Theorem

Theorem

$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}].$$

We prove this four different ways by induction.

Prove P(3)

Proof I: The Idea

Use

$$\frac{1}{d} = \frac{1}{d+1} + \frac{1}{d(d+1)}.$$

d = d+1 + d(d+1) Will help get P(n-1) o P(n)

Proof I: Formally

Base Case: P(3) via (2,3,6) since $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$.

IH:
$$P(n-1)$$
: $(\exists d_1 < \cdots < d_{n-1})[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}}]$.
IS: Since $\frac{1}{d_{n-1}} = \frac{1}{d_{n-1}+1} + \frac{1}{d_{n-1}(d_{n-1}+1)}$

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_{n-2}} + \frac{1}{d_{n-1}} =$$

$$\frac{1-\frac{1}{d_1}+\cdots+\frac{1}{d_{n-2}}+\frac{1}{d_{n-1}}-}{\frac{1}{d_1}+\cdots+\frac{1}{d_{n-2}}+\frac{1}{d_{n-1}+1}+\frac{1}{d_{n-1}(d_{n-1}+1)}.$$

Note that $d_{n-2} < d_{n-1} < d_{n-1} + 1 < d_{n-1}(d_{n-1} + 1)$.

Proof II: The Idea

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}.$$

 $\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$ Will help get $P(n-2) \rightarrow P(n)$

Proof II: Formally

Base Case:

$$P(3)$$
 via $(2,3,6)$ since $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$.

$$P(4)$$
 via $(2,3,7,42)$ since $\frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{42} = 1$.

IH:
$$P(n-2)$$
: $(\exists d_1 < \cdots < d_{n-2})[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-2}}].$

IS: Since
$$\frac{1}{d_{n-2}} = \frac{1}{2d_{n-2}} + \frac{1}{3d_{n-2}} + \frac{1}{6d_{n-2}}$$

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_{n-3}} + \frac{1}{d_{n-2}} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-3}} + \frac{1}{2d_{n-2}} + \frac{1}{3d_{n-2}} + \frac{1}{6d_{n-2}}.$$

Note that $d_{n-3} < d_{n-2} < 2d_{n-2} < 3d_{n-2} < 6d_{n-2}$.

Variant on Induction

What if you have $P(n-2) \rightarrow P(n)$? Let $a \in N$.

$$P(a)$$
 $P(a+1)$
 $(\forall n \geq a+2)[P(n-2) \rightarrow P(n)]$
 $\therefore (\forall n \geq a)(P(n))$

(Can generalize.)

Why Does It Work?

etc.

$$P(a)$$
 $P(a+1)$
 $(\forall n \geq a+2)[P(n-2) \wedge P(n)]$
 $\therefore (\forall n \geq a)(P(n))$

1) Have
$$P(a)$$
, $P(a+1)$
2) From $P(a)$, $P(a) o P(a+2)$ get $P(a+2)$
3) From $P(a+1)$, $P(a+1) o P(a+3)$ get $P(a+3)$
4) From $P(a+2)$, $P(a+2) o P(a+4)$ get $P(a+4)$
5) From $P(a+3)$, $P(a+3) o P(a+5)$ get $P(a+5)$.

Proof III: Idea

Inductively assume that the largest denominator d is even.

Use

$$\frac{1}{d} = \frac{3}{3d} = \frac{2}{3d} + \frac{1}{3d} = \frac{1}{3d/2} + \frac{1}{3d}.$$

Will help get $P(n-1) \rightarrow P(n)$. But need that d is even! We abbreviate this $d \equiv 0$.

Proof III: Formally

Strengthen the induction hypothesis:

Theorem

$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)[d_n \equiv 0 \land 1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}].$$

Base Case: $n = 3: (2,3,6) - 6 \equiv 0 \land \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1.$

IH:
$$P(n-1)$$
:

$$(\exists d_1 < \cdots < d_{n-1})[d_n \equiv 0 \land 1 = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}} = 1].$$

IS: Since $\frac{1}{d_{n-1}} = \frac{1}{3d_{n-1}/2} + \frac{1}{3d_{n-1}}$.

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_{n-2}} + \frac{1}{d_{n-1}} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-2}} + \frac{1}{3d_{n-1}/2} + \frac{1}{3d_{n-1}} = 1$$

Note that $d_{n-2} < d_{n-1} < 3d_{n-1}/2 < 3d_{n-1}$ and that $3d_{n-1} \equiv 0$.

Strengthening the IH

You want to prove P(n) by induction.

 $P(n-1) \implies P(n)$ seems hard to do.

BUT

$$P(n-1) \wedge Q(n-1) \rightarrow P(n) \wedge Q(n)$$
 is easy to do.

So prove

Base Case: $P(1) \wedge Q(1)$

IS: $(\forall n \geq 2)[P(n-1) \land Q(n-1) \rightarrow P(n) \land Q(n)].$

Thoughts on Strengthening the IH

You get to **assume** more $(P(n-1) \land Q(n-1))$ instead of just P(n-1). Yeah!

You have to prove more $(P(n) \wedge Q(n))$ instead of P(n).) Boo!

Sometimes its easier to prove a harder theorem

Ioana's Proof

Bill: Note that $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$. I know three proofs that $(\forall n \geq 3)(\exists d_1 < \cdots < d_n)[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n} = 1]$. Try to proof it and I'll be curious which one of mine you

Try to proof it and I'll be curious which one of mine you come up with.

loana: Hmmm, you would not have shown me $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$ unless it was used in the proof. **Bill:** Oh. Well. Uh ... (worried she may go down the wrong track)

Ioana's Proof Idea

If have

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = 1$$

then

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \left(\frac{1}{d_1} + \dots + \frac{1}{d_n} \right).$$

Can use to show $P(n) \rightarrow P(n+2)$. Need P(3) and P(4) as base cases. We omit details.