
Number of Cuts
Exposition by William Gasarch

1 Introduction

Throughout this exposition (1) the term protocol means proportional cake
cutting protocol, and (2) we only look at the worst case for number-of-cuts.

In the COME LATE protocol the number of cuts for 3 people is 5 (in all
cases). In the TRIM protocol the number of cuts for 3 people is 3 (in the
worst case). The DC protocol uses 3 cuts (in all cases).

Is there a protocol for 3 people that takes 2 cuts? We show that there
is not. What about other numbers-of-people and number-of-cuts? In this
exposition we show the following

1. For 3 people, 3 cuts are necessary and sufficient.

2. For 3 people, 4 cuts are necessary.

3. For n people, n cuts are necessary.

4. What about a bigger cake?

5. For 4 people, 4 cuts are sufficient.

2 n = 3: You Need Exactly 3 Cuts

Theorem 2.1

1. There is a 3-person protocol that only uses 3 cuts. (This is the TRIM
protocol so we do not prove it here.)

2. Any protocol for 3 people must use at least 3 cuts.

Proof:
Assume, by way of contradiction, that there is a protocol for 3 people

using 2 cuts. We create a scenario where this does not work. KEY: we have
NO control over what the cutter does, but we have COMPLETE control over
everyone elses tastes.
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The players are Alice, Bob, and Carol. We can assume that Alice cuts
first. The pieces are P1 and P2. Alice values P1 at x1 and P2 at x2. All we
can assume is that x1 + x2 = 1. WE set Bob and Carol as in the following
table.

P1 P2

Alice x1 x2
Bob 1/2 1/2

Carol 1/2 1/2

There are two cases. Either Alice makes the next cut or Bob does (Carol
doing it is the same as Bob doing it).

Case 1: Alice takes the next cut. We can assume she cuts P2 into two pieces,
P21 and P22. WE set Alice and Bob’s valuation as in the following table:

P1 P21 P22

Alice x1 x21 x22
Bob 1/2 1/4 1/4

Carol 1/2 1/4 1/4

There are no more cuts to be made. Note that P1 is the only piece
acceptable to both Bob and Carol. They can’t both have it! Hence the
protocol fails.

Case 2: Bob takes the next cut. We can assume he cuts P2 into two pieces,
P21 and P22. Bob values P21 at y1 and P22 at y2.

• We know y1 + y2 = 1/2.

• We assume y1 ≤ y2, hence y1 ≤ 1/4 so P21 not acceptable to Bob.

WE set Alice and Carol’s valuations as in the table below.

P1 P21 P22

Alice x1 0 x2
Bob 1/2 y1 ≤ y2

Carol 1/2 1/4 1/4

There are no more cuts to be made. Note that P21 is not acceptable to
Alice, Bob, or Carol. But someone has to take it. Hence the protocol fails.
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3 An Attempt at a Lower Bound for n = 4

.
We have that 3 people require 3 cuts. We want to prove that 4 people

require 4 cuts. In this proof we can USE that 3 people require 3 cuts.
ATTEMPT AT PROOF THAT FOUR PEOPLE REQUIRE FOUR CUTS:
Assume, by way of contradiction, that there is a protocol where four

people with just four cuts. Assume Alice has the first cut. We will set the
valuations so that Bob, Carol, and Donna all thing one of the piece is BAD
How bad? We’ll say its worth 1

4
− ε.

P1 P2

Alice x1 x2
Bob 3

4
+ ε 1

4
− ε

Carol 3
4

+ ε 1
4
− ε

Donna 3
4

+ ε 1
4
− ε

So after one cut Alice can has to take P2 and Bob, Carol, Donna have a
protocol to split 3

4
+ ε so that they each get 1/4. For concreteness lets take

ε = 1
8
. So now we have a 3-person protocol to split 7

8
so that they each get

1
4
. If we scale this then we are saying that there is a 3-person protocol where

they split a cake of size 1 and each get 1
4
8
7

= 2
7
. We would have liked this to

have been 1
3

to get a contradiction.
Lets us revisit the n = 3 case. We want to say that even if they split a

slightly bigger cake they can’t all get 1/3.

4 n = 3 With a Wee Bit More Cake

We restate Theorem 2.1

Theorem 4.1 Any protocol for 3 people that starts off with a cake of size 1,
and guarantees that everyone gets ≥ 1

3
, uses at least 3 cuts.

What if we started out with JUST a bit more cake?

Theorem 4.2 Let 0 ≤ ε < 1
3
. Any protocol for 3 people that starts off with

a cake of size 1 + ε, and guarantees that everyone gets ≥ 1
3
, uses at least 3

cuts. (Note that all 3 people value the entire cake at 1 + ε.)

3



Proof:
Assume, by way of contradiction, that there is a protocol for 3 people

using 2 cuts that splits a cake of size 1 + ε into three pieces so that each
person gets a piece of size ≥ 1/3. We create a scenario where this does not
work. KEY: we have NO control over what the cutter does, but we have
COMPLETE control over everyone elses tastes.

The players are Alice, Bob, and Carol. We can assume that Alice cuts
first. The pieces are P1 and P2. Alice values P1 at x1 and P2 at x2. All we
can assume is that x1 +x2 = 1+ ε. WE set Bob and Carol as in the following
table.

P1 P2

Alice x1 x2
Bob (1 + ε)/2 (1 + ε)/2

Carol (1 + ε)/2 (1 + ε)/2

There are two cases. Either Alice makes the next cut or Bob does (Carol
doing it is the same as Bob doing it).

Case 1: Alice takes the next cut. We can assume she cuts P2 into two pieces,
P21 and P22. WE set Bob and Carol’s valuations as in the following table:

P1 P21 P22

Alice x1 x21 x22
Bob (1 + ε)/2 (1 + ε)/4 (1 + ε)/4

Carol (1 + ε)/2 (1 + ε)/4 (1 + ε)/4
There are no more cuts to be made.
We WANT to make P21 and P22 NOT acceptable to Bob or Carol. Hence

we need

(1 + ε)/4 < 1/3
1 + ε < 4/3

ε < 1/3

NOW note that P1 is the only piece acceptable to both Bob and Carol.
They can’t both have it! Hence the protocol fails.

Case 2: Bob takes the next cut. We can assume he cuts P2 into two pieces,
P21 and P22. Bob values P21 at y1 and P22 at y2.

• We know y1 + y2 = (1 + ε)/2.
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• We assume y1 ≤ y2 hence y1 ≤ (1 + ε)/4 < 1/3 so P22 is not acceptable
to Bob.

WE set Alice and Carol’s values by the following table.

P1 P21 P22

Alice x1 0 x2
Bob (1+ε)/2 y1 ≤ y2

Carol (1 + ε)/2 (1 + ε)/4 1/4

There are no more cuts to be made. Note that P21 is not acceptable to
Alice, Bob, or Carol. But someone has to take it. Hence the protocol fails.

5 A Different Viewpoint

We introduce a useful notation and restate a scaled version Theorem 4.2 in
that notation.

Def 5.1 Let s, p be positive rationals. Let n ∈ N. An (n, s, p) protocol is a
protocol for n people which takes a cake of size s and gives everyone ≥ p.

Note 5.2 An (n, 1, 1/n) protocol is an n person proportional protocol.

Theorem 5.3 For all y, for all ε > 0, there is no 2-cut (3, 4y−ε, y) protocol.

Proof: Assume, by way of contradiction, that there is a 2-cut (3, 4y−ε, y)
protocol. We create a scenario where this does not work. KEY: we have NO
control over what the cutter does, but we have COMPLETE control over
everyone elses tastes.

The players are Alice, Bob, and Carol. We can assume that Alice cuts
first. The pieces are P1 and P2. Alice values P1 at x1 and P2 at x2. All
we can assume is that x1 + x2 = 4y + ε. WE set Bob and Carol as in the
following table.
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P1 P2

Alice x1 x2
Bob 2y − (ε/2) 2y − (ε/2)

Carol 2y − (ε/2) 2y − (ε/2)

There are two cases. Either Alice makes the next cut or Bob does (Carol
doing it is the same as Bob doing it).

Case 1: Alice takes the next cut. We can assume she cuts P2 into two pieces,
P21 and P22. WE set Bob and Carol’s valuations as in the following table:

P1 P21 P22

Alice x1 x21 x22
Bob 2y − (ε/2) y − (ε/4) y − (ε/4)

Carol 2y − (ε/2) y − (ε/4) y − (ε/4)
There are no more cuts to be made.
Since neither P21 nor P22 are acceptable to Bob or Carol they both get

P1. They can’t both have it! So the protocol fails.

Case 2: Bob takes the next cut. We can assume he cuts P2 into two pieces,
P21 and P22. Bob values P21 at y1 and P22 at y2.

• We know y1 + y2 = 2y − (ε/2).

• We assume y1 ≤ y2 hence y1 ≤ y − (ε/4) so P22 is not acceptable to
Bob.

WE set Alice and Carol’s values by the following table.

P1 P21 P22

Alice x1 0 x2
Bob 2y − (ε/2) y1 ≤ y2

Carol 2y − (ε/2) y − (ε/4) y − (ε/4)

There are no more cuts to be made. Note that P21 is not acceptable to
Alice, Bob, or Carol. Hence the protocol fails.

Corollary 5.4 There is no 3-person 2-cut proportional protocol.

Proof: If we plug y = 1/3 and ε = 1/3 into Theorem 5.3 we obtain that
there is no 2-cut (3, 1, 1/3) protocol.
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6 n = 4: You Need at Least Four Cuts

We want to show that there is no 4-person 3-cut prop. protocol. We show
something stronger which we will then use in our 5-person lower bound.

Theorem 6.1 For all y, for all ε > 0, there is no 3-cut (4, 5y−ε, y) protocol.

Proof:
Assume, by way of contradiction, that there is a 3-cut (4, 5y − ε, y) pro-

tocol. KEY: we have NO control over what the cutter does, but we have
COMPLETE control over everyone elses tastes.

Note that after 3 cuts there will be exactly 4 pieces. Hence if there is a
piece that only one player likes, that player must get it.

The players are Alice, Bob, Carol, and Donna. We can assume that Alice
cuts first. The pieces are P1 and P2. Alice values P1 at x1 and P2 at x2. All
we can assume is that x1 + x2 = 5y − ε. WE set Bob and Carol as in the
table below (we determine δ later).

P1 P2

Alice x1 x2
Bob 4y − (ε/2) y − (ε/2)

Carol 4y − (ε/2) y − (ε/2)
Donna 4y − (ε/2) y − (ε/2)

Alice is the only one who likes P2. Hence Alice will get P2. Consider the
rest of the protocol. It is a 3-person protocol with Bob, Carol, Donna

They are splitting a cake of size 4y − (ε/2).
They are each getting y.
They are only using 2 cuts.
Hence they have a 2-cut (3, 4y − (ε/2), y) protocol.
This contradicts Theorem 5.3 (with (ε/2) instead of ε— recall that The-

orem 5.3 held for ALL ε.)

Corollary 6.2 There is no 4 person 3-cut prop. protocol.

Proof: If we plug y = 1/4 and ε = 1/4 into Theorem 6.1 we obtain that
there is no 3-cut (4, 1, 1/4) protocol.

We leave it to the reader to show, from Theorem 6.1 that for all y, for all
ε > 0, there is no 4-cut (5, 6y − ε, y) protocol.
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7 Lower Bounds For General n

Theorem 7.1 For all n, for all y, for all ε > 0, there is no (n − 1)-cut
(n, (n+ 1)y − ε, y) protocol.

Proof: We prove this by induction.
The base case is n = 3, which is Theorem
We show that if the theorem is true for n − 1 then it is true for n. SO-

we ASSUME
STATEMENT I:
for all y, for all ε > 0, there is no (n− 2)-cut (n− 1, ny − ε, y) protocol.
We try to prove for all y, for all ε > 0, there is no (n − 1)-cut (n, (n +

1)y − ε, y) protocol.
Assume, by way of contradiction, that
there exists y, there exists ε > 0, there is an (n−1)-cut (n, (n+1)y− ε, y)

protocol.
The players are A1, . . . , An. We can assume that An makes the first cut.

WE will set the opinions of A1, . . . , An.
P1 P2

A1 ny − (ε/2) y − (ε/2)
A2 ny − (ε/2) y − (ε/2)
A3 ny − (ε/2) y − (ε/2)

... ny − (ε/2) y − (ε/2)
An−1 ny − (ε/2) y − (ε/2)
An x1 x2

After this there is an n − 2-cut protocol for the n players A1, . . . , An,
where the cake is of size ny − (ε/2) where each player gets at least y. So
they have an n − 2-cut protocol for (n − 1, ny − (ε/2), y). This contradicts
statement I above.

Corollary 7.2 There is no n person (n− 1)-cut prop. protocol.

Proof: If we plug y = 1/n and ε = 1/n into Theorem 7.1 we obtain that
there is no (n− 1)-cut (n, 1, 1/n) protocol.
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8 How Big a Cake Do we Need for n = 3 case

and 2 cuts?

Lets look at the case of n people and y = 1/n.
For all n, for all ε > 0, there is no (n− 1)-cut (n, 1 + 1

n
− ε, 1

n
) protocol.

Lets look at the n = 3 case:
For all ε > 0, there is no 2-cut (3, 1 + 1

3
− ε, 1

3
) protocol.

This raises the obvious question:
Is there a 2-cut (3, 1 + 1

3
, 1
3
) protocol?

YES! Before proceeding we introduce a notation that will make the pro-
tocols easier: All of the protocols will begin with Alice cutting the cake in
half with the advice to make it even. The pieces will be called P1, P2 We will
then refer to how the rest of the people split meaning the number who prefer
P1 and the number who prefer P2. We will then say WHO prefers which
but this is of course arbitrary. We regard an a− b split and a b− a split as
equivalent so we only look at one of those. We will always take the first a
alphetically to be on the a-side.

Also- note that cut-and-choose can be viewed as a 1-cut (2, 2y, y) protocol.
we will call it that for consistency.

2-cut protocol for (3, 4/3, 1/3).

1. Alice cuts the cake (in half- so 2/3 and 2/3) We call the pieces P1, P2.

2. If Bob and Carol split 2-0 then Bob and Carol do (2, 2/3, 1/3) on P1,
Alice takes P2. Note that Bob and Carol get ≥ 1/3 and Alice gets 2/3.

3. If Bob and Carol split 1-1 then Alice and Carol do (2, 2/3, 1/2) on P1,
Bob takes P2. Note that Alice and Carol get ≥ 1/3 and Bob gets ≥ 2/3.

What about n = 4? General n?
We are better off if we first generalize our result for n = 3.

Theorem 8.1 For all y there is a 2-cut (3, 4y, y) protocol.

Proof:

1. Alice cuts the cake (in half- so 2y and 2y) We call the pieces P1, P2.

2. If Bob and Carol split 2-0 then Bob and Carol do (2, 2y, y) P1, Alice
takes P2. Note that Bob and Carol get ≥ y and Alice gets 2y.
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3. If Bob and Carol split 1-1 then Alice and Carol do (2, 2y, y) on P1, Bob
takes P2. Note that all get ≥ y.

9 How Big a Cake Do we Need for n = 4 case

and 3 cuts?

Theorem 9.1 For all y there is a 3-cut (4, 6y, y) protocol.

Proof:

1. Alice cuts the cake (in half- so 3y and 3y) We call the pieces P1, P2.

2.

3. Case 1: Bob, Carol, Donna split 2-1. Bob and Carol do (2, 3y, y) on
P1 (so they each get ≥ 1.5y). Alice and Donna do (2, 3y, y) P2 (so they
each get ≥ 1.5y).

4. Case 2:(The hard case) Bob, Carol, Donna split 3-0. Bob, Carol,
Donna all think P1 ≥ 3y and P2 ≤ 3y.

5. Case 2.1: Bob (or Carol or Donna) thinks P2 ≥ 2y. Alice and Bob do
(2, 2y, y) on P2 (Alice thinks P2 = 2y so Bob gets ≥ y and Alice gets
≥ 1.5y) Carol and Donna do (2, 3y, y) (each gets ≥ 1.5y).

6. Case 2.2: Bob, Carol, and Donna ALL think P2 < 2y. Hence they all
think P1 ≥ 4y. Alice gets P2. Bob, Carol, and Donna do the (3, 4y, y)
protocol on P1.

Corollary 9.2 There is a 3-cut (4, 3
2
, 1
4
) protocol.

Note the following contrast:

• There is NO 3-cut (4, 4
3
− ε, 1

4
) protocol.

• There is a 3-cut (4, 3
2
, 1
4
) protocol.
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We have an open question (at least to us) here. Find x such that

• There is NO 3-cut (4, x− ε, 1
4
) protocol.

• There is a 3-cut (4, x, 1
4
) protocol.

10 How Big a Cake Do we Need for n = 5

case and 4 cuts?

Lets look at the last two theorems:
For all y there is a 2-cut (3, 4y, y) protocol.
For all y there is a 3-cut (4, 6y, y) protocol.
Dare we guess that there is a 4-cut (5, 8y, y)-protocol?

Theorem 10.1 For all y there is a 4-cut (5, 8y, y) protocol.

Proof:

1. Alice cuts the cake (in half- so 4y and 4y) We call the pieces P1, P2.

2. Case 1: Bob, Carol, Donna, Edgar split either 1-3 or 2-2. Adding
Alice to the 1-side of 1-3 or any side of 2-2 you have a 2-3 split for all of
the people. Lets say Alice and Bob think P1 ≥ 4y and Carol, Donna,
Edgar think P2 ≥ 4y. Alice and Bob do (2, 4y, y) Carol, Donna, Edgar
do (3, 4y, y) protocol.

3. Case 2:(The hard case) If Bob, Carol, Donna, Edgar split 4-0. Bob,
Carol, Donna, Edgar all think P1 ≥ 4y and P2 ≤ 4y. KEY: We order
how much they like P1 by Bob, Carol, Donna, Edgar. Hence Bob likes
P1 the least (though still at least 4y).

4. Case 2.1: Bob thinks P1 ≤ 6y. Hence Bob thinks P2 ≥ 2y. Alice
and Bob do (2, 2y, y) with P2 (Alice thinks P2 ≥ 4y, so Bob gets ≥ y
and Alice gets ≥ 2y). Carol and Donna and Edgar do the (3, 4y, y)
protocol.

5. Case 2.2: Bob thinks P1 > 6y. Since Bob had the lowest opinion of
P1, they ALL think P1 ≥ 6y. Hence Bob, Carol, Donna, Edgar can use
the (4, 6y, y)-protocol on P1, and they each get y. Alice takes P2 and
gets 4y.
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Corollary 10.2 There is a 4-cut (5, 8
5
, 1
5
) protocol.
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