Homework 6, MORALLY AND REALLY Due Mar 24

- 1. (10 points but you have to answer) What is your name? Write it clearly. Staple your HW.
- 2. (30 points) Let p = 59. Note that p is a safe prime. Find the first three generators of Z_p . Show all work. You may NOT use a calculator. (HINT1: Since p is safe you don't need to do that many calculations of g^a . HINT2: When computing g^a use the repeated squaring technique.) SOLUTION TO PROBLEM 2

I won't really do this one but I'll say how to do it and start it.

p = 59. So $p - 1 = 58 = 2 \times 29$.

To test if g is a genreator mod 59 we only need to computer

 $g^2 \pmod{59}$ and $g^{29} \pmod{59}$. If NEITHER is 1 then g IS a generator SO, for $g = 2, 3, 4, \ldots$ compute $g^2 \pmod{59}$ and $g^{29} \pmod{59}$. Stop when you find three g's such that neither is 1.

END OF SOLUTION TO PROBLEM 2.

- 3. (30 points) Let g be the third generator found in the last problem. Assume that Alice and Bob are going to do Diffie Helman with p = 59 and this value of g.
 - (a) Assume that Alice's secret random number is 10. What does Alice send Bob? (You may NOT use a calculator and you must show all work. HINT: use repeated squaring.)
 - (b) Assume that Bob's secret random number is 8. What does Bob send Alice? (You may NOT use a calculator and you must show all work. HINT: use repeated squaring.)
 - (c) Assuming that Alice's secret random number is 10 and Bob's is 8, what is the message they send? Express both as a number in {0, 1, ..., 58} and also as a number in binary.

SOL TO PROB 3

I won't really do it I'll just show you HOW to do it. Assume g IS the third generator from the last problem.

All arithmetic is mod 59.

a) Alice picks random 10. Alice sends g^{10} to Bob.

b) Bob picks random 8. Bob sends g^8 to Alice.

c) Alice KNOWS 10 and KNOWS g^8 . She computer $(g^8)^{10} = g^{80}$. Bob KNOWS 8 and KNOWS g^{10} . He computer $(g^{10})^8 = g^{80}$. THIS is there secret shared key.

- 4. (30 points)
 - (a) Show that if $z^4 \equiv 0 \pmod{7}$ then $z \equiv 0 \pmod{7}$.
 - (b) show that $7^{1/4}$ is irrational.

SOLUTION TO PROBLEM FOUR

 $ALL \equiv are \pmod{7}$.

a) We prove the CONTRAPOSITIVE: $z \neq 0$ implies $z^4 \not 0$.

Proof by cases.

 $z \equiv 1 \Rightarrow z^4 \equiv 1 \neq 0$ $z \equiv 2 \Rightarrow z^4 \equiv 2 \times 2 \times 2 \times 2 \equiv 8 \times 2 \equiv 21 \neq 0$ $z \equiv 3 \Rightarrow z^4 \equiv 3 \times 3 \times 3 \times 3 \equiv 9 \times 9 \equiv 2 \times 2 \equiv 4 \neq 0$ If $z \equiv 4, 5, 6$ then $z \equiv -3, -2, -1$. Since $(-1)^4 \equiv 1$ we get $z^4 \equiv 3^4, 2^4, 1^4$ which we know from the above is $\neq 0$.

b) Assume, by way of contradiction, that $7^{1/4} = \frac{a}{b}$. WHERE a, b HAVE NOT COMMON FACTORS.

```
7 = \frac{a^4}{b^4}
7b^4 = a^4
a^4 \equiv 0
BY PART A a \equiv 0.

a = 7x
7b^4 = a^4 = (7x)^4 = 7^4x^4
b^4 = 7^3x^4
b^4 \equiv 0
BY PART A b \equiv 0.
```

SO, 7 divides both a, b. This contradicts a, b having no common factors.