
The Solution to a Problem in a Romanian Math Problem Book

By Bill Gasarch

The following problem is in a Romanian book of math problems. It was told to me by Ioana

Bercea who is a Romanian. The answers were in the book but in Romanian so I was forced to

solve it myself.

Def 0.1 Let Q(n) be the statement (∃x1, . . . , xn ∈ N)[
∑n

i=1
1
x2
i
= 1].

Problem: Prove that for all n ≥ 6 Q(n) is true.

Plan: We will prove (not in this order) (I) Q(6), Q(7), Q(8) and (II) (∀n)[Q(n) =⇒ Q(n+ 3)].

Def 0.2 Let P (n, s, te, to) be YES if there exists a multiset {x1, . . . , xn} such that

•
∑n

i=1
1
x2
i
= 1.

• {x1, . . . , xn} = A1 ∪ · · · ∪ As ∪ Le ∪ Lo where all of these multisets are disjoint, each Ai

has four of the same even number in them, Le contains te even numbers, Lo contains to odd

numbers.

Note that we have P (1, 0, 0, 1) via one 1.

Lemma 0.3

1. If to ≥ 1 then P (n, s, te, to) =⇒ P (n+ 3, s+ 1, te, to − 1).

2. If te ≥ 1 then P (n, s, te, to) =⇒ P (n+ 3, s+ 1, te, to).

3. If s ≥ 1 then P (n, s, te, to) =⇒ P (n+ 3, s, te + 3, to).

4. (∀n ≥ 1)[Q(n) =⇒ Q(n+ 3)] (This follows from the first three.)

Proof: 1, (2,3): Replace an x ∈ Lo (x ∈ Le, x ∈ A1 ∪ · · · ∪ As) with {2x, 2x, 2x, 2x}.
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By Lemma 0.3 and P (1, 0, 0, 1) we get P (4, 1, 0, 0) and then P (7, 1, 3, 0). Hence we get Q(7).

We do this explicitly.

P (1, 0, 0, 1) via one 1.

P (4, 1, 0, 0) via four 2’s

P (7, 1, 3, 0) via three 2’s and four 4’s

Lemma 0.4

1. If te ≥ 1 then P (n, s, te, to) =⇒ P (n+ 8, s+ 2, te, to).

2. If to ≥ 1 then P (n, s, te, to) =⇒ P (n+ 8, s, te, to + 8).

3. If s ≥ 1 then P (n, s, te, to) =⇒ P (n+ 8, s+ 1, te + 4, to).

Proof: 1, (2,3): Replace an x ∈ Le (x ∈ Lo, x ∈ A1∪· · ·∪As ) with {3x, 3x, 3x, 3x, 3x, 3x, 3x, 3x, 3x}.

By Lemma 0.4.3 and P (4, 1, 0, 0) we obtain P (12, 2, 4, 0). Then use Lemma 0.4.1 to obtain

P (20, 4, 4, 0). We do this explicitly.

P (4, 1, 0, 0) via four 2’s.

P (12, 2, 4, 0) via three 2’s and nine 6’s.

P (20, 4, 4, 0) via three 2’s and eight 6’s and nine 18’s.

Lemma 0.5 If s ≥ 1 then P (n, s, te, to) =⇒ P (n− 3, s− 1, t′e, t
′
o) where exactly one of t′e, t

′
o is

one more than it was and the other stays the same.

Proof: Replace A1 = {x, x, x, x} with {x
2
}. (Recall that the Ai’s have all even elements.) If x

2

is even then te increases by one. If x
2

is odd then to increases by one.
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Apply Lemma 0.5 four times to P (20, 4, 4, 0) to obtain P (8, 0, 4, 0), so we have Q(8). We do

this explicitly.

P (20, 4, 4, 0) via three 2’s and eight 6’s and nine 18’s.

P (17, 3, 4, 0) via three 2’s and eight 6’s and one 9 and five 18’s

P (14, 2, 4, 0) via three 2’s and eight 6’s and two 9’s and one 18.

P (11, 1, 4, 0) via three 2’s and one 3 and five 6’s and two 9’s and one 18.

P (8, 0, 4, 0) via three 2’s and two 3’s and one 6 and two 9’s and one 18.

Apply Lemma 0.5 twice to P (12, 2, 4, 0) to obtain P (6, 0, 4, 0) so we have Q(6).

P (12, 2, 4, 0) via three 2’s and nine 6’s.

P (9, 1, 4, 0) via three 2’s and one 3 and five 6’s.

P (6, 0, 4, 0) via three 2’s and two 3 and one 6.

We have Q(6), Q(7), Q(8) and (∀n ≥ 1)[Q(n) =⇒ Q(n + 3)]. Hence we have (∀n ≥

6)[Q(n)].

Some notes.

1. The solution in the back of the book just gave the numbers to prove Q(6), Q(7), Q(8) and

proved Q(n) =⇒ Q(n+ 3). There numbers were

• Q(6): three 2’s two 3’s and one 6. Same as mine.

• Q(7): three 2’s and four 4’s. Same as mine.

• Q(8): three 2’s, two 3’s, one 7, one 14, one 21. Different from mine.

They do not say how they got it.

2. Q(5) is false by a case by case analysis: You must use AT LEAST three 2’s since if you

used two 2’s and three 3’s then you get 2 × 1
4
+ 3 × 1

9
< 1. Hence we need (a, b) such that

1
a2

+ 1
b2

= 1− 3
4
= 1

4
. We leave it to the reader to show this cannot be done.

3. Note that the theorem with 6 is optimal.
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We can prove a more general theorem but without stating the starting point.

Def 0.6 Let k ∈ N. Let Qk(n) be the statement (∃x1, . . . , xn ∈ N)[
∑n

i=1
1
xk
i
= 1].

Theorem 0.7 For all k there exists no such that for all n ≥ no Qk(n) is true.

Proof: Note that Qk(1) is true as 1 = 1
1k

.

Let i ∈ N. Clearly Qk(n) =⇒ Q(n + ik − 1): replace 1
akn

with ik copies of 1
(ian)k

. Hence for

all x2, . . . , xm (any m), if

n = 1 + (2k − 1)x2 + (3k − 1)x3 + · · ·+ (mk − 1)xk

then we have Q(n). It is well known that if a1, a2, . . . , ak are rel prime then almost all natural

numbers can be written as a linear combination of them with positive coefficients. Hence we need

to show that some subset of {2k − 1, 3k − 1, . . .} is rel prime. Let d = GCD(2k − 1, 3k − 1). If

d = 1 then you are done. If d ≥ 2 then GCD(2k − 1, 3k − 1, dk − 1) = 1 and we are done.

Alternative: GCD(2k − 1, 22
k−1 − 1) = 1.

Open Questions

1. Obtain upper and lower bounds on no as a function of k from the last theorem.

2. How hard is the following problem: Given (k, n) determine if 1 can be written a the sum

of n inverses-kth-powers. If yes then produce a way to do this. (Greedy does not work— it

fails for k = 2, n = 8.)

3. How hard is the following problem: Given (k, n) determine how many ways 1 can be written

as the sum of n inverses-kth-powers.
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