Arithmetic Mean-Geometric Mean-Inequalities

AM and GM

Def

1. The arithmetic mean (AM) of x_{1}, \ldots, x_{n} is

$$
\frac{x_{1}+\cdots+x_{n}}{n}
$$

AM and GM

Def

1. The arithmetic mean (AM) of x_{1}, \ldots, x_{n} is

2. The geometric mean (GM) of x_{1}, \ldots, x_{n} is

$$
\left(x_{1} \cdots x_{n}\right)^{1 / n}
$$

AM and GM

Def

1. The arithmetic mean (AM) of x_{1}, \ldots, x_{n} is

$$
\frac{x_{1}+\cdots+x_{n}}{n}
$$

2. The geometric mean (GM) of x_{1}, \ldots, x_{n} is

$$
\left(x_{1} \cdots x_{n}\right)^{1 / n}
$$

How do AM and GM compare when $x_{1}, \ldots, x_{n} \in \mathbb{R}^{+}$?

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare?

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y
$$

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{aligned}
& \frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
& \frac{x^{2}-2 x y+y^{2}}{4} \geq 0
\end{aligned}
$$

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{gathered}
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
\frac{x^{2}-2 x y+y^{2}}{4} \geq 0 \\
\frac{(x-y)^{2}}{4} \geq 0
\end{gathered}
$$

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{gathered}
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
\frac{x^{2}-2 x y+y^{2}}{4} \geq 0 \\
\frac{(x-y)^{2}}{4} \geq 0
\end{gathered}
$$

Proof also reveals that they are equal IFF $x=y$.

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{gathered}
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
\frac{x^{2}-2 x y+y^{2}}{4} \geq 0 \\
\frac{(x-y)^{2}}{4} \geq 0
\end{gathered}
$$

Proof also reveals that they are equal IFF $x=y$.
Why $n=2 ?$

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{gathered}
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
\frac{x^{2}-2 x y+y^{2}}{4} \geq 0 \\
\frac{(x-y)^{2}}{4} \geq 0
\end{gathered}
$$

Proof also reveals that they are equal IFF $x=y$.
Why $n=2$? It will be the base case.

AM and GM: $n=2$

Assume $x, y \in \mathbb{R}^{+}$.
How do $\frac{x+y}{2}$ and $\sqrt{x y}$ compare? Discuss.

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Square both sides

$$
\begin{gathered}
\frac{x^{2}+2 x y+y^{2}}{4} \geq x y \\
\frac{x^{2}-2 x y+y^{2}}{4} \geq 0 \\
\frac{(x-y)^{2}}{4} \geq 0
\end{gathered}
$$

Proof also reveals that they are equal IFF $x=y$.
Why $\boldsymbol{n}=2$? It will be the base case. And more!

The AM-GM Theorem

Thm For all $n \in \mathbb{N}$ and for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{+}$

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq\left(x_{1} \cdots x_{n}\right)^{1 / n}
$$

The AM-GM Theorem

Thm For all $n \in \mathbb{N}$ and for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{+}$

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq\left(x_{1} \cdots x_{n}\right)^{1 / n}
$$

Equality happens iff $x_{1}=\cdots=x_{n}$.

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove $P(2)$

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove $P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove
$P(2)$

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove
$P(2)$ (we already did this).

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove
$P(2)$ (we already did this).
$(\forall n)\left[P\left(2^{n-1}\right) \rightarrow P\left(2^{n}\right)\right]$

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove
$P(2)$ (we already did this).
$(\forall n)\left[P\left(2^{n-1}\right) \rightarrow P\left(2^{n}\right)\right]$
$(\forall n<m)[P(m) \rightarrow P(n)]$ (YES, $n<m)$. NOT a typo!)

A Very Odd Induction. A Very Even Induction

Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove
$P(2)$
$(\forall n \geq 2))[P(n) \rightarrow P(n+1)]$.
From these two you can get to any $n \geq 2$.
Any set of rules that allows you to get to any number would work.
We will prove
$P(2)$ (we already did this).
$(\forall n)\left[P\left(2^{n-1}\right) \rightarrow P\left(2^{n}\right)\right]$
$(\forall n<m)[P(m) \rightarrow P(n)]$ (YES, $n<m$). NOT a typo!)
From these implications we easily obtain $(\forall n)[P(n)]$.
$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$
$\| \mathrm{H} \frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n-1}} \geq\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}$
$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$

IH $\frac{\sum_{i=1}^{n-1} x_{i}}{2^{n-1}} \geq\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}$
IS

$$
\frac{\sum_{i=1}^{2^{n}} x_{i}}{2^{n}}=\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n}}=\frac{1}{2}\left(\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n-1}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n-1}}\right)
$$

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$

IH $\frac{\sum_{i=1}^{n_{1}^{n-1}} x_{i}}{2^{n-1}} \geq\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}$
IS

$$
\begin{gathered}
\frac{\sum_{i=1}^{2^{n}} x_{i}}{2^{n}}=\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n}}=\frac{1}{2}\left(\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n-1}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n-1}}\right) \\
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1} x_{i}\right)^{1 / 2^{n-1}}\right)
\end{gathered}
$$

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$

IH $\frac{\sum_{i=1}^{i^{n-1}} x_{i}}{2^{n-1}} \geq\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}$
IS

$$
\begin{gathered}
\frac{\sum_{i=1}^{2^{n}} x_{i}}{2^{n}}=\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n}}=\frac{1}{2}\left(\frac{\sum_{i=1}^{2^{n-1}} x_{i}}{2^{n-1}}+\frac{\sum_{i=2^{n-1}+1}^{2^{n}} x_{i}}{2^{n-1}}\right) \\
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1} x_{i}\right)^{1 / 2^{n-1}}\right)
\end{gathered}
$$

Next Slide
$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$ (cont)

$$
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2 n^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)
$$

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$ (cont)

$$
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)
$$

Note This is AM of 2 numbers! We use AM-GM-2 on it!

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$ (cont)

$$
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)
$$

Note This is AM of 2 numbers! We use AM-GM-2 on it!

$$
\frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right) \geq
$$

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$ (cont)

$$
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)
$$

Note This is AM of 2 numbers! We use AM-GM-2 on it!

$$
\begin{aligned}
& \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right) \geq \\
& \left.\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}} \times\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)\right)^{1 / 2}
\end{aligned}
$$

$P\left(2^{n-1}\right) \Longrightarrow P\left(2^{n}\right)$ (cont)

$$
\geq \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)
$$

Note This is AM of 2 numbers! We use AM-GM-2 on it!

$$
\begin{aligned}
& \frac{1}{2}\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}}+\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right) \geq \\
& \left.\left(\left(\prod_{i=1}^{2^{n-1}} x_{i}\right)^{1 / 2^{n-1}} \times\left(\prod_{i=2^{n-1}+1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)\right)^{1 / 2} \\
& \left.\quad \geq\left(\prod_{i=1}^{2^{n}} x_{i}\right)^{1 / 2^{n-1}}\right)^{1 / 2}=\left(\prod_{i=1}^{2^{n}} x_{i}\right)^{1 / 2^{n}}
\end{aligned}
$$

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.
IS We care about $\frac{x_{1}+\cdots+x_{n}}{n}$.

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.
IS We care about $\frac{x_{1}+\cdots+x_{n}}{n}$.
We need x_{n+1}, \ldots, x_{m} so we can use IH.

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.
IS We care about $\frac{x_{1}+\cdots+x_{n}}{n}$.
We need x_{n+1}, \ldots, x_{m} so we can use IH.

$$
x_{n+1}=\cdots=x_{m}=\frac{x_{1}+\cdots+x_{n}}{n}=\alpha
$$

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.
IS We care about $\frac{x_{1}+\cdots+x_{n}}{n}$.
We need x_{n+1}, \ldots, x_{m} so we can use IH.

$$
x_{n+1}=\cdots=x_{m}=\frac{x_{1}+\cdots+x_{n}}{n}=\alpha
$$

And now we begin the proof, starting with α.

$n<m: P(m) \Longrightarrow P(n)$

IH $\left(\forall x_{1}, \ldots, x_{m}\right)\left[\frac{\sum_{i=1}^{m} x_{i}}{m} \geq\left(\prod_{i=1}^{m} x_{i}\right)^{1 / m}\right]$.
IS We care about $\frac{x_{1}+\cdots+x_{n}}{n}$.
We need x_{n+1}, \ldots, x_{m} so we can use IH.

$$
x_{n+1}=\cdots=x_{m}=\frac{x_{1}+\cdots+x_{n}}{n}=\alpha
$$

And now we begin the proof, starting with α.

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}
$$

We want to write this as the mean of m elements.

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}
$$

We want to write this as the mean of m elements.

$$
\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}=
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m} .
$$

We want to write this as the mean of m elements.

$$
\begin{gathered}
\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}= \\
\frac{x_{1}+\cdots+x_{n}+\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)-x_{1}-\cdots-x_{n}}{m}=
\end{gathered}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}
$$

We want to write this as the mean of m elements.

$$
\begin{gathered}
\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}= \\
\frac{x_{1}+\cdots+x_{n}+\frac{m}{n}\left(x_{1}+\cdots+x_{n}\right)-x_{1}-\cdots-x_{n}}{m}= \\
\frac{x_{1}+\cdots+x_{n}+\frac{m-n}{n}\left(x_{1}+\cdots+x_{n}\right)}{m}=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
\end{gathered}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)^{1 / m}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$$
\begin{gathered}
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)^{1 / m} \\
\alpha^{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)
\end{gathered}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$$
\begin{gathered}
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)^{1 / m} \\
\alpha^{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)
\end{gathered}
$$

Multiply both sides by α^{n-m} to get

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$$
\begin{gathered}
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)^{1 / m} \\
\alpha^{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)
\end{gathered}
$$

Multiply both sides by α^{n-m} to get

$$
\alpha^{n} \geq \prod_{i=1}^{n} x_{i}
$$

$n<m: P(m) \Longrightarrow P(n)$ (cont)

$$
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m}
$$

We have the mean of m numbers! We can use IH!

$$
\begin{gathered}
\alpha=\frac{x_{1}+\cdots+x_{n}+(m-n) \alpha}{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)^{1 / m} \\
\alpha^{m} \geq\left(\left(\prod_{i=1}^{n} x_{i}\right) \alpha^{m-n}\right)
\end{gathered}
$$

Multiply both sides by α^{n-m} to get

$$
\begin{gathered}
\alpha^{n} \geq \prod_{i=1}^{n} x_{i} \\
\alpha \geq\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
\end{gathered}
$$

Why This Example?

This example is interesting since it uses a diff induction scheme.

Why This Example?

This example is interesting since it uses a diff induction scheme. They key is that if you from:

Why This Example?

This example is interesting since it uses a diff induction scheme. They key is that if you from:

- Base Case

Why This Example?

This example is interesting since it uses a diff induction scheme. They key is that if you from:

- Base Case
- IS
you can reach any $n \in \mathbb{N}$, then $(\forall n)[P(n)]$.

