Homework 7 Morally Due Mar 31 WARNING- THIS HW IS TWO PAGES LONG.

- 1. (0 points but you have to answer) What is your name? Write it clearly. Staple your HW. When is midterm 2?
- 2. (20 points) Prove by induction that for all $n \ge 1$

$$\sum_{i=1}^{n} i2^{i} = 2 + (n-1)2^{n+1}$$

SOLUTION TO PROBLEM 2

Base Case: n = 1. $1 \times 2^1 = 2 + (1 - 1)2^2$ is 2 = 2.

Induction Hypothesis: We can assume

$$\sum_{i=1}^{n-1} i2^i = 2 + (n-2)2^n$$

Induction Step:

Add $n2^n$ to both sides.

$$\left(\sum_{i=1}^{n-1} i2^i\right) + n2^n = 2 + (n-2)2^n + n2^n$$

$$\sum_{i=1}^{n} i2^{i} = 2 + (n-2+n)2^{n} = 2 + (2n-2)2^{n} = 2 + (n-1)2^{n+1}$$

END OF SOLUTION TO PROBLEM 2

3. (20 points) Let P be a statement about the integers. Assume we know the following:

$$(\forall n \in \mathsf{Z})[P(n) \implies P(n+3)].$$

$$(\forall n \in \mathsf{Z})[P(n) \implies P(n-3)].$$

For which $n \in \mathsf{Z}$ do we know that P(n) holds?

SOLUTION TO PROBLEM 3

Since we have P(4) and $P(n) \implies P(n+3)$ we get P on $\{4,7,10,13,\ldots\}$ Since we have P(4) and $P(n) \implies P(n-3)$ we get P on $\{4,1,-2,-5,\ldots\}$ Note that all of these numbers are $\equiv 1 \pmod{3}$. So we have P(n) for all n in the set

$${n : n \equiv 1 \pmod{3}}.$$

Notice that, in general, repeatedly adding k to or subtracting k from a number a generates all the numbers that are equivalent to $a \mod k$

END OF SOLUTION TO PROBLEM 3.

- 4. (20 points) You have an infinite supply of 4-cent coins and 5-cent coins. Note that you CAN create 9 cents (one 4-cent coin and one 5-cent coin) and 10 cents (two 5-cent coins) but you can't make 11 cents (proof: If you only use 4-cent coins then you can't make 11 since you can only make multiples of 4. If you only use 5-cent coins then you can't make 11 since you can only make multiples of 5. So you have to use at least one 4 and at least one 5. Hence you have 9. If you add 4 or 5 to that you exceed 11.)
 - (a) Write a logical statement P(n) for: "n coins can be created from 4-coins and 5-coins."
 - (b) For $n = 4, 5, 6, \ldots$ see if n can be created from 4-coins and 5-coins. For each n that CAN be show how. For each n that CANNOT be prove why not. STOP when you are confident that you have an n_0 such that all $n \ge n_0$ CAN be.
 - (c) For the value of n_0 that you determined in part (a), prove: For all $n \geq n_0$ it is possible to create n cents with 4-coins and 5-coins. (HINT: Use Strong Induction and you may need several base cases.)
 - (d) Challenge Problem. Suppose we were to have x-coins and y-coins. Would such an n_0 still exist? Determine a necessary condition that x and y must satisfy in order for this to happen.

SOLUTION TO PROBLEM 4

- (a) $P(n): \exists x, y \in \mathbb{N}$ such that n = 4x + 5y.
- (b)
- 4-YES 4=4.
- 5-YES 5=5
- 6-NO since can't just use one 4 or one 5, so need to use two coins, but that yields at least 8.
- 7-NO same reason as 7
- 8 YES 8 = 4 + 4
- 9 YES 9 = 4 + 5
- 10 YES 10 = 5 + 5
- 11 NO Can't use all 4's or all 5's since 11 is not div by 4 or 5. So have to use at least one of each. That gives you 9. If you use a 4 or a 5 you will exceed 9.
- 12 YES 12=4+4+4
- 13 YES 13=4+4+5
- 14 YES 14=4+5+5
- 15 YES 15=5+5+5
- 16 YES 16=4+4+4+4

I am confident that for all $n \ge 12$, n can be written as 4's and 5's.

(c)

Theorem: For all $n \ge 12$, n can be written as a sum of 4's and 5's.

Proof:

Base Case: We take n = 12, 13, 14, 15, 16 as base cases and they were proven above. KEY- we can assume that $n \ge 16$.

IH: Assume that for all m such that $12 \le m \le n-1$ m can be written as the sum of 4's and 5's.

IS: Given $n \ge 16$ we want to show that n is the sum of 4's and 5's. KEY: Since $n \ge 16$ we have that $12 \le n - 4 \le n - 1$. Hence by the IH we know that n - 4 can be written as a sum of 4's and 5's. Say

$$n - 4 = 4A + 5B$$

SO

$$n = 4A + 4 + 5B = 4(A+1) + 5B.$$

So we have n as a sum of 4's and 5's.

(d) We are looking to see if, for any x and y, there exists an n_0 such that for all $n \geq n_0$, any n coins could be created from x-coins and y-coins. We claim that a necessary condition for this to happen is that gcd(x,y) = 1.

Suppose that such an n_0 exist. Then there exist a_0, b_0 and a_1, b_1 such that:

$$n_0 = a_0 \cdot x + b_0 \cdot y$$

$$n_0 + 1 = a_1 \cdot x + b_1 \cdot y$$

Subtracting the two equations from each other gives us:

$$1 = (a_1 - a_0) \cdot x + (b_1 - b_0) \cdot y$$

Let gcd(x, y) = d for some d.

Then $d|(a_1-a_0)\cdot x+(b_1-b_0)\cdot y$ and so d|1. Therefore, d=1.

END OF SOLUTION TO PROBLEM 4

5. (20 points) Give a Context Free Grammar for the language

$$\{a^nb^{2n}:n\in \mathsf{N}\}$$

SOLUTION TO PROBLEM 5

 $S \to aSbb$

 $S \to e$

END OF SOLUTION TO PROBLEM 5

6. (20 points) Show that the following Context Free Grammar generates $L_{\#a>\#b} = \{w : \#_a(w) > \#_b(w)\}.$

ADJUSTMENT: LET G BE THE GRAMMAR AND L(G) BE WHAT IT GENERATES. NEED ONLY PROVE THAT $L(G) \subseteq L_{\#a>\#b}$.

$$S \to aT$$

 $S \to aS$

 $S \to bSS$

 $T \to aTb$

 $T \rightarrow bTa$

 $T \to TT$

 $T \to e$

(HINT AND YOU CAN USE THIS: Note that T generates

$$Leq = \{w : \#_a(w) = \#_b(w)\}\$$

(HINT: First prove that every derivation of a string of a's and b's of length n must have MORE a's than b's. This will be by induction. In doing this, pay attention to all possible FIRST rules in a derivation. Secondly, prove that every string of length n where there are more a's than b's can be generated. This is also by induction.)

SOLUTION TO PROBLEM 6

Call the grammar G.

Let $L_{\#a>\#b} = \{w : \#_a(w) > \#_b(w)\}.$

Theorem 1: $L(G) \subseteq L_{\#a>\#b}$

Proof: Let $S \Rightarrow_n \alpha$ mean that S generates α in n steps.

We show that for all n, if $S \Rightarrow_n \alpha$ (which can have S's and T's in it) then $\#_a(\alpha) > \#_b(\alpha)$. OH- THIS WILL NOT WORK- note that $S \to Sbb$ generates a string with two more b's then a's.

BETTER: Let $\#_{a+S}(\alpha) = \#_a(\alpha) + \#_S(\alpha)$.

We show that for all n, if $S \Rightarrow_n \alpha$ (which can have S's and T's in it) then $\#_{a+S}(\alpha) > \#_b(\alpha)$.

Base Case: n = 1: The only strings we can generate with one step are aT, aS, bSS all of which have more a's + S's then b's.

IH: If $S \Rightarrow_{n-1} \alpha'$ then $\#_{a+S}(\alpha') > \#_b(\alpha')$.

IS: Let $S \Rightarrow_n \alpha$ be a derivation of length n.

Assume $S \Rightarrow_n \alpha$. Look at the previous step:

 $S \Rightarrow_{n-1} \alpha'$.

By the IH $\#_{a+S}(\alpha') > \#_b(\alpha')$

Since there is a derivation to get α there must be an S or a T in α' that has a rule applied to it.

Case 1: The rule is $S \to aT$. Replacing S by aT in α' keeps $\#_{a+S}$ and $\#_b$ the same, so have $\#_{a+S}(\alpha) > \#_b(\alpha)$.

Case 2: The rule is $S \to aS$. Replacing S by aS in α' ADDS one to $\#_{a+S}$ while keeping $\#_b$ the same. So have $\#_{a+S}(\alpha) > \#_b(\alpha)$.

Case 3: The rule is $S \to bSS$. Replacing S by bSS in α' ADDS TWO to $\#_{a+S}$ and ADDS ONE to $\#_b$. So have $\#_{a+S}(\alpha) > \#_b(\alpha)$.

Case 4: The rule is either $T \to aTb$ or $T \to bTa$. Replacing T by either aTb or bTa in α' ADDS ONE to $\#_{a+S}$ and ADDS ONE to $\#_b$. So have $\#_{a+S}(\alpha) > \#_b(\alpha)$.

Case 5: The rule is either $T \to TT$ or $T \to e$. Replacing T by either TT or e in α' does not change either $\#_{a+S}$ or $\#_b$. So have $\#_{a+S}(\alpha) > \#_b(\alpha)$.

End of Proof of Theorem 1.

Theorem 2: $L_{\#a>\#b}\subseteq L(G)$.

Proof: We show that every string $w \in L_{\#a>\#b}$ is in L(G) by induction on n = |w|.

Base Case: n = 1. The only string of length 1 in $L_{\#a>\#b}$ is a which is in via $S \to aT$ and $T \to e$.

IH: All strings in $L_{\#a>\#b}$ of length $\leq n-1$ are in L(G).

IS: Let w be a string of length n in $L_{\#a>\#b}$.

Case 1: w = aw' where $w' \in Leq$. Then use $S \to aT$ and then $T \Rightarrow w'$. The IH was not needed here.

Case 2: w = aw' where $w' \in L_{\#a>\#b}$. Then use $S \to aS$ and then on the second S use $S \Rightarrow w'$ by the IH.

Case 3: w = bw'. w' must have at least 2 more a's than b's. Hence w' must be of the form w''w''' where w'' and w''' are both in $L_{\#a>\#b}$. Use $S \to bSS$ and then the IH to get $S \Rightarrow w''$ and $S \Rightarrow w'''$.

END OF SOLUTION TO PROBLEM 6