CMSC 250 Second Midterm

1. This is an open-everything exam. You can use anything except ask another person. Caution: if you copy from the web or elsewhere mindlessly you will probably get it wrong.
2. There are 3 problems which add up to 70 points. Recall that you already did 30 points of this midterm take home.
3. The exam is April 8 from 8:00PM until 10:15PM unless you have contacted me to make other arrangements. So the exam is 2 hours and 15 minutes
4. For each question show all of your work and use LaTeX or write VERY NEATLY. Clearly indicate your answers. No credit for illegible answers.
5. Please write out the following statement: I pledge on my honor that I will not give or receive any unauthorized assistance on this examination.
6. (25 points) Prove that $7^{1 / 3}$ is NOT rational. You must state and prove carefully any lemmas you use.
You can do this problem on this page and the next page.
7. (25 points) Let a_{n} be defined as follows.

$$
\begin{aligned}
& a_{1}=11 \\
& (\forall n \geq 2)\left[a_{n}=a_{\left\lfloor n^{3 / 4}\right\rfloor}+a_{\left\lfloor n^{1 / 4}\right\rfloor}+15\right]
\end{aligned}
$$

Show by strong induction that
$(\forall n \geq 1)\left[a_{n} \equiv 11(\bmod 13)\right]$
Include Base Case, IH, and IS.
You can do this problem on this page and the next page.
3. (20 points) Note that $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1$.

Also note that $\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{42}=1$.
We obtained the 2 nd equation from the 1 st by noticing that $\frac{1}{6}=\frac{1}{7}+\frac{1}{42}$.
This equation is a special case of the equation $\frac{1}{d}=\frac{1}{d+1}+$ $\frac{1}{d(d+1)}$
which can be proven algebraically (it does not need a proof by induction).

OKAY, now finally the problem.
Show that, for all $n \geq 3$, there exists natural numbers $d_{1}<\cdots<d_{n}$ such that
$\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}=1$.
(Hint Do this by induction on n and use

$$
\frac{1}{d}=\frac{1}{d+1}+\frac{1}{d(d+1)}
$$

)

