HW 11, HONR 209M. Morally DUE Tuesday May 5

Definition: Lets say that a country has 3 states which we call A, B, C and they have number-of-people a, b, c. Let t = a + b + c. Lets say the congress has d people in it. A fractionally fair representation would allocate $f_A = \frac{da}{t}$ reps to A, $f_B = \frac{db}{t}$ reps to B, $f_C = \frac{dc}{t}$ reps to C. While this is absolutely fair it involves states having a fractional number of representatives which does not work in practice. But it does give us a point of comparison to what really happens. Assume that we end up assigning integers r_A, r_B, r_C to A, B, C. A is HAPPY if $r_A > f_A$, SAD if $r_A < f_A$, and NEUTRAL if $r_A = f_A$. Similar for B, C.

End of Definition

Recall From Clydes Lecture: The way number-of-reps is allocated to states in the USA, the Huntington-Hill Method, works as follows. Initially all states get one representative. Let p be the population of a state and r be the current number of reps that it has. For each state calculate $w = \frac{p}{\sqrt{r(r+1)}}$.

Whichever state has the highest such weight gets the next representative.

Convention for this hw: Use $w = \frac{p}{r}$ for this HW for ease of calculation. (Note: the answers you get using this convention might differ from the answers you would get from using the real formula, but this is a HW, not a serious political calculation that anyone will use.)

Second Convention: If the weights are tied then the state with the least pop gets the next rep.

- 1. When is the final? Where is the final? Are you ready for the final?
- 2. (80 points) The country of Trashcanastan has three states A, B, C. A has 10 people, B has 30 people, C has 40 people. For d = 3, 4, 5, 6, 7, 8, 9 do the following: (and put your answers in a nice table as I will do below.) (NOTE: The d = 3 case is just give every state one rep.)
 - (a) Determine using the Huntington-Hill method how many representatives A, B, C get if there are d reps total.
 - (b) Determine for A, B, C if they are HAPPY, SAD, or NEUTRAL.

See next page for a table in the form we want.

d	f_A	r_A	A's mood	f_B	r_B	B's mood	f_C	r_C	C's mood
3									
$\mid 4 \mid$									
5									
6									
7									
8									
9									

3. (20 points) In your table the case of d = 8 should work out nicely as:

d	$ f_A $	r_A	A's mood	f_B	r_B	B's mood	f_C	r_C	C's mood
8	1	1	NEUTRAL	3	3	NEUTRAL	4	4	NEUTRAL

This is because the total population is 10 + 30 + 40 = 80 and 8 divides 80. In the last problem you used weights $\frac{p}{r}$ and the convention that in case of a tie the state with the least pop gets the next rep.

- (a) If we had use the real weights formula, $\frac{p}{\sqrt{r(r+1)}}$, then who would get the next rep?
- (b) (THINK ABOUT, DO NOT HAND IN.) We used the approximation $\frac{p}{r}$. The real formula is $\frac{p}{\sqrt{r(r+1)}}$. Which one is better for the lowest-population state?