
Fast Exponentiaion Mod n
Exposition by William Gasarch

1 How to Computer 31000 (mod 987)

Lets say you want to compute 31000 (mod 987). There are three ways to do it: idiotic,
naive, and smart
Idiotic: Compute 31000. This will be really big! Then divide it by 987 and find the
remainder. This takes 1000 steps and space of roughly 1000 digits.

Naive: Compute 3 × 3 × 3· BUT whenever the partial product is over 987, mod it
down. This still takes 1000 steps but far less space- about 4 digits.

Smart: Computer
a0 = 3 (mod 987) NOTE: a0 = 320 .
a1 = a20 (mod 987) NOTE: a1 = 321 (mod 987).
a2 = a21 (mod 987) NOTE: a2 = 322 (mod 987).
a3 = a22 (mod 987) NOTE: a3 = 323 (mod 987).
a4 = a23 (mod 987) NOTE: a4 = 324 (mod 987).
a5 = a24 (mod 987) NOTE: a5 = 325 (mod 987).
a6 = a25 (mod 987) NOTE: a6 = 326 (mod 987).
a7 = a26 (mod 987) NOTE: a7 = 327 (mod 987).
a8 = a27 (mod 987) NOTE: a8 = 328 (mod 987).
a9 = a28 (mod 987) NOTE: a9 = 329 (mod 987).
I stop here since 29 ≤ 987 < 210.
Write 987 in base 2. We’ll actually do this:
The highest power of 2 that is ≤ 987 is 512. Hence we subtract this to obtain
987 = 512 + 475
The highest power of 2 that is ≤ 475 is 256. Hence we subtract this to obtain
987 = 512 + 256 + 219
The highest power of 2 that is ≤ 219 is 128. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 91
The highest power of 2 that is ≤ 91 is 64. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 64 + 27
The highest power of 2 that is ≤ 27 is 16. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 64 + 16 + 11
The highest power of 2 that is ≤ 11 is 8. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 64 + 16 + 8 + 3
The highest power of 2 that is ≤ 3 is 2. Hence we subtract this to obtain
987 = 512 + 256 + 128 + 64 + 16 + 8 + 2 + 1 = 29 + 28 + 27 + 26 + 24 + 23 + 21 + 20

AH- we have written 987 as a sum of powers of two. Now we get
3987 (mod 987) ≡ a9 × a8 × a7 × a6 × a4 × a3 × a2 × a1 × a0 (mod 987)
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More geneally, the idiotic and naive methods to computer an (mod m) takes
roughly n steps, wheras the method above, called repeated squaring takes roughly
log n steps.

2 How to Compute a100000000000000000 (mod n)

What if the exponent is really really large. Then we will apply a technique before
using repeated squaring. This requires some math.

Lemma 2.1 If n = x
y
is an integer and p is a prime that divides x but not y then p

divides n.

Proof: Factor both x and y. There will be a factor of p in x but not in y. When
you reduce to lowest terms all of the prime factors of y will go away. Some of the prime
factors of x will go away, but not p. Hence p will remain. This yields a factorization
of x where p is one of the factors.

The following lemma you should know from when you studied combinatorics.

Lemma 2.2 The number of ways to choose b items from a items is
(
a
b

)
= a!

b!(a−b)! .

Lemma 2.3 For all primes p, for all 1 ≤ y ≤ p− 1 p divides
(
p
y

)
.

Proof:
(
p
y

)
= p!

y!(p−y)! is an integer where p divides the numerator but not the

denominator. By Lemma 2.1 p divides
(
p
y

)
.

The following you have surely seen. I may prove it in class

Lemma 2.4 Let n ∈ N. Then (x + y)n =
∑n

i=0

(
n
i

)
xiyn−i.

NOTE- WE HAVE NOT COVERED INDUCTION YET SO JUST TAKE THIS
LEMMA AS TRUE. WE”LL RETURN TO THE PROOF LATER IN THE COURSE.

Lemma 2.5 Let p be a prime and n ∈ N. Then np ≡ n (mod p).

Proof: We prove this by induction on n.
Base case: If n = 1 then np = 1p = n (mod p).
Induction Hypothesis: Assume that np ≡ 1 (mod p) and that n + 1 ≤ p− 1.
Induction Step:

(n + 1)p ≡
p∑

i=0

(
p

i

)
ni1p−i =

p∑
i=0

(
p

i

)
ni = 1× n0 +

p−1∑
i=1

(
p

i

)
+ 1× np.
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By Lemma 2.3 all of the terms in
∑p−1

i=1

(
p
i

)
are ≡ 0 (mod p). Hence we have

(n + 1)p ≡
p∑

i=0

(
p

i

)
ni1p−i = 1 + np.

By the induction hypothesis np ≡ n (mod p), so we have (n+1)p ≡ n+1 (mod p).

Lemma 2.6 If 1 ≤ n ≤ p− 1 and p is prime then np−1 ≡ 1 (mod p).

Proof: By Lemma 2.5 np ≡ n (mod p). Hence there is a k such that

np = n + kp.

Divide by n to obtain

np−1 = 1 +
kp

n
.

Since kp
n

= np−1 − 1, kp
n

is an integer. Since n ≤ p − 1, p does not divide the
denominator n, though p clearly divides the numerator kp. Hence we can apply
Lemma 2.1 and conclude that p divides kp

n
. Hence

np−1 ≡ 1 (mod p).

Lemma 2.7 Let p be a prime. Then an ≡ an (mod p−1) (mod p).

Proof:
Let n ≡ n′ (mod p− 1) where 0 ≤ n′ ≤ p− 1. Hence n = n′ + k(p− 1) for some

k. Then

an = an
′+k(p−1) = an

′ × ak(p−1) = an
′ × (ap−1)k

By Lemma 2.6 ap−1 ≡ 1 (mod p). Hence we have an ≡ an
′

(mod p).

So, how can we use this? Let p be a prime. Then

an (mod p) = an (mod p−1) (mod p).

Hence if n is ginormous then we first mod it by p − 1 so it will be ≤ p − 1. We
will then use repeated squaring.
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