Proof that $L_{a's=b's} = \{w \mid n_a(w) = n_b(w)\}$ is a Context Free Language By William Gasarch

1 Introduction

Def 1.1 If F is a finite set then a *string over* F is a sequence of elements of F. For example, if $F = \{a, b, A, B\}$ then *aaAba* is a string, *BaBBaAba* is a string.

Def 1.2 The string *e* is the empty string. Its main property is that for any string of symbols α , $\alpha e = \alpha$.

Def 1.3 A *language* is a set of strings.

Def 1.4 If L is a language then $LL = L^2 = \{xy : x \in L \land y \in L\}$. You can define L^3 , L^4 , etc. Note that $L^1 = L$ and $L^0 = \{e\}$.

Def 1.5 If L is a language then $L^* = L^0 \cup L^1 \cup \cdots$. Note that L^* is the set of all strings of symbols from L.

Def 1.6 If α is a string then $\#_a(\alpha)$ is the number of a's in α . Note that α may have b's and even nonterminals (like S) in it. $\#_b(\alpha)$ is defined similarly.

Def 1.7

- 1. A Context Free Grammar (henceforth CFG) is a tuple (N, Σ, R, S) where
 - (a) N is a finite set of *nonterminals*. We will denote these by capitol letters.
 - (b) N is a finite set of *terminals*, also called the *alphabet*. We will denote these by small letters.
 - (c) R is a set of *rules* of the form $A \to \alpha$ where A is a nonterminal and α is a string of terminals and nonterminals.
 - (d) *S* is the *start nonterminal*.
- Let G be a CFG. We write S ⇒ α to mean that if you start with S you apply the rules (perhaps many times) and you end up with α. If you use n rules then we write this as S ⇒_n α. We all this a *derivation of length* n.
- 3. L(G) is the set of nonterminals that can be generated from S. Formally

$$L(G) = \{\alpha : S \Rightarrow \alpha\} \cap \Sigma^*$$

2 A CFG for $L_{a's=b's} = \{w \mid n_a(w) = n_b(w)\}$

Let G be the CFG:

 $S \to aSb \\ S \to bSa \\ S \to SS \\ S \to e$

Theorem 2.1 $L_{a's=b's} = L(G)$.

Proof:

1) $L(G) \subseteq L_{a's=b's}$.

KEY: Look at the set $L'(G) = \{\alpha : S \Rightarrow \alpha\}$. Note that we DID NOT intersect with Σ^* . This is ALL of the sequences that can be generated, including those that have S in them. **Claim:** For all n, if $S \Rightarrow_n \alpha$ then $\#_a(\alpha) = \#_b(\alpha)$.

We prove this by induction on n.

Base Case: n = 1. $S \Rightarrow_1 \alpha$ means just $S \rightarrow \alpha$. The only such α are aSb and bSa and SS and e. All of these strings have an equal number of a's and b's.

IH: If $S \Rightarrow_{n-1} \alpha$ then $\#_a(\alpha) = \#_b(\alpha)$.

IS: We show that if $S \Rightarrow_n \alpha$ then $\#_a(\alpha) = \#_b(\alpha)$.

We decompose $S \Rightarrow_n \alpha$ into its first n-1 steps and its *n*th step. Since there is an *n*th step the (n-1)st step must result in a string that has an S in it which is then used in a rule to get the *n*th step. So we have

$$S \Rightarrow_{n-1} \beta S \gamma$$

and then we have the next step. By the IH $\#_a(\beta S\gamma) = \#_b(\beta S\gamma)$. The *n*th step will be to replace S with either aSB or bSa or SS or e. Clearly the resulting string will have the same number of a's as b's.

End of Proof of Claim

Since $L'(G) = \{ \alpha \in \{S, a, b\}^* : \#_a(w) = \#_b(w) \}$ clearly $L(G) = \{ \alpha \in \{a, b\} : \#_a(w) = \#_b(w) \}.$ Hence $L(G) \subseteq L_{a's=b's}.$

2) $L_{a's=b's} \subseteq L(G)$.

We proof this by induction on |w|. Base Case: If |w| = 0 then use $S \rightarrow e$.

IH: All w' such that |w'| = n - 1 and $w' \in L_{a's=b's}$ are in L(G).

IS: Let w such that |w| = n and $w \in L_{a's=b's}$. We show that $w \in L(G)$.

Case 1: w = aw'b. Clearly $w' \in L(G)$. By the IH $S \Rightarrow w'$. To obtain w we do the following: $S \rightarrow aSb \Rightarrow aw'b = w.$ **Case 2:** w = bw'a. Similar to Case 1. Case 3: w = axa. **Claim:** w = w'w'' where $|w'|, |w''| < n, w', w'' \in L_{a's=b's}$. Look at the strings $w_0 = a$ $w_1 = a\sigma_1$ $w_2 = a\sigma_1\sigma_2$ $w_i = a\sigma_1\sigma_2\cdots\sigma_i$ $w_{n-2} = a\sigma_1 \cdots \sigma_{n-2}$ $w_{n-1} = a\sigma_1 \cdots \sigma_{n-2}a$ Note that $#_a(w_0) - #_b(w_0) = 1 > 0$ $\#_a(w_{n-1}) - \#_b(w_{n-1}) = 0$ Since $w_{n-1} = w_{n-2}a$, we must also have $\#_a(w_{n-2}) - \#_b(w_{n-2}) < 0$ We rewrite just two of the equations: $\#_a(w_0) - \#_b(w_0) > 0$ $\#_a(w_{n-2}) - \#_b(w_{n-2}) < 0$ Since each w_i is obtained by adding just one letter there must be an *i* such that $\#_a(w_i) - \#_b(w_i) = 0$ This $w_i \in L_{a's=b's}$. Since $w \in L_{a's=b's}$ we must also have that $w = w_i w''$ and $w'' \in L_{a's=b's}$. Let $w_i = w'$. **End of Proof of Claim**

So we now have w = w'w'' where $w' \in L_{a's=b's}$ and $w'' \in L_{a's=b's}$. By the IH $S \Rightarrow w'$ and $S \Rightarrow w''$. To derive w use

 $S \rightarrow SS \Rightarrow w'S \Rightarrow w'w'' = w$ Case 4: w = bxb. Similar to Case 3.