
Ciphers Where Alice and Bob Need to Meet
Exposition by William Gasarch

We will use three characters: Alice and Bob who want to communicate secretly,
and Eve who wants to see what they are talking about. Alice and Bob do not want
Eve to be able to decode their messages.

1. The Plaintext is the message you want to send. For example Discrete Math Plus
Plus is the nickname for this CMSC 389.

2. The Ciphertext is the message after it is encoded. For example EJTDS FUFNB
UIQM VTQM VTJTU IFOJD LOBNF GPSDN TD490. (See note on this
below.)

3. If Alice and Bob want to exhange messages then they need to both know SOME-
THING ahead of time. What they know is called a key. This will be clearer
with examples.

Note 0.1 In the above example of coding Discrete Math Plus Plus is the nickname
for this CMSC 389 I used several conventions:

1. I wrote the message in all capitals. This is a standard convention— the plaintext
is in normal font, the ciphertext is all capitals.

2. I wrote the message in blocks of five. This is also a standard convention. If
I wrote it like EJTDSFUF NBUI QMVT QMVT JT UIF OJDLOBNF GPS
DNTD 490. then it would be MUCH easier for Eve to decode. Using the
blocks-of-five does NOT make it much harder for Alice and Bob.

3. In the above I shifted the letters by 1. This is a standard cipher discussed below.

Does Eve know what type of cipher Alice and Bob are using? We will assume yes.

Definition 0.2 Kerckhoff’s principle states that in cryptography, Alice and Bob
should assume that Eve knows the type of cipher but not the key.

Why does it make sense to assume this?

1. While very few people know the key, may will know the type of cipher being
used. ”Loose Lips Sink Ships”.

2. If your security is based on Eve not knowing the cipher, then as soon as you
find out the cipher has been hacked, you have to change the entire cipher. If
your security is just based on the key, you just need to change the key.

3. If you prove that your system is secure even given that Eve knows what type
of cipher you are using, then that’s a very strong statement.

1



1 Shift Cipher

Alice and Bob have wanted to exchange secret messages for the last 4000 years. One
of the earliest techniques for this, called the Caesar Cipher, operates as follows:

First imagine all letters as numbers. A is 0, B is 1, C is 2, etc, Z is 25. Map every
letter to the letter that is three higher (modulo 26). So, the the last three letters shift
to the first three. Then

A goes to D
B goes to E

...
V goes to Y
W goes to Z
X goes to A
Y goes to B
Z goes to C.

More generally, a shift cipher is a code where every letter shifts a constant amount.
Lets say that Alice shifts by s ∈ {0, 1, 2, . . . , 25}. We can write this as

f(x) = x+ s mod 26.

If Alice uses f what does Bob use to decode? He will use

g(x) = x− s mod 26.

Note that f(g(x)) = x. Also note that for ANY choice of s there is a −s. We do
not actually use −s, we use 26− s which accomplishes the same thing.

Are shift ciphers good?

PROS

1. The scheme is easy to describe, easy to code, and easy to decode. So Alice and
Bob can operate very fast.

2. Alice and Bob only have to agree on the shift. Since the shift is in {1, . . . , 25},
they can easily communicate to each other which shift to use.

CONS

1. The scheme is easy so Eve may spot the pattern.

2. If Eve knows that it is a shift cipher then she can just try all 25 possible shifts.
(See later for a fuller explanation.)

3. Alice and Bob do have to meet privately once to agree on the shift. (Is this
avoidable?)

2



Historical Note: This is a very old cipher. Its called the Ceaser Cipher and was
used by the ancient Greeks. Note that they WOULD NOT have phrased it as Map
x to x + s (mod 26). They did not have the notation and they might have had
the notion of mod. They would instead say to do the following (I use the English
alphabet- they would have used Greek lettes.)

Take the sequence

a b c d e f g h i j k l m n o p q r s t u v x y z

If you want to shift by three then place the shifted-by-3 sequence right below it
to obtain the following:

a b c d e f g h i j k l m n o p q r s t u v x y z
d e f g h i j k l m n o p q r s t u v x y z a b c

That gives you how to encode a message. We leave it to the reader to obtain the
table to decode.

The point is that when studying mathematics of an older era its important to
keep in mind that they had different ideas then we do now. In these notes we will
express things in the modern way, but just be aware that they did not.
Breaking the Cipher:

As noted above Eve could just “try” all 26 possible shifts. But what does that
mean? She could, for each shift, decode and see which text “makes sense”. But this
would be time consuming by hand. Worse- it may be hard to automate. What does
it mean to a computer to “make sense?” Is there a better way?

YES! The frequencies of each letter in English is known. (E.g., e is the most
common letter). Let pi be the expected relative frequency of the ith letter in a text.
These values are known. Hence α =

∑26
i=1 p

2
i is known and is 0.065.

Let T be a text. Assume that it was coded with a shift of s. Let qi be the
relative freq of the ith letter in T . Then we expect qi+s to be roughly pi. Hence Is =∑26
i=1 piqi+s will be around 0.065. Also, if s′ is NOT the shift then Is′ =

∑26
i=1 piqi+s′

will be around 0.038.
SO, rather than try to see what shift “looks right” or “makes sense” just compute

Is for s = 1, 2, . . . , 25 and whichever one yields something close to 0.065 is the shift.
It is likely there will only be one such.

2 Affine Cipher

We can use a more complicated function. For example

f(x) = (3x+ 4) mod 26.

If Alice uses f to code, what does Bob use to decode? He needs to use g(x) =
Ax+B mod 26. We need to find A,B that work We need

3



f(g(x)) = x

f(Ax+B) = x

3(Ax+B) + 4 = x

3Ax+ 3B + 4 = x

We’ll set 3B + 4 = 0 and 3A = 1. AH- can we solve those equations? In both
cases we need a number whose multiplicative inverse is 3 mod 26. For now we’ll try
all possibilities (there are faster ways).

3× 1 = 3
3× 2 = 6
3× 3 = 9
3× 4 = 12
3× 5 = 15
3× 6 = 18
3× 7 = 21
3× 8 = 24
3× 9 = 27 ≡ 1
AH- so 9 is the number we seek. We set A = 9.

3B + 4 = 0

Mult both sides by 9 and reduce mod 27.

B + 4× 9 = 0

B + 36 = 0

B + 10 = 0

B = −10 = 16

So Bob uses g(x) = 9x+ 16.
Does EVERY affine cipher have an inverse? Lets try f(x) = 2x. We need an

inverse of 2 mod 26. There isn’t one— 2x is always even mod 26.
It turns out that the coeff of x is relatively prime to 26 iff an inverse exists. So

the coeff can be any of {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}. The constant term can
be anything.

4



Are these codes good?

PROS

1. The scheme is easy to describe, easy to code, and easy to decode (once you
know the trick). So Alice and Bob can operate very fast, though not as fast as
with the shift cipher.

2. Alice and Bob only have to agree on the multiplier and the shift. This amounts
to knowing one number from {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} and another
from {0, 1, . . . , 25}. We represent the numbers in base 2. Each number is 5 bits
long, so two numbers take 10 bits. This is small.

CONS

1. The scheme is easy so Eve may spot the pattern, though it’s not as easy as the
Shift Cipher.

2. If Eve knows that it is a affine cipher then she can just try all 12 × 26 = 312
possible affine ciphers. Notice that this is harder than for a shift cipher.

3. Alice and Bob do have to meet privately to agree on the parameters. (Is this
avoidable?)

3 Quadratic Cipher

One can look at quadratic ciphers, for example:

f(x) = (2x2 + 5x+ 9) mod 26.

These are called quadratic ciphers. They have similar PROS and CONS to affine
ciphers. However there is one more serious CON: given a quadratic polynomial it
is hard to determine if it has an inverse on {0, . . . , 25}. Note that there are more
quadratics than affine function so a PRO is that its harder to crack than a affine
cipher.

4 Polynomial Cipher

One can look at any polynomial, for example:

f(x) = (2x8 + 5x2 + 9) mod 26.

(Frankly I do not know if this would work.)
The higher the degree the harder for Alice and Bob to tell if it has an inverse

AND the harder for Eve to try to decode it.

5



5 General Substituition Cipher

Alice and Bob pick a random permutation of {A, . . . , Z}. So Alice and Bob meet in a
dark alley and generate a random re-ordering of {A, . . . , Z}. For example, they may
end up with this:

a b c d e f g h i j k l m n o p q r s t u v x y z
q w e r t y u i o p a s d f g h j k z x c v b n m

That gives you how to encode a message. We leave it to the reader to obtain the
table to decode. (NOTE- I didn’t really generate that encoding at random. I leave
it to the reader to determine how I did it.)

Is this a good code?

PRO:
Eve has to go through ALL 26! possibilities to crack this code! Hence this code is

UNBREAKABLE!!!!!! (Note- this is NOT TRUE as we will see soon. This is typical
of the entire history of crypto which can be summarized as:

CODE MAKER: I have an unbreakable code!
CODE BREAKER: I just broke it.
CODE MAKER: Whoops.
Throughout history codes thought unbreakable were devised to thwart any attack

that the inventor could think of, but then broken in a way that inventor had not thought
of.

CONS: The key Alice and Bob use is a list of the letters of the alphabet in some
order. In base 2 this is 26× 5 = 130 bits (though it can be done in somewhat less).

6 Frequency Analysis

Given a text that came from a random permuation how can Eve crack it? NOT by
going through all 26! possiblities. That would take too long. But note that e is the
most common letter in the English Language. th is the most common two-letter pair.
People have compiled tables of such information and these can be used to crack a
coded text if its long enough.

Also, if Eve knows you are cracking (say) military codes she may use that to her
advantage— slightly different patterns may hold.

In old times (say 2000 years ago) it was still fine to use a random cipher since the
computation power to do a Freq. Analysis wasn’t there yet. But now it is. Hence in
the real world today nobody uses any of the ciphers mentioned above.

All of the ciphers discussed so far are mono-sub ciphers, meaning that they map
the alphabet letter by letter. Any such cipher can be broken by a Freq. Analysis.

6



Its easy to just say use Freq. Analysis and this is fine for (say) cryptograms in
newspapers. But how would you really code this up?

Writing a program that, given a text, determines how many times each letter
appears, is easy.

Given a potential decoding, checking if its correct can be done similar to the
methods shown above. You would not want to check all 26! of them, so use Freq.
Analysis to cut down on the number of options.

You can also use the most common 2-letter pairs and 3-letter triples as well.

7 Matrix Codes

Here is one way to defeat the Freq. Analysis.
Let A be the following matrix.

A =

(
8 9
11 7

)

We can map pairs of numbers with this matrix as follows. The pair (x, y) will map
to the pair you get by applying the matrix and reducing modulo 26, which is

((8x+ 9y) mod 26, (11x+ 7y) mod 26).

The matrix must have determinant that is rel prime to 26 to guarantee that it has
an inverse.

From start to finish: take a text, convert the letters to numbers, (assume it has
an even number of letters), break the sequence of numbers into blocks of 2 numbers
each, and apply the matrix to each pair to get an encoded pair.

Notice that this can be extended to 3×3 matrices or more generally k×k matrices.
If a 2 by 2 matrix is used then a Freq. Analysis based on pairs may still be

possible. Same for 3 by 3. What about for 10 by 10 code?
PRO: It would seem that Eve has a hard time using Freq Anal if the matrix is large
enough. Brute force also looks hard (see later in this section when we discuss cracking
the code.
CON: Alice and Bob still have to meet to establish the key. Is that avoidable?

Definition 7.1 A sequence of k letters is called a k-gram. Freq. anal. usually uses
1-grams and 2-grams. For a k × k matrix we would need to use k-grams.

Ways to Crack a k × k Matrix Code

1. Try to use Freq. Analysis with k-grams.

2. There are roughly 26k
2

possible matrices. You can try them all (and use the
summation technique above to check).

7



If k = 20 then can these attacks work? No. But can other attacks work? There
are two answers to this question:

1. We are assuming that Eve has just the ciphertext and also knows that its a
matrix code with a 20 × 20 matrix. In reality Eve will also likely know some
prior messages and what they decoded to. She can use this and affine algebra
to get get the matrix, or at least narrow down options for the matrix.

2. Even if Eve just has the ciphertex and the dimension of the matrix then there
are still ways to do crack the code that take less than 26k

2
steps. See the notes

on this on the course website. This is actually research in progress!

8 Vigenere Cipher

Here is another way to defeat Freq. Analysis is the Vigenere Cipher. Here is an
example:

• Every letter that is in a place ≡ 0 mod 5 is coded by a shift-4.

• Every letter that is in a place ≡ 1 mod 5 is coded by a shift-15.

• Every letter that is in a place ≡ 2 mod 5 is coded by a shift-7.

• Every letter that is in a place ≡ 3 mod 5 is coded by a shift-13.

• Every letter that is in a place ≡ 3 mod 5 is coded by a shift-1.

Alice could communicate the key to Bob as the sequence (3, 14, 6, 12, 0). Or she
could just say DOGMA since D is the third letter of the alphabet Recall that A is
0) O is the 14th, etc. We call DOGMA the key, and 5 the keylength. They could be
any word (or sequence of numbers in {0, . . . , 25}) and any length.

How to crack it? We give two methods. Both require long texts. Both involve
finding the key length and then doing a Freq. Analysis on the appropriate subtexts
(e.g., in the above example you would do a Freq. Analysis on every 5th letter).
Kasiski Examination: We first find the key length. Imagine that in the text you
see ABDUQ several times. It is likely that the DISTANCE between them is the key
length of a multiple of it. So find the differences between the repeated text and then
find a common factor for all of them. This gives you a SMALL set of key lengths to
look at.

Assume you have the key length (or a small set of candiates for it). IMPORTANT
POINT: The freqs of letters in English are about the same if you look at (say) every
5th letter. We now use this:

1. Given T the text and m the key length.

8



2. For 0 ≤ i ≤ m− 1

(a) Look at the letters in the positions ≡ i (mod m).

(b) Treat these letters as if they came from the same shift cipher.

(c) Use the techniques discussed earlier to find the shift si. (If they do not
work then m is the wrong key length and try another candidate for key
length.)

(d) Shift all of the letters posistions ≡ i (mod m) by 26− si.

We defer PROS and CONS to the next section.

9 Vigenere Plus Cipher

In the Vig cipher we used a SHIFT on every Lth letter. We could instead use a Affine,
Quadratic, Polynomial, Matrix on every Lth letter.

To my knowledge no such code was ever used. This is just an accident of history.
Let Y be a year (I do not know what year it is). Before year Y, using a Vig Plus
Cipher would have been too cumbersome for Alice and Bob. After year Y, there were
better techniques.

There is another difficulty in using (say) affine. For Shift we had a very short key:
just a word and then use the letters positions. Any word works. For affine we would
need two words. But the first one can only use letters whose corresponding numbers
are rel prime to 26.
PROS: Very Short Key give you very large complexity. Even though it’s crackable,
we need to make Eve really work at it. Some texts say that it was uncracked for 300
years, though Jon Katz doubts this. And note that if it was cracked then the crackers
wouldn’t want to brag about it.
CONS: Alice and Bob have to meet. Is this avoidable?

10 An Uncrackable Code: the One-Time Pad

Definition 10.1 If a and b are bits (0 or 1) then ⊕ (also written XOR and called
“exclusive or”) is defined as follows:

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

The following facts are easy to verify.

9



Fact 10.2 Let a, b, c be bits.

1. (a⊕ b)⊕ c = a⊕ (b⊕ c).

2. For all bits a, a⊕ a = 0.

3. a⊕ b⊕ b = a⊕ (b⊕ b) = a⊕ 0 = a.

We now describe the one-time pad.

1. Alice and Bob have to meet. and agree on a randomly generated sequence of
bits – a VERY long sequence. Say it’s

r1r2 · · · rN .

2. If (later) Alice wants to send

a1a2a3 · · · am

she sends
(r1 ⊕ a1)(r2 ⊕ a2) · · · (rm ⊕ am).

When Bob gets this string, which he sees as

s1 · · · sm

he can decode it by taking

(r1 ⊕ s1)(r2 ⊕ s2) · · · (rm ⊕ sm) = (r1 ⊕ (r1 ⊕ a1))(r2 ⊕ (r2 ⊕ a2)) · · · (rm ⊕ (rm ⊕ am))
= ((r1 ⊕ r1)⊕ a1)((r2 ⊕ r2)⊕ a2)) · · · ((rm ⊕ rm)⊕ am))
= a1a2 · · · am

3. If either Alice or Bob wants to send another message they will start with rm+1.

PROS: This is impossible to crack! Since the original key was random, if Eve sees
the message

s1s2 · · · sm
it will look random to her.

CONS: N is LARGE! They have to meet and exchange A LOT of information. In
fact, if they plan to later communicate N bits they need to have a key of length N .

PROBLEM: Can Alice and Bob use a shorter key?
ANSWER: They can if they use a recurrence to generate the sequence, like

rn = rn−1 + rn−2 (mod 2)

but then the sequence is no longer random. People have looked at getting random-
looking sequences.

PROBLEM: Can Alice and Bob agree on a secret key (e.g., r1r2 · · · rN) without having
to meet?

10



11 Alice and Bob Do Not Have To Meet

The following problem plagues all of the systems we have considered: Alice and Bob
must meet in secret to establish a key.

Is there a way around this? Is there a way for Alice and Bob to NEVER meet,
and yet establish a secret key? That is, can they, by talking in public establish a
shared secret key?

The answer will be yes, assuming that whoever is listening in has some limits on
what they can compute.

11.1 Needed Math

We’ll use multiplication modulo p in the set Zp = {1, 2, . . . , p−1}, where p is a prime
number. It will be useful to find an element g ∈ Zp, called a “generator”, for which
the sequence g0, g1, g2, . . . , gp−2, taken modulo p, contains all of the elements of Zp.

Let’s look at p = 11. Notice that

20 ≡ 1 mod 11
21 ≡ 2 mod 11
22 ≡ 4 mod 11
23 ≡ 8 mod 11
24 ≡ 5 mod 11
25 ≡ 10 mod 11
26 ≡ 9 mod 11
27 ≡ 7 mod 11
28 ≡ 3 mod 11
29 ≡ 6 mod 11

These calculations are not hard if you use that 2n ≡ 2 × 2n−1mod 11. Notice that
{20 mod 11, 21 mod 11, . . . , 29 mod 11} = {1, 2, . . . , 10}.

Do all elements of Z11 generate the entire set? No:

50 ≡ 1 mod 11
51 ≡ 5 mod 11
52 ≡ 3 mod 11
53 ≡ 4 mod 11
54 ≡ 9 mod 11
55 ≡ 1 mod 11
56 ≡ 5 mod 11
57 ≡ 3 mod 11
58 ≡ 4 mod 11
59 ≡ 9 mod 11

Notice that {50 mod 11, 51 mod 11, . . . , 59 mod 11} = {1, 3, 4, 5, 9}. This is NOT all
of Z11.

11



Convention 11.1 We will be using a prime p. We will assume that p is LARGE
but that log p is not too large. Hence if Eve needs a computation of p steps to crack
a code we will consider it a good code. Even if Eve needs a computation of

√
p steps

(or pε steps where ε > 0) this is a long time and we will consider it a good code. Also,
if Alice and Bob have to do operations that take log p steps, that’s okay, they can
do that. Even if they have to take (log p)2 (or some larger polynomial in log p) thats
okay, they can do that.

Convention 11.2 For the rest of this document when we say “roughly p” we will
mean pε for some ε, ε > 0. When we say “roughly log p” we will mean (log p)a for
some a ∈ N .

Theorem 11.3 For every prime p there is a g such that {g0 mod p, g1 mod p, . . . ,
gp−2 mod p} = Zp = {1, . . . , p − 1}. There is an algorithm which will, given p, find
such a generator g in roughly log p steps.

We have already seen that +,−,×, and (if p is prime) division can be done modulo
p. We now have a way to do LOGARITHMS modulo p.

Definition 11.4 Let p be a prime and g be a generator of Zp. Let x ∈ Zp. The
Discrete Logarithm of x with base g is the y ∈ {0, . . . , p− 2} such that gy ≡ x mod p.
We denote this DLg(x).

Example 11.5 We rewrite the table above for p = 11 and add to it. The Discrete
Logarithm lines follow from the prior line. We assume g = 2 and denote DL2 by just

12



DL.
20 ≡ 1 mod 11

DL(1) = 0

21 ≡ 2 mod 11
DL(2) = 1

22 ≡ 4 mod 11
DL(4) = 2

23 ≡ 8 mod 11
DL(8) = 3

24 ≡ 5 mod 11
DL(5) = 4

25 ≡ 10 mod 11
DL(10) = 5

26 ≡ 9 mod 11
DL(9) = 6

27 ≡ 7 mod 11
DL(7) = 7

28 ≡ 3 mod 11
DL(3) = 8

29 ≡ 6 mod 11
DL(6) = 9

COMMON BELIEF: It is believed that the problem of computing the discrete
logarithm requires roughly p steps. This is a long time, so we assume Eve cannot do
this.

THIS IS THE REPEATED SQUARING METHOD:

Lemma 11.6 Given p, a ∈ {0, 1, . . . , p − 1}, and m, determining am mod p takes
roughly logm steps. (This is by repeated squaring.)

Proof: We do an example which should show the general idea.
We want to compute 3278 (mod 17).
First write 278 in binary. 100010110
So we really want 328324322321 (mod 17)

13



(All computation in this example is now mod 17).
We will compute more than we need: We will compute 32i for 0 ≤ i ≤ 8.
320 ≡ 31 ≡ 3
321 ≡ (320)2 ≡ 32 ≡ 9 (NOTE- we knew 320 from the prior line)
322 ≡ (321)2 ≡ 92 ≡ 81 ≡ 13 (NOTE- we knew 321 from the prior line)
323 ≡ (322)2 ≡ 132 ≡ (−4)2 ≡ 16 (NOTE- we knew 322 from the prior line)
(NOTE- This is not really part of the proof, but it made life slighly easier to write

13 as -4. I may do this again without commenting on it.)
324 ≡ (323)2 ≡ 162 ≡ (−1)2 ≡ 1 (NOTE- we knew 323 from the prior line)
325 ≡ (324)2 ≡ 12 ≡ 1 (NOTE- we knew 324 from the prior line)
326 ≡ (325)2 ≡ 12 ≡ 1 (NOTE- we knew 325 from the prior line)
327 ≡ (326)2 ≡ 12 ≡ 1 (NOTE- we knew 326 from the prior line)
328 ≡ (327)2 ≡ 12 ≡ 1 (NOTE- we knew 327 from the prior line)
Hence

328324322321 ≡ 1× 1× 13× 9 ≡ −4× 9 ≡ −36 ≡ 34− 36 ≡ −2 ≡ 15

More generally: to compute ab (mod c) you compute a2
i

as above, using a2
i

to
computer a2

i+1
. Once you have all of the powers of 2 you can then write b in binary

and use the powers of two that you need.

Lemma 11.7

1. Given p, testing if p is prime can be done in roughly log p steps.

2. Given n, finding a prime p such that n ≤ p ≤ 2n. can be done in roughly log2 n
steps.

3. Given n, finding a prime p such that n ≤ p ≤ 2n and a generator g for Zp can
be done in roughly log3 n steps.

Proof:
1) This is known and we skip it.

2) It is known (the prime number theorem) that between n and 2n there are roughly
n

logn
primes. Hence if we pick numbers between n and 2n at random we will almost

surely encounter a prime within the first O(log n) picks. This leads to the following
algorithm:

1. Input n

2. Repeat until you find a prime:

(a) Pick a number p ∈ [n, 2n] at random.

14



(b) Test if it is a prime using part 1. If so then output p and STOP.

Each iteration takes roughly log n steps, and the number of iterations will be at
most roughly log n. Hence the algorithm takes log2 n steps.

We give some notes on how to speed this up, though we ignore plus or minus 1’s.
NOTE: We can speed this up by only guessing odd numbers. Do that by picking
q ∈ [n/2, n] at random and guessing p = 2q + 1. Instead of having to guess from n
numbers, we only have to guess from n− n/2 = 0.5n numbers!
NOTE: We can speed this up by even more by only guessing numbers that are not
divisible by 2 or 3, so numbers that are ≡ 1, 5 (mod 6). Do that by picking q ∈
[n/6, /n/3] at random, picking i ∈ {1, 5} at random, and guessing 6q + i. Instead of
having to guess from n numbers, we only have to guess from n− n/2− n/3 + n/6 =
0.33n numbers!
NOTE: We can speed this up by even more by only guessing numbers that are not
divisible by 2 or 3 or 5, so numbers that are ≡ 1, 7, 11, 13, 17, 19, 23, 29 (mod 30). Do
that by picking q ∈ [n/30, /n/60] at random, picking i ∈ {1, 7, 11, 13, 17, 19, 23, 29}
at random, and guessing 30q+ i. Since there are 8 i’s to pick the number of numbers
we are looking at is 8n/30 = 0.26n

We could go on. If n was really big and we were the NSA we would go on.
However, past some point the gains are not worth the effort. We stop here.

These improvements help the constant but not the main term of log n.

3) We first give an algorithm that is too slow.

1. Input(n)

2. Find a prime p ∈ [n, 2n] by using the algorithm from part 2.

3. For g = 2, 3, 4, . . . until you get a generator do the following:

• If g2, g3, . . . , gp−1 = {1, 2, . . . , p−1} (in a diff order) then output (p, g) and
STOP

The problem with this is that looking at g2, g3, . . . , gp−1 is p calculations which is
too many.

BUT notice the following: it is known that if g is not a generator then there exists
a number i < p − 1 such that i divides p − 1 and gi = 1. This inspires this next
algorithm that does not work fast enough.

1. Input(n)

2. Find a prime p ∈ [n, 2n] by using the algorithm from part 2.

3. Factor p− 1. Let F be the set of factors (not including p− 1). F will be small-
roughly log n.

15



4. For g = 2, 3, 4, . . . until you get a generator do the following:

• Find A = {ga : a ∈ F}.
• If 1 /∈ A then output (p, g) and STOP.

GOOD NEWS: the calculation of the set A is fast.
BAD NEWS: We need to factor p− 1. That could be hard! In fact, many protocols
in crypto are based on factoring being hard.
IDEA: Choose your prime p so that p − 1 is easy to factor. We will choose p to be
a safe prime which means that p − 1 = 2q where q is a prime. It is know that the
number of safe primes in [n, 2n] is roughly n

log2 n
.

1. Input(n)

2. Repeat until you find a prime:

(a) Pick a number p ∈ [n, 2n] at random.

(b) Test both p and q = p−1
2

for primality part 1. If both are primes then get
out of this loop and goto the next step. NOTE: We know that p− 1 = 2q.

3. Let F = {2, q}. Note that this is the set of ALL factors of p− 1.

4. For g = 2, 3, 4, . . . until you get a generator do the following:

• Find A = {ga : a ∈ F}.
• If 1 /∈ A then output (p, g) and STOP.

Since there are roughly n
log2 n

safe primes there will be roughly log2 n iterations of
the first loop. Each iteration takes roughl log n steps. Hence the first phase where
you find p takes log3 n steps.

we hope there are a lot of generators so that the second loop ends quickly. One
can show the the number of generators is also the number of numbers ≤ p − 1 that
are rel prime to p− 1. We are in luck! Since p− 1 = 2q and q is prime the numbers
relatively prime to p− 1 are

{1, 3, 5, 7, 9, . . . , p− 2} − {q}

Which is roughly half of the numbers. So the second loop goes a constant number
of iterations. Each iteration takes 2 calculations which take log n each. So the second
loop takes roughly log n steps.

Hence the entire process takes O(log3) steps.

16



11.2 Diffie Helman Key Exchange

We can USE this mathematics to have Alice and Bob exchange information in public
and in the end they have a shared secret key.

1. Alice generates a large prime p and a generator g (this takes roughly log p steps)
and sends it to Bob over an open channel. So now Alice and Bob know p, g but
so does Eve.

2. Alice generates a random a ∈ {0, . . . , p − 2}. Bob generates a random b ∈
{0, . . . , p−2}. They keep these numbers private. Note that even Alice does not
know b, and even Bob does not know a.

3. Alice computes ga mod p. Bob computes gb mod p. Both use repeated squaring
so it takes roughly log p.

4. Alice sends Bob ga mod p over an open channel. Notice that Eve will NOT
be able to compute a if computing DLg is hard (which is the common belief).
Even Bob won’t know what a is.

5. Bob sends Alice gb mod p. Notice that Eve will NOT be able to compute b if
computing DLg is hard. Even Alice won’t know what b is.

6. RECAP: Alice now has a and gb. SHE DOES NOT HAVE b. Bob has b and
ga. HE DOES NOT HAVE a. Eve has ga and bb. SHE DOES NOT HAVE a
OR b.

7. Alice computes (gb)a mod p = gab mod p. Bob computes (ga)b mod p = gab mod
p. They both use repeated squaring so this is fast.

8. SO at the end of the protocol they BOTH know gab mod p. This is their shared
secret key. Eve likely does NOT know gab since she only gets to see ga and gb.

This scheme LOOKS good but we must be very careful about what is known
about it.

1. Alice and Bob can execute the scheme quickly.

2. If Eve can compute DLg quickly then she can crack the code.

3. There MIGHT BE other ways for Eve to crack the code. That is, being able
to compute DLg quickly is sufficient to crack this scheme, but might not be
neccesary.

4. This scheme can be used for Alice and Bob to establish a secret key without
meeting. This can then be used in other schemes such as the one-time pad.

17



5. Reality: This scheme is used in the real world for secret key exchange. The RSA
algorithm and the ElGamal methods are also used for Public Key Cryptography
(which is similar).

6. Reality: Quantum Key distribution is also a way for Alice and Bob to not have
to meet.

18


