(1+n;2)+1=1, fori=1,2,...,n-1 4)

This completes the proof. O

Theorem 7. If n is even, then w(n)=n+1 if n+1 is a perfect square and
w(n) = n otherwise.

Proof. If n =4, this follows immediately from Lemma 5 and Theorem 6. If n =2,
the result is a simple exercise. In fact, Woodall [4] shows that U, is two-colorable
(bipartite). O

In what follows, we shall need the following theorem:

Theorem (Hall and Ryser [2]). Let A be a non-singular n X n matrix with entries
Jrom a field of characteristic #2, and suppose that AA™ = D, ® D,, the direct sum
of two square matrices D, and D, of orders r and s respectively (r +s =n). Let M
be an arbitrary r X n matrix such thai MM™ = D,. Then there exists an n X n matrix
Z having M as its first r rows sich that ZZ" = D, ® D,.

Lemma 8. Let U and V be two unidistant sets of n — 1 points in Q". Then there is
a rational orthogonal trarnsformation (preserving distances and inner products) that
maps U onto V. In particular, there is a point u in Q" that is unidistant from all
points in U if and only if there is a point v in Q" that is unicistant from all points
inV.
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f. There is no loss of generality in supposing that @ is in both U and V, so
that we can write

U={0,uy,...,u, 5} and V={0,v,,...,v,_,).

Let u,_, and u, be independent vectors in Q" that are orthogonal to all the
vectors in U. Let A be the 2 X n matrix with rows u,, u,, . . . , u, and }et M be the
(n —2) X n matrix with rows v, »,,...,v,_,. Then A is non-singular, AAT =
D, ® D, and MM™ = D,, where D, is a square matrix of order n — 2 with 1’s on
the principal diagonal and } everywhere else, and D, is a non-singular 2 x 2
matrix. By Hall and Ryser’s theorem, there exists an # X n matrix Z having M as
its first n — 2 rows such that ZZ" =D, ® D,. Let L = Z~'A. Then L is 2 rational
matrix such that y,L=u;, fori=1,2,..., n—2. Moreover, L is an orthogonal
matrix, because (ZT)"'Z'AAT=1 and so LLT=Z'AA™(Z ')" = . This com-
pletes the proof of Lemma 8. O

4

Theorem 9. Let n be an odd integer =5. If the diophantine equation

nx®—2(n - 1)y*=22 )

has an integer solution \x, y, z) with x #0Q, then w(n)=n +1 or n according as
i(n +1) is or is not a perfect square; otherwise w(n)=n —1.

Proof. In view of Theorem 6, it suffices to prove that w(n)=n if and only if (5)
has an integer solution with x #0. By Lemma 8, w(n) = n if and only if there is a
point x in @" that is vradistant from all the » — 1 points in the set 7, of Lemma 5.
Let

X = (th S1s by S2; .00, tm; S r)
be such a point, where m=4%(n—1). It follows immediately that ¢, =3,
S;=83=-++=5,=0, =t3=---=t,=1-5, and s3+ (m - 1) -5, +r*=3.
Solving for s, in terms of 7,

s _n‘t—-l:!:\/n—4mrz
‘l_ .

(6)

2m

Thus there exists a point x in Q" as required if and only if there exists a rational
number r = y/x such that n — 4mr? is a rational square, say (z/x)?; that is, if and
only if eq. (5) has an integer solution with x #0. This completes the proof of
Theorem 9. O

The above theorem is also true for n =1 and n =3. For n =3, the resuit is a
simple exercise. The chromatic number of U; is 2. Robertson [3] has shown tha:
the chromatic number of U, is 4. These results will be reported in a separate
paper dealing mainly with the coloring of graphs U,.
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