What is a predicate?

A "predicate" is a statement involving variables over a specified "domain" (set). Domain is **understood ahead of time**

Example

Domain (set)	Predicate
Integers (\mathbb{Z})	S(x): x is a perfect square
Reals (\mathbb{R})	G(x,y): $x > y$
Computers	A(c): c is under attack
Computers; People	B(c, p): c is under attack by p

Quantification

- Existential quantifier: $\exists x \text{ (exists } x)$
- Universal quantifier: $\forall x \text{ (for all } x)$

Domain D

- $(\exists x)[P(x)]$: Exists x in D such that P(x) is true.
- $(\forall x)[P(x)]$: For all x in D, P(x) is true.

If Domain not understood OR if want to use $D' \subseteq D$:

•
$$(\exists x \in D')[P(x)]$$

• $(\forall x \in D')[P(x)]$

Examples From Mathematics

Domain is the natural numbers. Want to express everything just using $+, -, \times, \div, =, \leq, \geq$ Want predicates for

- x is a odd.
- x is a composite.
- x is a prime.
- x is the sum of three odd numbers.

Want to express **Vinogradov's Theorem:** For every sufficiently large odd number is the sum of three primes.

Do All of this in class

Examples From Mathematics

Domain is the natural numbers. Want to express everything just using $+,-,\times,\div,=,\leq,\geq$ Want predicates for

- x is a square.
- When you divide x by 4 you get a remainder of 1.

Want to express **Theorem:** Every prime that when you divide by 4 you get a remainder of 1 can be written as the sum of two squares.

Establishing Truth and Falsity

- To show ∃ statement is true: Find an example in the domain where it is true.
 To show ∃ statement is false: Show false for every member of the domain.
 To show ∀ statement is true: Show true for every member of the domain.
- To show ∀ statement is false:
 Find an example in the domain where it is false.

There are other methods!!!

Domain Matters

Is the following true:

 $(\forall x)(\exists y)[y < x]$

If Domain is N? (Naturals)

If Domain is Z? (Integers)

If Domain is Q? (Rationals)

If Domain is $Q^{>0}$? (Rationals that are > 0)

- If Domain is $Q^{\geq 0}$? (Rationals that are ≥ 0)
- If Domain is R? (Reals)

If Domain is C? (Complex)

Negation of \exists Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that some cat died Can there exist a cat that died? No

Negation of \exists Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that some cat died Can there exist a cat that died? No Hence All cats are alive

Negation of \exists Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that some cat died Can there exist a cat that died? No Hence All cats are alive Predicate L(x): x is alive.

$$\neg(\exists x)[L(x)] \equiv (\forall x[\neg L(x)]$$

Negation of ∃-Statements: Math

Domain is the integers.

It is not the case that there exists A Pollard Number Let P(x) be that x is a Pollard Number

 $\neg(\exists x)[P(x)]$

If there cannot exists a number x that is Pollard then

Negation of ∃-Statements: Math

Domain is the integers.

It is not the case that there exists A Pollard Number Let P(x) be that x is a Pollard Number

 $\neg(\exists x)[P(x)]$

If there cannot exists a number x that is Pollard then For all x, x is NOT Pollard.

Negation of ∃-Statements: Math

Domain is the integers.

It is not the case that there exists A Pollard Number Let P(x) be that x is a Pollard Number

 $\neg(\exists x)[P(x)]$

If there cannot exists a number x that is Pollard then For all x, x is NOT Pollard.

 $(\forall x)[\neg P(x)].$

Negation of ∃-Statements: Upshot

Any Domain D. Any Prediate P.

$$\neg(\exists x)[P(x)] \equiv (\forall x)[\neg P(x)]$$

Negation of \forall Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that all cats are furry Can there exist a cat that is not furry? Yes

Negation of \forall Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that all cats are furry Can there exist a cat that is not furry? Yes Hence There is some cat that is not furry

Negation of \forall Statements: Cats

Domain is cats of students in CMSC 250H It is not the case that all cats are furry Can there exist a cat that is not furry? Yes Hence There is some cat that is not furry Predicate F(x): x is furry.

$$\neg(\forall x)[F(x)] \equiv (\exists x[\neg F(x)]$$

Negation of ∀-Statements: Math

Domain is the integers.

It is not the case that all numbers are inteesting Let I(x) be that x is a Interesting.

 $\neg(\forall x)[I(x)]$

NOT all numbers are interesting.

Negation of ∀-Statements: Math

Domain is the integers.

It is not the case that all numbers are inteesting Let I(x) be that x is a Interesting.

 $\neg(\forall x)[I(x)]$

NOT all numbers are interesting. There must exist a number that is not interesting.

Negation of ∀-Statements: Math

Domain is the integers.

It is not the case that all numbers are inteesting Let I(x) be that x is a Interesting.

 $\neg(\forall x)[I(x)]$

NOT all numbers are interesting. There must exist a number that is not interesting.

$$(\exists x)[\neg I(x)].$$

Note: We return to interesting numbers later.

Negation of ∀-Statements: Upshot

Any Domain D. Any Prediate P.

$$\neg(\forall x)[P(x)] \equiv (\exists x)[\neg P(x)]$$

Aside: $(\forall x)[I(x)]??$

- 0: $(\forall x)[x + 0 = x]$.
- 1: $(\forall x)[x \times 1 = x].$
- 2: the only even prime.
- 3: the number of dimensions we live in.
- 4: Can color all planar maps with 4 colors but not 3.
- 5: The number of platonic solids.
- 6: The smallest perfect number.
- 7: Least *n* so can't contruct a reg polygon on *n* sides.
- 8: The largest cube in the Fibonacci sequence.
- 9: Max number of 3-powers are needed to sum to any integer.

Aside: $(\forall x)[I(x)]??$

- 10: The base of our number system.
- 11: The max mult persistence of a number
- 12: The smallest abundant number.
- 13: The number of Archimedian Solids.
- 14: There is NO n with exactly 14 numbers rel prime to it.
- 15: Least comp number with only one group of its order.
- 16: $= 2^4 = 4^2$. Only number that is x^y and y^x .
- 17: The number of wallpaper groups.
- 18: Only number that is twice the sum of its digits.19: Max number of 4-powers needed to sum to any integer.

Assume $(\exists n)[\neg I(n)]$. Let *n* be the least such *n*.

- Assume $(\exists n)[\neg I(n)]$.
- Let n be the least such n.
- WOW- n is the least number that is not interesting!

- Assume $(\exists n)[\neg I(n)]$.
- Let n be the least such n.
- WOW- n is the least number that is not interesting! Thats fascinating! so n is interesting!

- Assume $(\exists n)[\neg I(n)]$.
- Let n be the least such n.
- WOW- n is the least number that is not interesting! Thats fascinating! so n is interesting! Contradiction

Vacuous cases for universally quantified statements

- All even prime numbers that are greater than 10 are the sum of two squares.
- All students in this class who are more than ten feet tall have green hair.
- All people associated with CMSC 250H who are not awesome have purple hair.
- All people associated with CMSC 250H who are not awesome have brown hair.

Are these statements True or False? How do we show it? Does Order Matter for $(\exists x)(\exists y)$?

$$(\exists x)(\exists y)[x + y = 0]]$$

 $(\exists y)(\exists x)[x + y = 0]]$
Equivalent? Vote!

Does Order Matter for $(\exists x)(\exists y)$?

$$(\exists x)(\exists y)[x + y = 0]]$$

 $(\exists y)(\exists x)[x + y = 0]]$
Equivalent? Vote!
YES, equivalent.

Does Order Matter for $(\exists x)(\exists y)$?

 $(\exists x)(\exists y)[x + y = 0]]$ $(\exists y)(\exists x)[x + y = 0]]$ Equivalent? Vote! YES, equivalent. Let σ be a 1-1 onto function from $\{1, \dots, n\}$ to $\{1, \dots, n\}$.

$$(\exists x_1)(\exists x_2)\cdots(\exists x_n)[P(x_1,\ldots,x_n]\equiv$$

$$(\exists x_{\sigma(1)})(\exists x_{\sigma(2)})\cdots(\exists x_{\sigma(n)})[P(x_1,\ldots,x_n]$$

Does Order Matter for $(\forall x)(\forall y)$?

$$(\forall x)(\forall y)[x + y = 0]$$

 $(\exists y)(\exists x)[x + y = 0]$
Equivalent? Vote!

Does Order Matter for $(\forall x)(\forall y)$?

$$(\forall x)(\forall y)[x + y = 0]$$

 $(\exists y)(\exists x)[x + y = 0]$
Equivalent? Vote!
YES, equivalent.

Does Order Matter for $(\forall x)(\forall y)$?

 $(\forall x)(\forall y)[x + y = 0]$ $(\exists y)(\exists x)[x + y = 0]$ Equivalent? Vote! YES, equivalent. Let σ be a 1-1 onto function from $\{1, \dots, n\}$ to $\{1, \dots, n\}$.

 $(\forall x_1)(\forall x_2)\cdots(\forall x_n)[P(x_1,\ldots,x_n]\equiv$

 $(\forall x_{\sigma}(1))(\forall x_{\sigma}(2))\cdots(\forall x_{\sigma}(n))[P(x_1,\ldots,x_n]$

Does Order Matter for $(\forall x)(\exists y)$?

 $(\forall x)(\exists y)[x < y]]$ $(\exists y)(\forall x)[x < y]]$ Equivalent? Vote! Does Order Matter for $(\forall x)(\exists y)$?

 $(\forall x)(\exists y)[x < y]]$ $(\exists y)(\forall x)[x < y]]$ Equivalent? Vote!

NOT equivalent. We fine a domain where one is TRUE and one is FALSE.

Does Order Matter for $(\forall x)(\exists y)$?

 $(\forall x)(\exists y)[x < y]]$ $(\exists y)(\forall x)[x < y]]$ Equivalent? Vote!

NOT equivalent. We fine a domain where one is TRUE and one is FALSE.

 $(\forall x)(\exists y)[x < y]]$ TRUE over Naturals. $(\exists y)(\forall x)[x < y]]$ FALSE over Naturals.

Logical Rules

Universal	$(\forall x)[P(x)]$
Instantiation	$\therefore \overline{P(c)}$
Universal	P(c) for arbitrary element c
Generalization	$\therefore \overline{(\forall x)[P(x)]}$
Existential	$(\exists x)[P(x)]$
Instantiation	$\therefore P(c)$ for some element c
Existential	P(c) for some element c
Generalization	$\therefore \overline{(\exists x)[P(x)]}$