What is a proof?

A good proof should have:

- A clear statement of what is to be proved (labeled as Theorem, Lemma, Proposition, or Corollary).
- The word "Proof" to indicate where the proof starts.
- A clear indication of flow.
- A clear justification for each step.
- A clear indication of the conclusion.
- The abbreviation "QED" ("Quod Erat Demonstradum" or "that which was to be proved") or equivalent to indicate the end of the proof.

Summary of Proof Methods

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Exhaustive Proof
- Proof by cases

Statement of Theorems

The following are equivalent:

- The sum of two positive integers is positive.
- If *m*, *n* are positive integers then their sum *m* + *n* is a positive integer.
- For all positive integers *m*, *n* their sum *m* + *n* is a positive integer.
- $(\forall m, n \in \mathbb{Z})[((m > 0) \land (n > 0)) \rightarrow ((m + n) > 0)]$

Number Definitions

Definition

An integer *n* is *even* if n = 2k for some integer *k*, and is *odd* if n = 2k + 1 for some integer *k*.

Definition

A number q is *rational* if there exist integers a, b with $b \neq 0$ such that q = a/b.

Definition

A real number that is not rational is *irrational*.

Closure

Z is closed under addition. If a, b ∈ Z then a + b ∈ Z.
Q^{≠0} is closed under division. If q, r ∈ Q^{≠0} then ^q/_r ∈ Q^{≠0}.
Z^{≠0} is not closed under division.

 $\frac{3}{5} \notin \mathbb{Z}^{\neq 0}$.

Direct Proofs

- The square of an even number is even.
- The product of two odd numbers is odd.
- The sum of two rational numbers is rational.

Proof by Contraposition

- If 3n + 2 is odd, where *n* is an integer, then *n* is odd.
- If n^2 is even, where *n* is an integer, then *n* is even.
- If n = ab, where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$. What is the domain for n?

Proof by Contradiction

- At least four of any 22 days must fall on the same day of the week.
- $\sqrt{2}$ is irrational.

Proofs of Equivalence

- If *n* is an integer, then *n* is odd if and only if *n*² is odd.
- The following statements about the integer *n* are equivalent:
 - *n* is even.
 - n 1 is odd.
 - n^2 is even.

Exhaustive Proofs

- For all positive integers n with $n \leq 4$, $(n+1)^3 \geq 3^n$.
- There are no integer solutions to the equation $x^2 + 3y^2 = 8$.

Interesting vs Boring: Round I

- Every number ≤ 100 can be written as the sum of nine cubes. Can be proven by exhaustion. boring proof of boring statement.
- Every number can be written as the sum of nine cubes. Can be proven by **very interesting mathematics**
- Is nine optimal? Yes: 23 requires nine cubes.

Do in Class

Interesting vs Boring: Round II

- Every number can be written as the sum of nine cubes. Nine is optimal since 23 requires nine.
- If every number except 23 can be written as the sum of eight cubes that seems more interesting.

What is the Right Question to Ask?

Proofs by Cases

- For every integer n, $n^2 \ge n$.
- If *n* is odd then $n^2 = 8m + 1$ for some integer *m*.

Existence Proofs

There exists a postive integer that is the sum of two cubes of postive integers in two different ways.

$$egin{aligned} (\exists p,q,r,s,n\in\mathbb{Z}^+)\ [(p
eq q)\wedge(p
eq r)\wedge(p
eq s)\ \wedge(q
eq r)\wedge(q
eq s)\wedge(r
eq s)\ \wedge(n=p^3+q^3)\wedge(n=r^3+s^3)] \end{aligned}$$

Tell Story

Existence Proofs

$(\exists x, y \in \mathbb{R} - \mathbb{Q})[x^y \in \mathbb{Q}]$

